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Abstract. However broad the fuzzy methods acceptance may be in thestiydumastering of crisp
methods for finding optimal solutions to complex real-lifeolplems, as well as for reducing the
computational demands of their implementation is an alsohecessity for the intelligent systems
modeling. Given the existence of two different approacloesesearch (qualitative vs. quantitative), this
paperupdates on the problewf searching the sufficient and adequate model for integgaif qualitative
(fuzzy) and quantitative (crisp) methods in science andtpra of data engineering.

1. Introduction
Fuzzy sets and fuzzy technology have been applied exténsivenany areas where classical modeling,
reasoning, and computing cannot be made deterministic mahibiguous. As we say: with the lapse of
time, the plot deepens [1]. Lotfi Zadeh: “As the complexityaodystem increases, our ability to make
precise and yet significant statements about its behauiindihes until a threshold is reached beyond
which precision and significance (or relevance) become stimaitually exclusive characteristics.”
However, no generally accepted exact definition of complexists yet. In the authors’ opinion, this
idea means complex systems’ behaviors exhibit uncertaisityf the very first property. Uncertainty is
what accounts first of all for the complexity of the systemisTgroperty may manifest itself in various
forms: stochastic vs possibilistic, recoverable vs urnirapée, estimable vs unevaluable, stochastically vs
pre-existing, isolated vs spatially organized. Consetiyghere are many ways to act under uncertainty.
In research and practice, there are two critical approagsed for knowledge acquisition: qualitative
vs quantitative. As the first one is typical for fuzzy setsotfyeand technology, the latter remains an
exclusive prerogative of crisp science. Notwithstandingse methods appear to be very different in
many attributes, the time has come when the integrationeshtis needed. Increasingly popular fuzzy
technology in the industry (FTI) and other human activitieguires that qualitative data and decisions
can be coded and reported quantitatively [2]. Various ned&kuch integration are possible. As Elena
T. Carbone, who is Associate Professor and Chair, Depattofi@tutrition, UMass Amherst, illustrates,
essential models are:

() Qualitative methods are used to help develop quantgatieasures and instruments.
(i) Qualitative methods are used to help explain quanmigdindings.
(i) Quantitative methods are used to embellish a prigagilalitative study.
(iv) Qualitative and quantitative methods used equally iarghrallel.
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In research, we always have to fit our questions and expeetedts with methods. For example,
the human body daily temperature, without regard to the oreasent site, is a non-linear process
characterized by moment-to-moment complex variabilitg @ven stochasticity [3]. Human body
temperature indications are used in ambulance and clipicaitice on a full scale to make correct
health survey and good treatment decisions. Daily locahtbenetry data must be evaluated not only
in such fuzzy terms as “growth,” “precarity,” “equilibriufmor “decline” a physician can see firsthand
but be supplemented by quantitative information includiagults of more sophisticated analysis and
predictions.

However, the teaching of “Complex systems modeling” as aamackd course of studies for master’s
degree in Information Systems reveals one negative situdfilassic methods of mathematical modeling
are full of shallow, quick fixing, subliminal words for thostidents who shortly before were taught an
intensive course of fuzzy methodisseems to be a part of a general incompatibility factorftggi by
knowledge representation mismatch in cognate disciplifteis as if facilitators of fuzzy methods, on
the one hand, and instructors of applied mathematics, optties, are two competing fractions of the
same scientific research community. We stand witness of/®@aevailing commonsense assumption
that fuzzy methods and technology, in and of itself, will&olhe serious challenges we face in artificial
intelligence, automation, data analytics, robotics, aded computing power and the Internet of Things.
This thinking seems to be not only wrong but harmful, pattidy to those as-yet-malleable hearts and
minds.

In our research, we strive to fix the problem of searching tifiecve and adequate model of
integrating qualitative (fuzzy) and quantitative (crispgthods in teaching science and practice of data
engineering. Keeping to the subject, we organize our pagbeifollowing order. Section 2 provides two
illustrative examples of data modeling task where crisph@aatics is a vital necessity. Section 3 phrases
the problem in three precise classificatory generalizatasithey may sound in physically motivated data
fitting or time series analysis. Sections 4 and 5 presentritieat research insights into solutions for
the examples of Section 2. The last section concludes ther peith some recommendations for the
instructors and researchers in the field.

