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Abstract. However broad the fuzzy methods acceptance may be in the industry, mastering of crisp
methods for finding optimal solutions to complex real-life problems, as well as for reducing the
computational demands of their implementation is an absolute necessity for the intelligent systems
modeling. Given the existence of two different approaches to research (qualitative vs. quantitative), this
paperupdates on the problemof searching the sufficient and adequate model for integrating of qualitative
(fuzzy) and quantitative (crisp) methods in science and practice of data engineering.

1. Introduction
Fuzzy sets and fuzzy technology have been applied extensively to many areas where classical modeling,
reasoning, and computing cannot be made deterministic and unambiguous. As we say: with the lapse of
time, the plot deepens [1]. Lotfi Zadeh: “As the complexity ofa system increases, our ability to make
precise and yet significant statements about its behavior diminishes until a threshold is reached beyond
which precision and significance (or relevance) become almost mutually exclusive characteristics.”

However, no generally accepted exact definition of complexity exists yet. In the authors’ opinion, this
idea means complex systems’ behaviors exhibit uncertaintyas of the very first property. Uncertainty is
what accounts first of all for the complexity of the system. This property may manifest itself in various
forms: stochastic vs possibilistic, recoverable vs unrepairable, estimable vs unevaluable, stochastically vs
pre-existing, isolated vs spatially organized. Consequently, there are many ways to act under uncertainty.

In research and practice, there are two critical approachesused for knowledge acquisition: qualitative
vs quantitative. As the first one is typical for fuzzy sets theory and technology, the latter remains an
exclusive prerogative of crisp science. Notwithstanding these methods appear to be very different in
many attributes, the time has come when the integration of them is needed. Increasingly popular fuzzy
technology in the industry (FTI) and other human activitiesrequires that qualitative data and decisions
can be coded and reported quantitatively [2]. Various models of such integration are possible. As Elena
T. Carbone, who is Associate Professor and Chair, Department of Nutrition, UMass Amherst, illustrates,
essential models are:

(i) Qualitative methods are used to help develop quantitative measures and instruments.

(ii) Qualitative methods are used to help explain quantitative findings.

(iii) Quantitative methods are used to embellish a primarily qualitative study.

(iv) Qualitative and quantitative methods used equally andin parallel.
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In research, we always have to fit our questions and expected results with methods. For example,
the human body daily temperature, without regard to the measurement site, is a non-linear process
characterized by moment-to-moment complex variability and even stochasticity [3]. Human body
temperature indications are used in ambulance and clinicalpractice on a full scale to make correct
health survey and good treatment decisions. Daily local thermometry data must be evaluated not only
in such fuzzy terms as “growth,” “precarity,” “equilibrium,” or “decline” a physician can see firsthand
but be supplemented by quantitative information includingresults of more sophisticated analysis and
predictions.

However, the teaching of “Complex systems modeling” as an advanced course of studies for master’s
degree in Information Systems reveals one negative situation: Classic methods of mathematical modeling
are full of shallow, quick fixing, subliminal words for thosestudents who shortly before were taught an
intensive course of fuzzy methods.It seems to be a part of a general incompatibility factor typified by
knowledge representation mismatch in cognate disciplines. It is as if facilitators of fuzzy methods, on
the one hand, and instructors of applied mathematics, on theother, are two competing fractions of the
same scientific research community. We stand witness of today’s prevailing commonsense assumption
that fuzzy methods and technology, in and of itself, will solve the serious challenges we face in artificial
intelligence, automation, data analytics, robotics, advanced computing power and the Internet of Things.
This thinking seems to be not only wrong but harmful, particularly to those as-yet-malleable hearts and
minds.

In our research, we strive to fix the problem of searching the effective and adequate model of
integrating qualitative (fuzzy) and quantitative (crisp)methods in teaching science and practice of data
engineering. Keeping to the subject, we organize our paper in the following order. Section 2 provides two
illustrative examples of data modeling task where crisp mathematics is a vital necessity. Section 3 phrases
the problem in three precise classificatory generalizations as they may sound in physically motivated data
fitting or time series analysis. Sections 4 and 5 present the critical research insights into solutions for
the examples of Section 2. The last section concludes the paper with some recommendations for the
instructors and researchers in the field.

