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Abstract. The paper develops a new channel estimation algorithm for use in broadband OFDM 

data transmission over non-ideal channels. The channel is described by Gauss–Markov AR 

model of a given order in state-space form. One of the existing solutions to channel estimation 

is based on the well-known Kalman filter (KF). Another approach is to use the information 

formulation of KF, the so-called Information filter (IF). To improve the numerical properties of 

the IF implementation, we propose a new numerically efficient channel estimation algorithm, 

the so-called combined array UD Information Filter (caUD-IF). The algebraic equivalence be-

tween IF and new caUD-IF is proved. The aspects of a parallel implementation of the suggest-

ed algorithm are also considered. 

1. Introduction 

Orthogonal Frequency Division Multiplexing (OFDM) is a combination of modulation and multiplex-

ing. In modulations, information is mapped on to changes in frequency, phase or amplitude (or a com-

bination of them) of a carrier signal. Multiplexing deals with allocation/accommodation of users in a 

given bandwidth. In other words, it deals with the allocation of an available resource. 

Following [1], an OFDM signal can be represented as 

                
   
                  (1) 

where      represents the symbols mapped to the chosen constellation and    represents the orthogo-

nal frequencies. The OFDM architecture is illustrated in figure 1. 



474 
 

 

Figure 1. The scheme from page 233 of Viswanathan, M. Simulation of 

Digital Communication Systems Using Matlab [eBook], 2013. 

The data bits                  are first converted from serial stream to parallel stream depending 

on the number of sub-carriers     named from 0 to    . The Serial to Parallel converter takes the 

serial stream of input bits and outputs   parallel streams. They are individually converted into the re-

quired digital modulation format (BPSK, QPSK, QAM, etc.). 

Let us call this output                 . The conversion of parallel data   into the digitally 

modulated data   is usually achieved by a constellation mapper, which is essentially a look-up table 

(LUT). Once the data bits are converted to required modulation format, they are superimposed on the 

required orthogonal subcarriers for transmission through the channel. This is achieved by a series of   

parallel sinusoidal oscillators tuned to   orthogonal frequencies               . The resultant output 

from the   parallel arms is summed up together to produce the OFDM signal. Figure 2 shows the en-

tire architecture of a basic OFDM system with both transmitter and receiver. 

  

Figure 2. The scheme from page 233 of Viswanathan, M. Simulation of 

Digital Communication Systems Using Matlab [eBook], 2013. 

The FFT/IFFT (Fast Fourier Transform / Inverse Fast Fourier Transform) length   defines the 

number of total subcarriers present in the OFDM system. For example, an OFDM system with 

       provides 64 subcarriers. In reality, not all the subcarriers are utilized for data transmission. 

Some subcarriers are reserved for pilot carriers (used for channel estimation/equalization and to com-

bat magnitude and phase errors in the receiver) and some are left unused to act as a guard band. 

In the simplest case, the channel is modeled as a simple AWGN (additive white Gaussian noise) 

channel. In a more realistic case, the channel is modeled as a first rank Markov process. In our re-

search work, we model the channel by the Gauss–Markov AR model of rank    written in the state 

space for each  -th sub-channel allocated for the  -th user. 



475 
 

2. Channel model for OFDM data transmission 

Consider the Gauss–Markov AR model written in the state space 
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where combined state vector       
         

    
 
 

 consists of   sub-vectors 

  
             

   
       

   
   

   
 
 

,         , corresponding to   different sub-channels;    is the 

measurement vector; the process noise    and the measurement noise    are mutually independent 

random (Gaussian) sequences, i.e.,             and            . Let these noises be independ-

ent of some random initial state             . Covariance matrices    and    have the following 

block (array) forms:           
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matrices in (2) are determined as follows: 
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The following nomenclature (see table 1) gives an insight into variables and parameters used in the 

channel model: 

Table 1. Model nomenclature. 

