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Abstract. Real-time speech quality assessment is important for VoIP
applications such as Google Hangouts, Microsoft Skype, and Apple Face-
Time. Conventionally, subjective listening tests are used to quantify
speech quality but are impractical for real-time monitoring scenarios.
Objective speech quality assessment metrics can predict human judge-
ment of perceived speech quality. Originally designed for narrow-band
telephony applications, ITU-T P.563 is a single-ended or non-intrusive
speech quality assessment that predicts speech quality without access
to a reference signal. This paper investigates the suitability of P.563 in
Voice over Internet Protocol (VoIP) scenarios and specifically the influ-
ence of silences on the predicted speech quality. The performance of P.563
was evaluated using TCD-VoIP dataset, containing speech with degra-
dations commonly experienced with VoIP. The predictive capability of
P.563 was established by comparing with subjective listening test results.
The effect of pre-processing the signal to remove silences using Voice
Activity Detection (VAD) was evaluated for five acoustic feature-based
VAD algorithms: energy, energy and spectral centroid, Mahalanobis dis-
tance, weighted energy, weighted spectral centroid and four Deep learning
model-based VAD algorithms: Deep Neural Network, Boosted Deep Neu-
ral Network, Long Short-Term Memory and Adaptive context attention
model. Analysis shows P.563 prediction accuracy improves for different
speech conditions of VoIP when the silences were removed by a VAD.
The improvements varied with input content highlighting a potential to
switch the VAD used based on the input to create a content aware speech
quality monitoring system.

Index Terms: Speech Quality, VoIP, P.563, Voice Activity Detection (VAD)

1 Introduction

The availability of high speed mobile and fixed broadband connection is driv-
ing the adoption of Voice over Internet protocol (VoIP), which exploits packet-
switching techniques and become both an alternative and a replacement for
Public switched networks (PSTN) [2]. Real-time monitoring is essential to pro-
vide predictions of the actual speech quality experienced by users of the VoIP
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applications such as Google Hangouts, Microsoft Skype, and Apple FaceTime.
Speech quality is measured using subjective testing such as Absolute Category
Rating (ACR) [1] and considered the most reliable method, but it is time con-
suming, impractical and inappropriate for real-time quality assessment. As an
alternative approach, objective metrics are useful to the application developers
and network system operators to ensure that the changes to the platform do not
have a negative impact on user’s quality of experience (QoE). This technique is
faster, practical and appropriate for real-time quality assessment.

Single-ended objective metrics also referred to as no-reference metrics pre-
dict speech quality based on an evaluation of the degraded signal only, and
could be deployed at the end point of VoIP channels to monitor quality [14].
Moller [14] reports that two non-intrusive estimation of narrow-band speech
quality algorithms are standardized, the International Telecommunication Union
(ITU) recommended P.563 [16] and the second, American National Standard
Institute (ANSI) standard, referred to as ‘Auditory non-intrusive quality esti-
mation plus’ (ANIQUE+) [10]. An implementation of P.563 is publicly available
while ANIQUE+ is commercially available. Other examples of non-standardized
speech quality prediction metrics are Low complexity speech quality assessment
(LCQA) [3] and a recently presented DNN-based quality prediction metric [15].
Reported results indicated that the DNN-based metric performed poorly in com-
peting speaker scenarios. This paper evaluates the ITU standard P.563 [16] no-
reference metric to investigate the impact of silence in real-time speech quality
monitoring. In a real-time monitoring scenario, longer silences than those ex-
pected by P.563 will distort the quality prediction. For example, P.563 specifies
25-75% speech activity as a valid input. If speech activity in a sample is less
than 25%, the sample quality will be predicted as bad, as the input is invalid.

Early techniques used characteristics of the acoustic wave such as energy,
spectral centroid, spectral entropy and zero-crossing rate to recognise the hu-
man voice based on threshold. These techniques first make assumptions on the
distribution of speech and background noises (usually in the spectral domain),
and then design statistical algorithms to dynamically estimate the model pa-
rameters, making them flexible in dealing with non-stationary noises [25]. But
these methods have limitations e.g. model assumptions may not fully capture
data distributions due to few parameters and they may not be flexible enough
in fusing multiple acoustic features, which results in partial utilization of in-
formation in speech. Recently, data driven deep learning approaches have been
adopted which have the potential to overcome the limitations of those model-
based methods. The deep learning-based VADs can be integrated to the speech
quality prediction systems to improve their performance. Also, they can fuse
multiple features much better than traditional VADs e.g. deep neural networks
(DNN), long short-term memory (LSTM). These models extract acoustic fea-
tures during the course of training and uses different classifiers to classify speech
and non-speech.