2. Exemplifying the Problem
Example 1

Suppose the ore agglomerate analyzer we operate with has indicated the presence ofn fissionable
materials in the in-situ rock, however at an unknown ratio. Material kinds in this ore agglomerate may be
known (caseC1) or hidden (caseC2). Geiger-Mueller counter readingsyk , y(kτ) taken at scheduled
times tk , kτ, k = 1, 2, . . . ,m , m > n with the constant sampling intervalτ are the only data
available to determine the mass mixing ratio (inC1) and also ingredient kinds if needed (inC2).

To get things rolling, we write the radioactive decay law fora kind of material asM(t) =
M0 exp (−λt) with M0 being the initial mass. Withd , exp (−λτ) , we haveMk , M(tk) = M0d

k .
Exclusively for definiteness in application to our example,let n be equal 3. Then we obtain

yk ≈ M0,1d
k
1 + M0,2d

k
2 + M0,3d

k
3

vk , yk −
(

x1d
k
1 + x2d

k
2 + x3d

k
3

)

k = 1, 2, . . . ,m > 3

(1)

with vk defined as a discrepancy between the G-M readings and the general decay law. This value is
also termed as a residual in data fitting practice. Considering vectorx =

[
x1

∣
∣ · · ·

∣
∣ xn

]
T ∈ R

n (with

n = 3 for this example), vectorsy =
[
y1

∣
∣ · · ·

∣
∣ ym

]
T

and v =
[
v1

∣
∣ · · ·

∣
∣ vm

]
T

, both in R
m , and also

(m × n) -matrix H obvious in view of its transposed formHT =





d1 d2
1 · · · dm

1

d2 d2
2 · · · dm

2

d3 d2
3 · · · dm

3



 , we avail of
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the opportunity to write
y = Hx + v (2)

in the standard linear algebra notation.

NB 1: In experimental design theory, matrixH is known as the experiment design matrix.

Three unknown model parametersx1 , M0,1 , x2 , M0,2 , and x3 , M0,3 gathered into a column
vector x are to be estimated from the experimental datay for either of the two cases:C1 andC2:

C1 Ingredient kinds and hence their half-life periods are known. Thus, we inferdi , exp (−λiT ) to
be given as some real numbers0 < di < 1 , i = 1, 2, 3 . This case is a trivial one (linear regression
analysis). We use the three-variable model (1) written as (2) to obtain theoff-line Ordinary Least
Squares (OLS-optimum) estimator̂x = (x̂1

∣
∣ x̂2

∣
∣ x̂3) from the normal equations:

(

HTH
)

x̂ = HTy. (3)

C2 This case is far more complex. The above OLS solution turns out to be impossible since the
observation matrixH is now inherently ambiguous. The task becomesnonlinear, and the question
of ‘How to find an efficient solution forC2?’ deserves to be asked.

Example 2
For another example, consider the human body daily temperature data (HBDTD) as having a periodic

nature depending on the time of day (figure 1).

Figure 1. The circadian body temperature rhythm [3].

The biophysical law dictating such a circadian behavior is fundamentally unknown, however looking
at figure 1, a researcher may decide to consider the process approximately as generated by a deterministic
harmonic oscillator (DHO) aroundθ? , the human average daily temperature. Starting from this
point of view, he/she approximates the thermometry datayk , y(kτ) taken at m scheduled times
tk , kτ, k = 1, 2, . . . ,m by the following expressions:

yk − θ? ≈ AN sin(kωNτ + φN) = aN sin(kωNτ) + bN cos(kωNτ)

vk , (yk − θ?) − (aN sin(kωNτ) + bN cos(kωNτ))

k = 1, 2, . . . ,m > 2,

aN = AN cos φN, bN = AN sin φN

(4)

Now vector y ∈ R
m appears in equation (2) with the(m × 2) -matrix

H =







sin(1ωNτ)
∣
∣ cos(1ωNτ)

sin(2ωNτ)
∣
∣ cos(2ωNτ)

. . .
∣
∣ . . .

sin(mωNτ)
∣
∣ cos(mωNτ)







(5)
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times vectorxT =
[
x1

∣
∣ x2

]
of n = 2 unknown quantities:x1 , aN and x2 , bN .