Name Meaning Range Dimension 

   channel (state of)         

 

   
 

   channel transition          

  channel noise input matrix          

   channel noise      

   observed signal      

   channel pilot subcarriers          

   channel observation noise      

   channel noise covariance          

   channel noise covariance          

Our goal is to estimate unknown state vector   , i.e., to calculate, at each discrete time instant  , the 

one-step predicted estimate         minimizing the MSE criterion               
              , giv-

en the available measurements   
       

        
   . The well-known Kalman filter algorithm [2, 3] 

is an ideal theoretical tool for solving the linear estimation problem. At each discrete-time moment KF 

yields to compute the linear least-square predicted estimate        , of the state vector    and the pre-

dicted error covariance matrix                                  
  , and also the filtered estimate 

      given the measurements   
  and the filtered error covariance matrix                      

      
  . 
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There is no doubt that the main computational effort in Kalman filtering is spent in solving the 

Riccati equation. This effort is needed to calculate the Kalman gains. However, only the value of the 

predicted error covariance matrix        is required for this purpose. A value of the filtered error co-

variance matrix      is only used as an intermediate result on the way to compute the next value of 

      . 

Actually, it is not necessary to compute matrix      explicitly. It is possible to compute the predict-

ed error covariance matrix        from one temporal epoch to the next, without going through the in-

termediate values of the filtered error covariance. This approach, and the algorithms for doing it, are 

called the combined measurement/time update or one-stage filters [3, 4]. The equations of the one-

stage conventional KF can be found in [3, p. 317]. Thus, a combined (one-stage) KF formulation re-

quires less computation than a two-stage one. 

3. Channel Estimation Algorithm Based on Information Filter 

The well-known Information filter (IF) is an alternative formulation of the Kalman filter, where the 

covariance matrix   is replaced by its inverse matrix  , which is called the information matrix. The 

information formulation is particularly useful when there is no prior information, i.e. the initial covari-

ance matrix     . In this case, the covariance formulation of the KF is not defined, while the in-

formation formulation is, and can start from      
    . 

Information filter does not use the same state vector representation as the conventional KF. Those 

that use the information matrix in the filter implementation use the information state     . The im-

plementation equations for the “straight” information filter (i.e., using Y) one can find in [2, p. 263]. 

This algorithm has the two-stage formulation, i.e. it consists of the time update step and the measure-

ment update step. It is easy to reformulate it in a combined (one-stage) form. 

Here we suggest using the information filter for solving the channel estimation problem. Let us 

formulate the combined (one-stage) information algorithm (cIF) for OFDM channel estimation with 

the above mathematical model (2), (3). Taking into account the block diagonal structure of system ma-

trices, we design the estimation algorithm in the form of   concurrent cIFs as it is described in the be-

low. 

For           we implement the combined Information Filter      to estimate the unobserva-

ble state vector   
   

 from the noise-corrupted measurements       
 

   
 as it is shown in table 2. 

Table 2. Summary of combined Information Filter (cIF). 

Initial data 

Information matrix:      
   

Information estimate:          

Recursively update (         ) 

Information matrix: 
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Information estimate: 
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Remark 1. At any discrete-time moment  , one can easily obtain the predicted state estimate 
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Remark 2. It is obvious that the bank of cIFs                is ideal for the organization of a 

parallel computing scheme that can significantly accelerate the process of channel estimation. 

Recently, different solutions of various channel estimation problems with the use of the Kalman fil-

tering technique were considered in [5–8]. However, it is well-known that the conventional KF algo-

rithm is numerically unstable due to the Riccati computational procedure (see, for instance, the discus-

sion in [9]), and the same is true for the information filter (4)–(8). The problem of machine round-off 

errors is unavoidable due to the limited machine precision of real floating-point numbers. Unfortunate-

ly, it is impossible to solve the problem completely. However, one can significantly reduce the effect 

of machine round-off errors by designing some algebraically equivalent Kalman filter implementa-

tions, which may become the desired numerically efficient algorithms. Such solutions are based on a 

variety of matrix factorization methods as applied to the error covariance matrices involved in the co-

variance filter equations, and also to the information matrices involved in the information filter equa-

tions. 

Since the invention of the KF in the 1960s, there has been a great interest in the development of 

numerically stable and efficient KF implementation methods [2]. In this paper, we study KF imple-

mentation algorithms of information type and propose the novel numerically efficient combined array 

UD information filter (caUD-IF) for solving the channel estimation problem. This new estimation al-

gorithm was constructed for the first time. Although the UD-based  information-type KF implementa-

tion was recently proposed in [10], it does not have a convenient array form for processing homogene-

ous large-scale data. 