In this paper the suitability of applying an acoustic feature-based VAD and
Deep learning model-based VAD to remove silences before presentation to P.563
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is investigated. The paper is laid out as follows: Section 2 introduces the ITU
no-reference objective metric P.563, Voice activity detectors (VADs), TCD-VoIP
database, and Section 3 describes the evaluation method. Section 4 presents and
discusses the results before concluding remarks and future directions are made
in section 5.

2 Background

2.1 Single-ended Speech Quality Model: P.563

Single-ended, non-intrusive speech quality models are sometimes referred to as
no-reference models. They are useful for real-time monitoring of speech quality
and scenarios where a reference source is unavailable. One such model P.563 [13]
was standardized by ITU in may 2004. It was designed for assessing samples
of active speech and is used for narrow-band speech signals. The P.563 model
is based on three principles [13] namely: a physical model of vocal tract; a re-
construction of the reference signal to assess unmasked distortions; and focusing
on specific distortions: e.g. temporal clipping, robotization, and noise. Quality
prediction by P.563 involves several stages: pre-processing, dominant distortion
classification, and perceptual mapping. The degraded signal is pre-processed
which involves reverse filtering, speech level adjustment, identifying speech por-
tions and calculating speech and noise levels via a VAD [16]. Distortions classes
include unnaturalness of speech, robotic voice, beeps, background noise, signal
to noise ratio (SNR), mutes, interruptions are extracted from the voiced signal
parts. A dominant distortion class is determined and mapped to a single mean
opinion score (MOS) which describes speech quality on a scale from 1 (bad) to 5
(excellent). The pre-processing stage in P.563 includes a VAD which is based on
adaptive power threshold, using an iterative approach. The internal VAD is used
to compute a range of features and the active and inactive portions of speech
activity as shown in Fig. 1 and does not pre-process to remove silence which
can be seen in full details [16]. The performance of P.563 has been shown to be
poor on samples containing silences [7]. The importance of silence detection is
investigated here, using two VADs in system, the first VAD removes silences and
the second VAD (inside P.563) is estimating speech activity.

2.2 Voice Activity Detector

Applications like speech and speaker recognition, speech enhancement, speech
coding and speech synthesis need efficient feature extraction techniques where
most of the voiced part contains speech attributes. Silence removal is a technique
which is adopted for this purpose that facilitates the system to be computation-
ally more efficient. The events in speech are classified as (i) silence; (ii) unvoiced;
and (iii) voiced.

VAD detects presence and absence of human speech like silence, voiced and
unvoiced based on speech features. It avoids unnecessary coding and transmis-
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Fig. 1: VAD in P.563 [16]

sion of silence packets in Voice over Internet Protocol (VoIP) applications, sav-
ing computation and network bandwidth. For continuous monitoring of conver-
sation, an aggressive VAD may yield better predictive performance from the
P.563 metric [13]. Five different acoustic feature-based VAD algorithms and four
Deep-learning model-based VAD algorithms are presented below and evaluated.
Ground Truth (GT): This is the ideal binary mask that a VAD would create.
It was computed using the known speech-silence structure of the speech samples
in TCD-VoIP dataset (See Table 1). This mask is created as a representation of
a VAD with perfect voiced activity detection. The speech samples are divided
into overlapping 25 ms frame size with 10 ms shift.

Table 1: Format of Speech samples in TCD-VoIP [6]

Silence (1s) Sentence 1 Silence (2s) Sentence 2 Silence (1s)

Energy (E) [21]: The simplest method of voice activity detection is analysis
of short time energy E of speech samples xi(n), given by equation (1) for each
ith frame having samples n, with frame length N . The silences are identified by
finding frames with maximum energy (peak-to-peak) less than 0.003 joule.