2. Exemplifying the Problem
Example 1

Suppose the ore agglomerate analyzer we operate with hiaatied the presence of fissionable
materials in the in-situ rock, however at an unknown rati@téfial kinds in this ore agglomerate may be
known (caseC1) or hidden (cas€?2). Geiger-Mueller counter readingg, = y(k7) taken at scheduled
times t, £ kr,k = 1,2,...,m, m > n with the constant sampling intervat are the only data
available to determine the mass mixing ratioQify) and also ingredient kinds if needed @2).

To get things rolling, we write the radioactive decay law #orkind of material asM (t) =
My exp (—At) with M, being the initial mass. Withl £ exp (—\7), we haveM;, £ M (t;,) = Myd* .
Exclusively for definiteness in application to our exampdée,n be equal 3. Then we obtain

yp ~ My 1d5 + My odb 4+ Mo 3d5
Vg =Yg — (ivld]f + wodh + wgd’gf) (1)
k=12...,m>3

with v, defined as a discrepancy between the G-M readings and theagjereay law. This value is

also termed as a residual in data fitting practice. Considerectorz = [z | --- | :z:n]T € R” (with

n = 3 for this example), vectorg = [y; | -~ - | ym]T andv = [vy |-+ | vm]T , both inR™ , and also
dy di --- dp

(m x n)-matrix H obvious in view of its transposed forfi T = | dy d3 --- dy* |, we avail of
dg di --- dp
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the opportunity to write
y=Hx+wv (2)
in the standard linear algebra notation.
NB 1: In experimental design theory, matrid is known as the experiment design matrix.
Three unknown model parameters = My 1, 22 = Moo, and z3 = My 3 gathered into a column
vector z are to be estimated from the experimental datéor either of the two case€1 andC2:

C1 Ingredient kinds and hence their half-life periods are knowhus, we inferd; = exp (—\;T) to
be given as some real numbdis< d; < 1, i = 1,2,3. This case is a trivial one (linear regression
analysis). We use the three-variable model (1) written a$o(®btain theoff-line Ordinary Least
Squares (OLS-optimum) estimatér= (i, \ T | z3) from the normal equations:

(HTH)iz;HTy (3)

C2 This case is far more complex. The above OLS solution turristmie impossible since the
observation matrixH is now inherently ambiguous. The task becomeslinear, and the question
of ‘How to find an efficient solution fa@22?" deserves to be asked.

Example 2

For another example, consider the human body daily temyrerdata (HBDTD) as having a periodic
nature depending on the time of day (figure 1).

36.8

36.6-

36.4—

36.2

Temperature, °C

36.0-

35.8

1 | I I | | I
0 1 2 3 4 5 6 7
Days of the experiment

Figure 1. The circadian body temperature rhythm [3].

The biophysical law dictating such a circadian behavioursifamentally unknown, however looking
atfigure 1, aresearcher may decide to consider the procpssxapately as generated by a deterministic
harmonic oscillator (DHO) around*, the human average daily temperature. Starting from this
point of view, he/she approximates the thermometry data= y(k7) taken atm scheduled times
tr 2 kr,k=1,2,...,m by the following expressions:

yp — 0° ~ Ansin(kwnT + ¢n) = an sin(kwnT) + by cos(kwnT)

v 2 (yp — 0%) — (an sin(kwnT) + by cos(kwnT)) @)
k=1,2,....,m>2,

an = Ancos N, by = Ansin oy

Now vectory € R™ appears in equation (2) with then x 2) -matrix

sin(lwnT) cos(lwnT)
_ sin(2wNT) cos(2wNT) (5)
sin(mwnT) cos(mwnT)
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times vectorz™ = [z | z3] of n =2 unknown quantitiesz; £ ay and zo = by .
NB 2: In the above expressions, subscriptstands for marking the value as “natural” one.

NB 3: This example corresponds to caB if the natural circular frequencyy = 27/Ty can be
taken as a known steady-state value, for example by letfiggbe equal 24 hours (i. e. 1440 min).
However, in some of the most complicated caseg,= 27 /Ty is by no means known quantity. This
situation brings us back to the nonlinear c&se

NB 4: Use of the DHO seems to be an oversimplistic, too easy apprdamore realistic model of
the human body circadian temperature rhythm should in¢glagde minimum, a random component in
observations—for example, in the form of Wiener stochgsticess Brownian motior{4, p. 151])—and
also replace the DHO by a Gaussian harmonic oscillator (GH®@p. 167, 169]). It is the case which
was given in research and to which a full and thorough exatimiméas been made [5].