NB 2: In the above expressions, subscriptN stands for marking the value as “natural” one.

NB 3: This example corresponds to caseC1 if the natural circular frequencyωN , 2π/TN can be
taken as a known steady-state value, for example by lettingTN be equal 24 hours (i. e. 1440 min).
However, in some of the most complicated cases,ωN , 2π/TN is by no means known quantity. This
situation brings us back to the nonlinear caseC2.

NB 4: Use of the DHO seems to be an oversimplistic, too easy approach. A more realistic model of
the human body circadian temperature rhythm should include, as a minimum, a random component in
observations—for example, in the form of Wiener stochasticprocess (Brownian motion[4, p. 151])—and
also replace the DHO by a Gaussian harmonic oscillator (GHO [4, pp. 167, 169]). It is the case which
was given in research and to which a full and thorough examination has been made [5].

3. Classificatory Problem Generalizations (PGs)
• PG-1 The first generalization is plain to see:

How to move from the offline OLS-optimum estimator (3) to the online one?

This question is not a problem at all for the linear caseC1. Recursions for the OLS-optimum
estimator are well-known either as the Information Processor or Covariance (Kalman Filter, KF)
Data Processor [6]. However, when having to deal with the nonlinear caseC2, we will be forced to
keepPG-1while also moving to the next problem generalization.

• PG-2 The other generalization lies in answering the question:

How to justifiably represent the data source(DS in figure 2)whose outputy in (2) is the observed
data to be processed to obtain the OLS-optimum estimatorx̂ for the model parameterx—the
notations used up to this moment including figure 2 implies that we take them in the sense of
relations (1) to (5)—by a dynamical(state-space)gray-box(physically structured)model(DG-
BM, eventually stochastic)?

We mean to describe that DG-BM by the following two discrete-time equations:

xk = Φ(θ)xk−1 + Bd(θ)uk−1 + Gd(θ)wd,k−1

yk = Hxk + vk

k = 1, 2, . . .

(6)

taking into account that from this time on we are switching tothe notations peculiar to the classic
Stochastic Models, Estimation and Control (SMEC) theory [4], as well as to the modern Adaptive
System Identification (ASI) literature: [7], [8], and [9].
This tradition means that we start consideringPG-2 from the assumption that a modeling technique
has produced an adequate data description in the form of a linear stochastic difference equation—
the first one in (6)—to describe the propagation of statex(·) , with discrete-time noise corrupted
linear measurements—the second equation in (6)—classifiedas the available experimental (or real-
life) data. Herex(·) , x(t) is an n -vector state process, one sample of which would generate a
system state time history:xk−1 would be the system state at timetk−1 propagating in the direction
to xk through ann -by-n state transition matrixΦ(θ) ; u(·) , u(t) is an r -vector of piecewise
continuous deterministic (premeditated) control input, one sampleuk−1 of which would act upon
the state through ann -by- r deterministic input matrixBd(θ) at times betweentk−1 and tk .
In summary, (6) is a gray-box-model parameterized by an unknown p -vector θ , with the usual
Gaussian description of the initial state and zero-mean white noise processes ofs -vectorswd,k−1

entering the model through ann -by-s noise input matrixGd(θ) , and of m -vectorsvk acting as
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H Data y
DS

−

+
Hx v = y − Hx

min
x

‖v‖2

x

Model

Figure 2. Least Squares Problem [10].

random measurement errors:

E {x0} = x̄0(θ), E

{

[x0 − x̄0(θ)][x0 − x̄0(θ)]T
}

= P0(θ)

E

{

wd,iw
T

d,j

}

= Qd(θ)δij , E

{

viv
T

j

}

= R(θ)δij

δij ,

{
1 i = j
0 i 6= j

(7)

• PG-3 The third generalization implies answering the question:

How to identify the parameterized gray-box state-space model (6)–(7) with a minimum of
computational effort and acceptable quality level as regards the unknown vector parameterθ
dictated by the laws of physics governing the data source?