E(i) =
1

N

N∑
n=1

|xi(n)|2 (1)

Energy and Spectral Centroid (ES) [5]: The speech samples are broken
into overlapping frames of size 25 ms with 10 ms shift and for each frame, two
speech features namely; short time energy, given by equation (1) and spectral
centroid, given by equation (2) are extracted. The spectral centroid, Ci, of ith

frame is defined as the centre of gravity of its spectrum, given by equation (2),
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Ci =

∑N
k=1(k + 1)Xi(k)∑N

k=1Xi(k)
(2)

where Xi(k), k = 1, 2, ...N , is Discrete Fourier Transform (DFT) coefficients
of ith short time frame of frame length N . For each speech features, a simple
threshold is calculated separately. As long as the two thresholds are estimated,
a common threshold is computed and applied to extract the voiced segments [5].

Uni-dimensional Mahalanobis Distance (UMD) [19]: This VAD de-
tects voiced segments from the speech samples using uni-dimensional Maha-
lanobis distance function which is a linear pattern classifier [22]. It assumes
that background noise present in the utterances are Gaussian in nature and
uses statistical properties (mean and standard deviation) of background noise
to make a sample as voiced or silence. It considers that for a 1D Gaussian dis-
tribution, 99.7 % of its probability mass is in the range of mean |µ| ≤ 3 i.e.
Pr[|x− µ| ≤ 3] = 0.997.

The speech samples are divided into overlapping frames of size 25 ms with
10 ms shift and the Mahalanobis distance [19] “r” from random variable x to
mean µ measured in units of standard deviation σ is defined by equation (3).
The steps of algorithm are detailed in [19].

r =
|x− µ|
σ

(3)

Weighted Energy and Weighted Spectral Centroid (WE) [5]: The
energy and spectral centroid VAD has two speech features namely; short time
energy and short time spectral centroid and the threshold is calculated as the
weighted average between the two first local maxima of histogram for each fea-
ture individually [5]. Therefore, this VAD has been broken in two sub-parts,
namely; weighted energy VAD and weighted centroid VAD.

Deep Neural Network (DNN) [23]: This DNN-based VAD implementa-
tion uses two classifier classes, namely: speech class and silence class. The input
vector of the DNN is constructed for every frame of the speech signal based on
multi-resolution cochleagram (MRCG) feature. MRCG is a concatenation of four
cochleagram features with different window sizes and frame lengths. The cochlea-
gram features are generated from gammatone filterbanks. The output vector is
the posterior probabilities of these two classes, which is computed for each input
vector based on threshold respectively. A DNN model is trained for an input
feature sequence xm = [x1, x2, ...xM ] to an output sequence ym = [y1, y2, ...yM ],
where m = 1, ...,M is the time of frame. Cross-entropy criterion is used to
optimize the VAD.

Boosted Deep Neural Network (bDNN) [26]: A Boosted DNN VAD
that is an extended version of the DNN VAD. The main difference between
training bDNN and DNN VAD is that for bDNN VAD, each speech frame is
further expanded i.e. xm to xm = [xm−W , xm−W+1, ..., xm, ..., xm+W−1, xm+W ]
and similar for ym, where m = 1, ...,M is time of frame and “W” is user defined
half-window size [26]. It has (2W+1)d input and 2W+1 output feature sequence.
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Long Short-Term Memory (LSTM) [24]: The LSTM VAD architec-
ture [20] is unidirectional with “k” hidden layers and “n” hidden units per
layer. The input vector to the LSTM is a single 40-dimensional multi-resolution
cochleagram (MRCG) features. The output vector is the posterior probabilities
of silence and speech class, which is computed for each input vector based on
threshold respectively. Cross-entropy is used as the optimisation criterion and
truncated back propagation through time (BPTT) learning algorithm as the
minimisation criteria [24].

Adaptive context attention model (ACAM) [11]: An ACAM-based
VAD that is a frame-based speech or silence classifier. The input speech signal is
divided into overlapping 25 ms frames with 10 ms shifts. 768-dimensional multi-
resolution cochleagram (MRCG) feature vectors are extracted and trained using
an algorithm called Adam for stochastic optimization [12].