3. Classificatory Problem Generalizations (PGs)
e PG-1 The first generalization is plain to see:

| How to move from the offline OLS-optimum estimator (3) to tiime one? |

This question is not a problem at all for the linear c&k Recursions for the OLS-optimum
estimator are well-known either as the Information Prooess Covariance (Kalman Filter, KF)
Data Processor [6]. However, when having to deal with thdinear caseC2, we will be forced to
keepPG-1while also moving to the next problem generalization.

e PG-2 The other generalization lies in answering the question:

How to justifiably represent the data sour@s in figure 2)whose outpuy in (2) is the observeq
data to be processed to obtain the OLS-optimum estimatior the model parameter—the
notations used up to this moment including figure 2 implieg the take them in the sense pf
relations (1) to (5-by a dynamica(state-spaceyray-box(physically structuredjnodel(DG-
BM, eventually stochasti®)

We mean to describe that DG-BM by the following two discritee equations:

xp = P(0)zp—1 + Ba(0)up—1 + Ga(0)wg -1
yr = Hxp + v (6)
k=1,2,...

taking into account that from this time on we are switchingh® notations peculiar to the classic
Stochastic Models, Estimation and Control (SMEC) theolly § well as to the modern Adaptive
System Identification (ASI) literature: [7], [8], and [9].

This tradition means that we start consideri®@-2 from the assumption that a modeling technique
has produced an adequate data description in the form oéarlstochastic difference equation—
the first one in (6)—to describe the propagation of state , with discrete-time noise corrupted
linear measurements—the second equation in (6)—classifi¢ide available experimental (or real-
life) data. Herex(-) £ x(t) is an n -vector state process, one sample of which would generate a
system state time historyz;_; would be the system state at timg_; propagating in the direction
to z; through ann -by-n state transition matrix@(6) ; u(-) = u(t) is an r -vector of piecewise
continuous deterministic (premeditated) control inpue sampleu,_; of which would act upon
the state through an -by-r deterministic input matrixB,(6) at times between;_; and t; .

In summary, (6) is a gray-box-model parameterized by an ewknp -vector 6, with the usual
Gaussian description of the initial state and zero-mearewioise processes 6f-vectors wg ;1
entering the model through am-by- s noise input matrixG4(#) , and of m -vectors v, acting as
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Figure 2. Least Squares Problem [10].

random measurement errors:
E{zo} = 20(0), E{[wo — 20(0)]wo — 20(0)] } = Po(0)
E {dew:ir’j} = Qd(e)éij, E {’L)Z"U;r} = R(H)(S” (7)
a1 1=y
o = { 0 i)

e PG-3 The third generalization implies answering the question:

How to identify the parameterized gray-box state-space en@@)—(7) with a minimum of
computational effort and acceptable quality level as relgathe unknown vector parameter
dictated by the laws of physics governing the data source?

The following text is aimed at seeking answers to the resequestions declared iRG-2andPG-3
as supported bigxamples 2and3.

4. The solution of PG-2 and PG-3 for Example 1

Having M (t) = Myexp (—At) we wonder:What is the differential equation whose solutionis(t) ?
Because M (t) = —AM(t), an immediate answer fdPG-2 follows: M (t) + AM(t) = 0 with
M(0) = M, . For model (6), we have: both;_; and w1 vanish, ®(0) = diag [d1 | do | d3],
di £ exp(—NT), with 6 £ [dy | do | d3]" and H = [1 | 1 | 1]. For solvingPG-3 by our
Active Principle of Adaptation (APA) method [9], we move ffnothis physically data model (PhDM)
to the standard observable data model (SODM) by the sityilaransform z* = W,z with the
observability matrix W, £ [HT | (H®(6))" | (H(D(H)?)T]T which is the third-order Vandermonde
matrix V3 = V3(dy,da,ds), detVs = (do — dy)(ds — dy)(ds — d2) in this example. We find
®,(0) = W,®(0)W,! to be the SODM state transition matrix

—ag = d1d2d3
0 L 0 * d3 (d2+ds) d3(d1+ds) d3(d1+do)
2.00) = 0* 0* 1* 'y TUT @) d-d) T Gd)(d-d2) T d-ds)(d5 )
a4y —a; —aj d3 d3 3

—0,5 = (d2—d1)(d3—d1) + (dl—dQ)(dS_d2) + (dS_dl)(d‘S_d?)