4. Numerically stable channel estimation algorithm based on the new combined array UD In-

formation Filter 

The main idea of the KF array formulation is that the required quantities of the discrete filter are up-

dated in an array form using the orthogonal matrix transforms. It means that numerically stable or-

thogonal transforms are used for updating the corresponding factors of the state error covariance ma-

trix (and also state estimate) at each iteration step. In other words, orthogonal operators are applied to 

the pre-array (which contains the filter quantities available at the current step) to get the post-array in 

some special form. Then, the required updated filter quantities are simply read out from the post-array. 

This feature makes the array algorithms better suited to the parallel computations and to the very large 

scale integration (VLSI) implementations [11, 12]. The first information-type array filter was built in 

[13]. The covariance-type array square-root algorithms were constructed in [12]. 

Another important class of array algorithms is the UD KF methods. The special feature of it is that 

these algorithms are based on the modified Cholesky factorization of the state prediction error covari-

ance matrix      , where   is a unit upper triangular matrix,     is a diagonal matrix. The first 

UD filter was developed by G.J. Bierman; see [14] for more details. J.M. Jover and T. Kailath pro-

posed in [15] the array form of UD based measurement update algorithm. Recently, a new extended 

array UD covariance filter (eUD-CF) was proposed in [16] and then apply to the channel estimation 

problem [17]. 

The modified Cholesky decomposition implies the factorization of a symmetric positive definite 

complex matrix   in the form         
  , where    denotes a diagonal matrix and    is an upper 

triangular matrix with 1’s on the main diagonal. We need to note that the Cholesky decomposition 

(and its modified version) exists and is unique when the matrix to be decomposed is positive definite; 

see [18]. If the matrix is a positive semi-definite, then the Cholesky decomposition still exists, howev-

er, it is not unique.  

Concerning the Information formulation of the KF, the matrix factorization must perform for the 

initial information matrix    and the covariance matrices   ,   . For the examined discrete-time sto-

chastic model (2), (3) with the associated Information filter (4)–(9) we assume that     ,     , 

      and matrix    is invertible. Hence, the modified Cholesky decomposition exists and is unique 

for the mentioned quantities, i.e., we have             
 ;        

   
   

   and        
   

   

 , 

        . 
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For the UD-based KF implementations, the modified weighted Gram-Schmidt (MWGS) 

orthogonalization is used for the recursive update of the error covariance UD-factors. It was shown 

that the MWGS outperforms the usual Gram-Schmidt orthogonalization for accuracy; see [19]. 

In this paper, we construct the UD-based formulations of the newly developed combined array In-

formation Filter (caUD-IF) by using MWGS orthogonalization. More precisely, each iteration of the 

new caUD-IF algorithm should have the following form: given a pair of the pre-arrays       , com-

pute a pair of the post-arrays        by means of the MWGS orthogonalization,  , i.e.,  

              (10) 

where       ,    , and        is the MWGS transformation that produces the block upper 

triangular matrix with 1’s on the main diagonal,       , such that 

            and             (11) 

where the diagonal matrices are        ,         and     ; see [14, Lemma VI.4.1] for an 

extended explanation. 

Further, taking into account the block structure of the system matrices in (2), (3), for convenience 

we omit the superscript     in filter equations. Hence, the new combined array UD-based Information 

Filter can be written as follows. 

Table 3. Combined array UD based Information Filter (caUD-IF). 

I. Initial data 

I.1. Set:      
  ,         . 

I.2. Calculate the modified  

    Cholesky factors: 
          

I.3. Set:     
      

         
      

     

II. Recursively update       
      

  and       as follows (   ): 

II.1. For          ,       
 

     
     construct a pair of 

the pre-arrays       : 

               

   ,       
       

    
    

      (12) 

II.2. Apply the MWGS transforms 

of the columns of   with respect 

to the weighting matrix    to  

obtain a pair of the post-arrays 
      : 

     
,        

                                                             (13) 

II.3. For           ,     
 

      
      construct a pair of 

the pre-arrays       
  : 

  
          

    

   ,        
   

 

     
   

                (15) 

II.4. Apply the MWGS transforms 

of the columns of    with respect 

to the weighting matrix   
  to ob-

tain a pair of the post-arrays 

      
  : 

    
     

      
 

    

 ,     
            

                  (16) 

II.5. Compute information   

estimate: 
               

    

         
         

   
             (17) 

Remark 3. At any discrete-time moment  , one can easily obtain the predicted state estimate 

           
     

     
     . Another way is to solve linear system          

             by backward 

and forward substitutions. 