2.3 Experimental Corpus

In order to investigate the influence of silence in VoIP applications, a dataset
with silences and speech samples was used. TCD-VoIP [6] is a publicly avail-
able dataset of degraded speech samples with corresponding subjective opinion
scores, generated by ACR test described in ITU-T Rec. P.800 [1]. Table 1 shows
the format of speech samples. Each sample has a leading and trailing silence
with 2 sec silence in middle (50% silences). The average length of each sentence
is 2.4 sec. The speech samples are 16 bit WAV files, sampled at 48 kHz. The ut-
terances have been taken from Harvard test sentence list. There were 24 listeners
in all experiments and each condition was tested with 4 speakers (2 male and
2 female). It contains five types of platform independent degradation conditions
(independent on codec, network or hardware), common to VoIP. These are: back-
ground noise, intelligible competing speakers, echo effects, amplitude clipping,
and choppy speech. The competing speakers is a separate case of large-crowed
babble as the speaker is intelligible and this is a common VoIP call scenario.
The echo effects in a voice call usually occur due to transmitted speech being
picked up in the receiving unit’s microphone, creating a feedback loop like the
scenario of microphone misplacement. Clipping occurs, when the amplitude of
samples in a signal is set above the maximum permitted value e.g. microphone
loudness. Choppy speech refers to speech, which is affected by missing samples
due to packet loss in the VoIP network. The background noise sourced the AU-
RORA database, developed by Hirsch et al. [9]. The summary of conditions and
parameters are presented in [6].

3 Evaluation Method

The VAD mask, which is the binary mask, has been used to get the percentage
of voiced segments of each VADs and compared to the ground truth (GT) mask
to get the true positive/negative and false positive/negative which measures the
performance of a particular VAD in terms of precision, recall and F-score [17].
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Fig. 2: Structure of experimental implementation with 3 paths (a) No VAD [Base-
line]; (b) Traditional VADs (E, ES, UMD, WE and WS); and (c) Deep learning
model-based VADs (DNN, bDNN, LSTM and ACAM).

F-score measures the accuracy and it’s maximum value is 1 (precision = recall
= 1) which means that voice activity decision of a certain VAD algorithm is
equal to the reference transcription. The performance of a VAD deteriorates
when the portion of active speech is mis-classified as non-active giving temporal
clipping [8].

The pre-processed samples of TCD-VoIP via each VADs are used as the in-
put to P.563 to get the objective predictions. To investigate the performance
of P.563 in measuring speech quality, the per-condition objective predictions
(MOS-LQO) of pre-processed samples are calculated to compare with the per-
condition subjective mean opinion scores of samples (MOS-LQS). The degraded
samples are re-sampled from 48 kHz to 8 kHz for testing. The test evaluates 384
speech samples. For each condition, 4 samples (2 male and 2 female speakers)
are tested giving 96 conditions. The samples are processed to remove the WAV
headers and evaluates with P.563 as a baseline. The Deep learning model-based
VADs were trained using speech samples from the TIMIT corpus [4]. The TIMIT
utterances have considerably shorter silences than speech which could create a
class imbalance problem. To address this, the model developers added 2 sec-
ond silence segments were before and after each utterance [11]. Multi-resolution
cochleagram (MRCG) features were extracted as the input vector to these VADs.
TCD-VoIP dataset are used as the test dataset. The samples are pre-processed
by the VADs described in Section 2.2 to remove the silences and the resulting
signals are evaluated with P.563 as illustrated in Fig. 2. The performance com-
parison between subjective listener test and objective metric prediction quality
scores are quantified in terms of Pearson correlation coefficients (ρp), Spearman
rank order coefficients (ρs) and root mean squared error (RMSE) [18]. Scatter
plots of results classified by degradation condition are presented to visualise the
statistics.
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Fig. 3: Original signal, Traditional VADs mask and Deep learning model-based
VADs mask compared to ground truth (GT) mask.