The following text is aimed at seeking answers to the research questions declared inPG-2 andPG-3
as supported byExamples 2and3.

4. The solution of PG-2 and PG-3 for Example 1
Having M(t) = M0 exp (−λt) we wonder:What is the differential equation whose solution isM(t) ?
BecauseṀ(t) = −λM(t) , an immediate answer forPG-2 follows: Ṁ(t) + λM(t) = 0 with
M(0) = M0 . For model (6), we have: bothuk−1 and wd,k−1 vanish, Φ(θ) = diag [d1

∣
∣ d2

∣
∣ d3] ,

di , exp (−λiT ) , with θ , [d1

∣
∣ d2

∣
∣ d3]

T and H = [1
∣
∣ 1

∣
∣ 1] . For solvingPG-3 by our

Active Principle of Adaptation (APA) method [9], we move from this physically data model (PhDM)
to the standard observable data model (SODM) by the similarity transform x? = W?x with the
observability matrixW? ,

[
HT

∣
∣ (HΦ(θ))T

∣
∣ (HΦ(θ)2)T

]T
which is the third-order Vandermonde

matrix V3 = V3(d1, d2, d3) , detV3 = (d2 − d1)(d3 − d1)(d3 − d2) in this example. We find
Φ?(θ) = W?Φ(θ)W−1

? to be the SODM state transition matrix

Φ?(θ) =





0 1 0
0 0 1

−a?
0 −a?

1 −a?
2



 ,







−a?
0 = d1d2d3

−a?
1 =

d3

1
(d2+d3)

(d1−d2)(d3−d1) +
d3

2
(d1+d3)

(d2−d1)(d3−d2) +
d3

3
(d1+d2)

(d1−d3)(d3−d2)

−a?
2 =

d3

1

(d2−d1)(d3−d1) +
d3

2

(d1−d2)(d3−d2) +
d3

3

(d3−d1)(d3−d2)

(8)

OnceΦ?(θ) is known to be the companion matrix for characteristic equation q(λ) , det[Iλ −Φ?(θ)] ,
in this caseq(λ) = λ3 + a?

2λ
2 + a?

1λ + a?
0 , and given the fact thatq(λ) does not alter after a similarity
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transform, i. e.q(λ) , det[Iλ − Φ(θ)] , in this caseq(λ) = (λ − d1)(λ − d2)(λ − d3) , it is not hard
to get the simplest form of parameters in (8) (that can be readily verified to be true by straightforward
reducing (8) to (9)):







−a?
0 = d1d2d3

−a?
1 = −(d1d2 + d1d3 + d2d3)

−a?
2 = d1 + d2 + d3

(9)

The APA-method has been proved [9] to be computationally efficient in providing estimates for a
companion matrix, in this case estimatesâ?

i , i = 0, 1, 2 for parametersa?
i , i = 0, 1, 2 in (9). As a

result, one might substitutêa?
i for a?

i in (9) to extract estimateŝθi as a solution to (9) for the sought
parametersdi , θi , i = 0, 1, 2 . It is fortunate that this impractical way is not necessary to do (in
this example). Indeed, the task of finding parametersdi from system (9) should be replaced—when
Φ(θ) = diag [d1

∣
∣ · · ·

∣
∣ dn] —by solving polynomial equationq(λ) = (λ − d1) · · · (λ − dn) = 0 ; this

computational procedure is tried-and-true in many math problem solvers. After one has found (estimated)
di , matrix H for system (2) may be considered known, normal equations (3)prove to be linear and can
be solved either offline or preferably online (i.e. sequentially), seePG-1 in Section 3 for more details.