(8)

Once ®,(6) is known to be the companion matrix for characteristic eiquag(\) = det[I\ — @, (0)],
in this caseq(\) = A3 + a3)\? + a3\ + aff , and given the fact thag(\) does not alter after a similarity
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transform, i.e.q(\) £ det[IX — ®(#)], in this caseq(\) = (A — d1)(\ — da2)(\ — d3) , it is not hard
to get the simplest form of parameters in (8) (that can beilseadrified to be true by straightforward
reducing (8) to (9)):

—(16 = d1d2d3
—(1’1( = —(dldg + d1d3 + d2d3) (9)
—CLE :d1 +d2+d3

The APA-method has been proved [9] to be computationalliefit in providing estimates for a
companion matrix, in this case estimatgs, ¢ = 0,1,2 for parameterse), i = 0,1,2 in (9). As a
result, one might substituté; for «; in (9) to extract estimate$; as a solution to (9) for the sought
parametersd; = 6,, i = 0,1,2. Itis fortunate that this impractical way is not necessaryl® (in
this example). Indeed, the task of finding parametérdrom system (9) should be replaced—when
®(0) = diag [dy | - - | dn] —by solving polynomial equationy(A) = (A — dy)--- (A — d,,) = 0; this
computational procedure is tried-and-true in many matblpra solvers. After one has found (estimated)
d; , matrix H for system (2) may be considered known, normal equationgr®)e to be linear and can
be solved either offline or preferably online (i. e. sequalyli, seePG-1in Section 3 for more details.

5. The solution of PG-2 and PG-3 for Example 2
NB 5: In HBDTD stochastic model construction, we follow one of oeicent research [5].

Let HBDTD be modeled in continuous time by amy = 27 /7y rad/min, Ty = 24 h deterministic
harmonic oscillator[z1(¢), z2(t)]T whose outputz;(t;) = an sin(kwnT) + by cos(kwnT) Occurs in
the first line of (4) as disturbed by an Ornstein—-Uhlenbedcesszs(t) , i.e.

da1(t) = z2(t) dt |
physical

daa(t) = —wnan (1) dt state (10)

das(t) = —(1/T)(x3(t) — 0%) dt + o+/2/T dA(t) equations

with unknown parameter§” > 0 and ¢ > 0 and () being the standard (zero-mean and unit-
diffusion) Wiener process, lim ((ty) = 0 (a.s), where #* is a human average daily temperature.
0——00

Let further the current body temperaturg () + x3(t) be measured every minutes with a sensor
whose accuracy is limited by an erreft;,) ; processv = {v(t3); t € Z} is modelled by a discrete-
time white noise with a covariancg :

} measurement (11)

y(tr) = x1(te) + 23(tk) + v(tr) equation

The various equivalent state representations can beddlateugh similarity transformations to the
original model (10) and (11). One result as itis in [11] folk
3dDRCM, 3-dimension ¢ = 3) Discrete-time Real-valued Canonical (Jordan) Model

coswNT —sinwnT 0 0
Tpy1 = | sinwnT  coswnT O | xp + 0 U, (12)
0 0 d 1—-d
o B,
0
+ 0 wap, k=0,1,..., x9=065[0.5|-05]00]" (13)
oV'1 — d?
—_——
Gq
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ye=1[1 1 1]ap4uv, k=12... (14)
H

with the sampling interval- (we assume that = 5 min), A 2 1/T, d £ ¢~ . In (13) and (14),
wq, IS adiscrete-timezero-mean covarianc€) = 1 white noise; v, = 6*; wy = 27 /Ty rad/min,
Tn = 24 h; v, is a zero-mean covariancB measurement errofwe assume? = (0.1)%), and vector
9 £ [X| o] consists of two unknown parameteksand o . For any arbitrarily selected experiment,
6 takes on the valud = [\ | &]™, which is to be identified.

To identify the unknown value of parametér, we base our solution on using the APA method
reported theoretically and computationally in [5]. To dalie the results, we plan the experimental
conditions as shown in Table 1 [5].