4 Results and Discussion

Fig. 3 shows a single speech sample, C 16 ECHO FG.wav. The signal and computed
VAD masks are presented. Masks for the traditional VADs and the data driven
model-based VADs are compared to the ground truth (GT) mask. It can be seen
from Fig. 3 that E, ES, WE, DNN, bDNN, LSTM and ACAM VAD are under-
estimating the percentage of voice detected as compared to GT VAD. UMD
VAD is over-estimating and WS VAD provides the best estimate compared to
the ground truth (GT) mask. The performance has been measured on all 384 test
samples of the TCD-VoIP dataset. The average percentage of voice detected of
each degraded class with all VADs are compared to ground truth (GT) VAD and
tabulated in Table 2. The Precision, Recall and F-scores have been calculated
and the F-scores are presented in Table 3. The F-scores have been calculated
for all degraded as well as all reference speech samples to examine and compare
the accuracy of each VADs with reference transcription. An analysis of Table 2
shows that ES and WE VAD have same results except for noise conditions and
both are under-estimating voiced segments as compared to GT VAD. The simple
energy (E) VAD did not perform well. UMD VAD over-estimates voice for echo
and competing speakers and under-estimates noise. It works well for the chop
and clip conditions. WS VAD over-estimates voiced segments for noise. Similarly,
all deep learning model-based VADs are under-estimating percentage of voiced
segments with respect to GT VAD. Table 3 shows that UMD VAD has high
F-score for echo and chop conditions but WS VAD has higher accuracy among
all VADs for competing speakers, clip and all files. Boosted DNN VAD has
higher accuracy for noise among all VADs and it is the best among all other
deep learning VADs. WS VAD exhibited the best performance, when used as a
pre-processing unit to P.563.
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Table 2: Average percentage of voice detected in test samples.
VAD Echo Chop Clip Compspkr Noise All

GT 51.93 51.88 51.78 57.05 51.89 52.63
E 12.38 12.54 15.85 14.11 20.83 15.29
ES 28.48 27.72 32.58 29.86 31.66 29.88
UMD 55.19 51.00 51.43 71.05 33.55 50.50
WE 28.48 27.72 32.59 29.86 35.39 30.82
WS 44.90 41.21 44.54 49.12 56.71 47.50
DNN 39.85 36.26 35.92 44.98 49.23 41.47
bDNN 40.72 39.70 39.85 54.04 47.08 43.87
LSTM 47.86 49.37 48.15 54.08 45.47 48.59
ACAM 40.11 38.73 38.81 48.30 48.70 42.92

Table 3: F-scores by condition compared to ground truth (GT).
VAD Echo Chop Clip Compspkr Noise All (deg) All (ref)

GT 1 1 1 1 1 1 1
E 0.239 0.237 0.469 0.394 0.464 0.277 0.391

ES 0.428 0.422 0.772 0.682 0.705 0.451 0.694
UMD 0.553 0.615 0.818 0.777 0.575 0.438 0.557
WE 0.428 0.422 0.772 0.682 0.695 0.460 0.694
WS 0.548 0.530 0.923 0.875 0.812 0.585 0.888
DNN 0.511 0.506 0.820 0.853 0.855 0.547 0.840
bDNN 0.515 0.520 0.869 0.865 0.890 0.562 0.868
LSTM 0.538 0.553 0.718 0.743 0.802 0.552 0.744
ACAM 0.513 0.513 0.857 0.883 0.886 0.556 0.857

The statistics of TCD-VoIP dataset, broken down by condition type are pre-
sented in Table 4. It can be seen from Table 4 that the Pearson correlation of
noise and all samples of WS VAD gives good correlation among all VADs and
higher than No VAD (baseline). For clip conditions, UMD VAD and for chop
conditions, boosted DNN VAD is good. WS VAD has strong Spearman correla-
tion for noise conditions as compared to No VAD (baseline). LSTM VAD is good
for competing speaker conditions and ES VAD for clip conditions. WS VAD has
the lowest RMSE for noise conditions and little increase for other conditions with
respect to baseline. WS VAD exhibited better performance than the other VADs
tested, when used as a pre-processing unit to P.563 and has higher correlation
with subjective MOS score i.e. estimating better speech quality.

To explore the impact using a VAD as a pre-processing unit to P.563, the
N o VAD (baseline) and WS VAD plots for objective metric P.563 (denoted by
MOS-LQO) on the TCD-VoIP dataset have been compared to subjective results
(denoted by MOS-LQS) per-condition for each type of degradation in Fig. 4 (a) -
(b). The improvement for the noise condition (denoted with J) in particular is
visually evident.

Fig. 4 (c) - (d) show the best traditional and best deep learning-based VAD
performance with correlation between subjective and objective speech quality.
While comparing the best deep learning-based VAD with best traditional VAD,
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Table 4: Pearson correlations, Spearman rank correlations and RMSE (per-
condition) for each degradation class of TCD-VoIP with a grouped result for
all conditions.