5. The solution of PG-2 and PG-3 for Example 2
NB 5: In HBDTD stochastic model construction, we follow one of ourrecent research [5].

Let HBDTD be modeled in continuous time by anωN = 2π/TN rad/min, TN = 24 h deterministic
harmonic oscillator[x1(t), x2(t)]

T whose outputx1(tk) = aN sin(kωNτ) + bN cos(kωNτ) occurs in
the first line of (4) as disturbed by an Ornstein–Uhlenbeck processx3(t) , i.e.

dx1(t) = x2(t) dt

dx2(t) = −ω2
Nx1(t) dt

dx3(t) = −(1/T )(x3(t) − θ?) dt + σ
√

2/T dβ̊(t)







physical
state
equations

(10)

with unknown parametersT > 0 and σ > 0 and β̊(t) being the standard (zero-mean and unit-
diffusion) Wiener process, lim

t0→−∞

β̊(t0) = 0 (a.s.) , where θ? is a human average daily temperature.

Let further the current body temperaturex1(t) + x3(t) be measured everyτ minutes with a sensor
whose accuracy is limited by an errorv(tk) ; processv , {v(tk); t ∈ Z} is modelled by a discrete-
time white noise with a covarianceR :

y(tk) = x1(tk) + x3(tk) + v(tk)
} measurement

equation (11)

The various equivalent state representations can be related through similarity transformations to the
original model (10) and (11). One result as it is in [11] follows:

3dDRCM, 3 -dimension (n = 3 ) Discrete-time Real-valued Canonical (Jordan) Model

xk+1 =





cos ωNτ − sin ωNτ 0
sinωNτ cos ωNτ 0

0 0 d





︸ ︷︷ ︸

Φ

xk +





0
0

1 − d





︸ ︷︷ ︸

Bd

uk (12)

+





0
0

σ
√

1 − d2





︸ ︷︷ ︸

Gd

wd,k, k = 0, 1, . . . , x0 = 0.65
[
0.5

∣
∣ −0.5

∣
∣ 0.0

]T
(13)
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yk =
[

1 1 1
]

︸ ︷︷ ︸

H

xk + vk, k = 1, 2, . . . (14)

with the sampling intervalτ (we assume thatτ = 5 min ), λ , 1/T , d , e−λτ . In (13) and (14),
wd,k is a discrete-timezero-mean covarianceQ = 1 white noise; ut = θ? ; ωN = 2π/TN rad/min,
TN = 24 h ; vt is a zero-mean covarianceR measurement error

(
we assumeR = (0.1)2

)
, and vector

θ , [λ
∣
∣ σ ]T consists of two unknown parametersλ and σ . For any arbitrarily selected experiment,

θ takes on the value̊θ = [ λ̊
∣
∣ σ̊ ]T , which is to be identified.

To identify the unknown value of parameterθ , we base our solution on using the APA method
reported theoretically and computationally in [5]. To validate the results, we plan the experimental
conditions as shown in Table 1 [5].

Table 1. Experimental conditions for estimating parameterθ = [λ
∣
∣ σ]T

Number of measurements per day m = 288
Sampling interval (min) τ = 5
True model noise parameter σ̊ = 0.3

True parameter valueλ λ̊ = 1/60
Natural cycle (min), Circular frequency TN = 24 · 60, ωN = 2π/TN

Average daily temperature θ? = 36.0 ◦C
Covariance of measurement noise R = (0.1)2

Initial value of state vector x0 = 0.65[0.5, −0.5, 0]T

Initial value for estimate ofλ λ0 = 0.01
Initial value for estimate ofσ σ0 = 0.1

Given any fixed (true) system parameter̊θ 6= 0 , the system was simulated for2N measurements.
The data set was divided into two segments, each representing one day. We used the first segment for
identification and the second for validation. The validation metric chosen was thevariance-accounted-
for (VAF) index defined as follows [12]:

VAF = max

{

1 − var(yk − ŷk)

var(yk)
, 0

}

× 100% (15)

where yk was the validation data,̂yk was the estimated output signal;var(·) denotes the variance of a
quasi-stationary signal.