Table 1. Experimental conditions for estimating parametier [\ \ o)t

Number of measurements per day m = 288

Sampling interval (min) T=25

True model noise parameter c=03

True parameter valug A=1 /60

Natural cycle (min), Circular frequency Ty = 24 - 60, wy = 27 /TN
Average daily temperature 0* = 36.0 °C

Covariance of measurement noise R = (0.1)2

Initial value of state vector zo = 0.65[0.5, —0.5, 0]T
Initial value for estimate of\ Ao = 0.01

Initial value for estimate ofr oo =0.1

Given any fixed ffue) system paramete@ # 0, the system was simulated f@N measurements.
The data set was divided into two segments, each repregemti; day. We used the first segment for
identification and the second for validation. The validatioetric chosen was theariance-accounted-
for (VAF) index defined as follows [12]:

VAF = max {1 — w, 0% % 100% (15)
var(yx)

where y; was the validation dataj, was the estimated output signatir(-) denotes the variance of a
quasi-stationary signal. )

Results demonstrated by figure 3 and summarized in Table & #fat the computed estimate
comes close to the actual parameter vatu¢hus providing an adequate model approximation of the
output signaly;, by the estimated outpuj;, . As figure 3 suggests, our HBDTD stochastic model (13),
(14) is capable of capturing the human body temperaturadiaa variations after the unknown model
parameterf has been estimated based on the first segment data—withentification method—and
then replaced by the finally computed estimétdéo compare estimates predicted for the next day, i.e.
71 with the second segment data, iy, for computing VAF as defined by (15).

NB 6: All the works related to computational issues, computegmmming the framework and
experimental validation of the method with the simulatethda the abovementioned facts have been
contributed by professors Julia V. Tsyganova of UlyanovskteSsUniversity, Maria V. Kulikova of
CEMAT, Instituto Superior Técnico, Universidade de Liaband Andrey V. Tsyganov of Ulyanovsk
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Figure 3. Validation datay,, (dots) using the HBDTD model witld vs estimated output signdj;
(solid line) using the identified valué and the Kalman Square-Root Covariance Filter (KSRCF).

Table 2. Performance of the APA-based identification of the HBDTD elod

6 = [\, 5T, the true value of 0.016667, 0.3]T
0 = [\, &]%, the finally computed estimatg [0.016697, 0.292942]*

Relative estimation errat = ||6 — 4||/]|6]| || 0.023490
VAF 96.21

State Pedagogical University, the co-authors of [5]. Tiseaech was supported by professor Andrey B.
Peskov of Institute of Medicine, Ecology and Physical Edioca Ulyanovsk State University on behalf
of Ulyanovsk Regional Hospital.

Recurring to the former subject declaredBmample 2, Section 2:How to identify the unknown
quantitiesay and by for model (4)?, we come to the following solution to the question.

Note that in this case expression (2) assumes a slightlyfreddihape

y=Hx+ 33+ (16)

with H from (5), = = [Z:: , &g = [23(17) | @3(27) |-+ | i‘g(mT)]T where i3(k7) is the
estimator for the Ornstein—Uhlenbeck procesgt) at ¢t = kr, k = 1,2,...,m. Itis fair to say if
take into account the physically structured model given18}) @nd (11). Those estimates are produced

by the KSRCF ¢f. figure 3) using the HBDTD model witld = [\, 5]*, the finally computed estimate

substituted for the unknowd = [5\, &]T , the true value off (cf. Table 2). As a result, to obtain the
an
b
general form (3) has to be modified, in the light of (16), toaun (17):

OLS-optimum estimatoi: = [#; | &,]" for = £ [ , one has to solve the normal equations whose

(HTH) & =HT(y— &3). (17)
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6. Conclusions
e Real-world problems are in real need of modeling physicstiyctured data, and it is a hard journey
to solve them.

e Examples presented in the paper show that finding the opsiohations to complex problems cannot
be distilled only to the qualitative approaches peculiduizy contexts.

¢ Increasingly, we come to the conclusion that the quantéatiethods must be used to get a deeper
insight into a primarily qualitative—fuzzy methods basestudy.

e A researcher, especially at the beginner level, must beatelddo use qualitative and quantitative
methods convergently.

e The integration of qualitative and quantitative methode&smplified in this paper seems to be
instructive to research strategy for physically struadusequential data modeling.
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