The caUD-IF implementation scheme of main steps II.1–II.4 is shown in figure 3.  
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Figure 3. The caUD-IF implementation scheme. 

It is very simple because of consists of only three steps: 

1. Fill in the block pre-arrays with the input data. 

2. Perform the MWGS-UD transforms. 

3. Extract the required output data from the block post-arrays. 

The designed eUD-CF estimator presented in table 2 has the main property to improve the accuracy 

and robustness of the computations for a finite-precision arithmetics. Now, we can formulate and 

prove our main result. 

Statement 1. Algorithm caUD-IF is algebraically equivalent to the combined implementation of the 

Information Filter given by equations (4)–(8). 

Proof: First, we can show the algebraic equivalence between equations (12), (13) and formulae (5) 

of the combined IF implementation. Indeed, taking into account the properties of orthogonal matrices, 

the first equation in (11) in terms of (12), (13) can be written as follows: 

  
           

   
     

    
    

      

     

      
      

   
   

    (18) 

It is clear that expression (18) is equation (5).  

Next, we can show that equations (15), (16) imply formulas (4)–(7). Indeed, again taking into ac-

count equations (10), (11) and the properties of orthogonal matrices, from (11) we obtain 

       
        

      , 

that is in terms of equations (15), (16) can be written as follows: 
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Equating the corresponding      -th submatrices in (19), we obtain 
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It is obvious that expression (20) is equation (6). It is easy to show that (21) is equation (7). Ex-

pression (22) is (4), if one will take into account the last equality in (21). Hence, we proved that equa-

tions (15), (16) are equivalent to equations (4)–(7). 

Finally, there is no need to prove the equivalence of (8) and (17). This completes the proof. 

5. Parallel implementation of the proposed schemes 

In this section, we consider a new channel estimation framework with   concurrent caUD-IF algo-

rithms. This general scheme (see figure 4) is composed of a bank of blocks with MWGS-UD trans-

forms, each filled in with its own subsystem matrices   
   

,     ,   
   

,   
   

,   
   

. Each  -th caUD-IF 

algorithm,        , calculates its own information state estimate    
   

 independently of the other 

filters. This framework can be naturally implemented on a set of parallel processors using the concept 

of the coarse-grained parallelism. 

On the other hand, each caUD-IF block in the proposed channel estimation framework is based on 

the time-consuming MWGS-UD transform and its effective implementation is important to overall 

performance. Since MWGS-UD transform consists of two computationally intensive nested loops they 

can be parallelized using the concept of the fine-grained parallelism and OpenMP technology. In [17] 

we have implemented MWGS-UD algorithm using Armadillo library [20] and parallelized the inner 

loop using the #pragma omp parallel for directive with num_threads clause. Using this implementa-

tion we have conducted computational experiments with different number of threads 1, 2, 4 and 8 on 

the set of randomly generated test matrices of sizes 100x100, 200x100, 200x200, 500x500, 1000x500, 

1000x1000, 1500x1000, 1500x1500, 2000x1500 and 2000x2000. 

 

Figure 4. The caUD-IF based multi-subchannel estimation framework. 

Numerical experiments were conducted at Scientific Research Laboratory of Mathematical Model-

ing, Ulyanovsk State Pedagogical University named after I. N. Ulyanov. Figure 5 illustrates the ob-

tained results for each number of threads averaged over 20 runs. 
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Figure 5. MWGS-UD average execution time (sec). 

Figure 6 demonstrates parallel speedup for large matrices. 

 

Figure 6. Parallel speedup. 

 

5. Conclusions 

The result of our work is twofold. Firstly, we have proposed the new numerically favored and conven-

ient combined array UD Information Filter (caUD-IF algorithm). Secondly, we have demonstrated 

how network practitioners can efficiently use and implement this newest array algorithm based on 

MWGS transforms for coping with the difficulties caused by the numerical inefficiency of the stand-

ard Kalman Filter in attempting to use the latter for the OFDM multi-channel impulse response esti-

mation. The advantages of the suggested solution are as follows: 
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 The channel estimating results are robust against the round-off errors. 

 The computations do not contain the most time-consuming square-root operation. 

 The compact and regular orthogonal array form of algorithm poses the best option for parallel 

computations in the Orthogonal Frequency-Division Multiple Access (OFDMA) multi-sub-

channel organization. 
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