Results demonstrated by figure 3 and summarized in Table 2 show that the computed estimatêθ
comes close to the actual parameter valueθ̊ thus providing an adequate model approximation of the
output signalyk by the estimated output̂yk . As figure 3 suggests, our HBDTD stochastic model (13),
(14) is capable of capturing the human body temperature circadian variations after the unknown model
parameter̊θ has been estimated based on the first segment data—with our identification method—and
then replaced by the finally computed estimateθ̂ to compare estimates predicted for the next day, i. e.
ŷk with the second segment data, i.e.yk for computing VAF as defined by (15).

NB 6: All the works related to computational issues, computer programming the framework and
experimental validation of the method with the simulated data in the abovementioned facts have been
contributed by professors Julia V. Tsyganova of Ulyanovsk State University, Maria V. Kulikova of
CEMAT, Instituto Superior Técnico, Universidade de Lisboa, and Andrey V. Tsyganov of Ulyanovsk
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Figure 3. Validation datayk (dots) using the HBDTD model with̊θ vs estimated output signal̂yk

(solid line) using the identified valuêθ and the Kalman Square-Root Covariance Filter (KSRCF).

Table 2. Performance of the APA-based identification of the HBDTD model

θ̊ = [̊λ , σ̊]T, the true value ofθ [0.016667 , 0.3]T

θ̂ = [λ̂ , σ̂]T, the finally computed estimate [0.016697 , 0.292942]T

Relative estimation errorδ = ||̊θ − θ̂||/||̊θ|| 0.023490
VAF 96.21

State Pedagogical University, the co-authors of [5]. The research was supported by professor Andrey B.
Peskov of Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University on behalf
of Ulyanovsk Regional Hospital.

Recurring to the former subject declared inExample 2, Section 2:How to identify the unknown
quantitiesaN and bN for model (4)?, we come to the following solution to the question.

Note that in this case expression (2) assumes a slightly modified shape

y = Hx + x̂3 + v (16)

with H from (5), x ,

[
aN

bN

]

, x̂3 =
[
x̂3(1τ)

∣
∣ x̂3(2τ)

∣
∣ · · ·

∣
∣ x̂3(mτ)

]T
where x̂3(kτ) is the

estimator for the Ornstein–Uhlenbeck processx3(t) at t = kτ , k = 1, 2, . . . ,m . It is fair to say if
take into account the physically structured model given by (10) and (11). Those estimates are produced
by the KSRCF (cf. figure 3) using the HBDTD model witĥθ = [λ̂ , σ̂]T , the finally computed estimate

substituted for the unknown̊θ = [̊λ , σ̊]T , the true value ofθ (cf. Table 2). As a result, to obtain the

OLS-optimum estimator̂x = [x̂1

∣
∣ x̂2]

T for x ,

[
aN

bN

]

, one has to solve the normal equations whose

general form (3) has to be modified, in the light of (16), to equation (17):
(

HTH
)

x̂ = HT(y − x̂3). (17)
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6. Conclusions
• Real-world problems are in real need of modeling physicallystructured data, and it is a hard journey

to solve them.

• Examples presented in the paper show that finding the optimalsolutions to complex problems cannot
be distilled only to the qualitative approaches peculiar tofuzzy contexts.

• Increasingly, we come to the conclusion that the quantitative methods must be used to get a deeper
insight into a primarily qualitative—fuzzy methods based—study.

• A researcher, especially at the beginner level, must be educated to use qualitative and quantitative
methods convergently.

• The integration of qualitative and quantitative methods asexemplified in this paper seems to be
instructive to research strategy for physically structured sequential data modeling.
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