VAD ECHO CHOP CLIP
ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE

No VAD 0.500 0.346 1.290 0.596 0.530 0.720 0.846 0.692 0.600
E 0.854 0.818 0.642 0.738 0.777 0.725 0.292 0.402 1.017
ES 0.314 0.183 1.757 0.737 0.640 1.275 0.878 0.841 1.062
UMD 0.663 0.624 1.193 0.437 0.429 1.035 0.808 0.692 0.884
WE 0.314 0.183 1.757 0.735 0.639 1.272 0.876 0.841 1.064
WS 0.606 0.449 1.302 0.643 0.613 1.006 0.842 0.771 0.923
DNN 0.600 0.464 1.467 0.672 0.612 1.176 0.459 0.353 1.229
bDNN 0.547 0.506 1.429 0.765 0.749 1.052 0.775 0.740 0.962
LSTM 0.417 0.292 1.307 0.534 0.469 0.819 0.747 0.586 0.693
ACAM 0.596 0.486 1.453 0.669 0.639 1.128 0.757 0.767 1.091

VAD COMPSPKR NOISE ALL
ρp ρs RMSE ρp ρs RMSE ρp ρs RMSE

No VAD 0.675 0.607 0.685 0.750 0.719 0.758 0.589 0.523 0.861
E 0.402 0.466 1.034 0.593 0.654 0.949 0.637 0.672 0.865
ES 0.522 0.568 1.352 0.752 0.675 1.038 0.580 0.534 1.323
UMD 0.601 0.718 0.799 0.178 0.016 1.382 0.468 0.446 1.108
WE 0.522 0.568 1.352 0.778 0.674 1.037 0.591 0.534 1.322
WS 0.821 0.757 0.884 0.841 0.774 0.703 0.665 0.614 0.984
DNN 0.515 0.433 1.091 0.731 0.687 0.968 0.585 0.514 1.193
bDNN 0.782 0.735 0.927 0.766 0.683 0.843 0.663 0.611 1.079
LSTM 0.846 0.837 0.774 0.778 0.743 0.849 0.600 0.563 0.928
ACAM 0.829 0.700 0.937 0.649 0.546 0.967 0.601 0.565 1.137

it can be seen that bDNN VAD has a better f-score than weighted spectral
centroid (WS) VAD for the CHOP speech condition in particular with little
difference for other degradation conditions.

5 Conclusions and Future Directions

P.563 was designed as an objective no-reference metric but provides inaccu-
rate predictions when input samples contain long silence segments. This paper
reports benchmarking results of nine different voice activity detectors used as
a pre-processing unit to P.563 tested using the TCD-VoIP database. The re-
sults show that for the VoIP conditions tested, a weighted spectral centroid pre-
processing VAD improves prediction of speech quality for all conditions tested
compared to baseline. The boosted DNN VAD exhibited better performance for
the CHOP condition in particular. Pre-processing with a VAD demonstrated
that P.563 could be deployed for real-time monitoring VoIP speech quality even
in situations where there are longer periods without voice activity. Deep learning
VADs, trained and optimised for particular degradation conditions, i.e. content
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Fig. 4: Subjective vs objective quality prediction (degradations per-condition) of
TCD-VoIP (a) No VAD [Baseline]; (b) WS VAD and F-score comparison of best
traditional and deep learning VAD with quality correlation for P.563 (Pearson
correlation) (c) WS VAD; and (d) bDNN.

sensitive, could have a significant effect on speech quality prediction accuracy
as classifying a speech signal by condition and switching VAD to an condition
optimal VAD may be easier and more robust than trying to tune traditional sig-
nal based VAD threshold parameters. Substituting the two VADs with a single
VAD that is aware of content may yield further improvement in speech quality
estimation. This provides an opportunity for future work.

6 Acknowledgements

This publication has emanated from research supported in part by a research
grant from Science Foundation Ireland (SFI) and is co-funded under the Euro-
pean Regional Development Fund under Grant Number 13/RC/2077.

References

1. ITU-T recommendation P.800: Methods for subjective determination of transmis-
sion quality (1996)

2. Alcatel-Lucent: PSTN industry analysis and service provider strategies: Synopsis.
Alcatel-Lucent, Paris, France, Tech. Rep. Bell Labs Analysis for BT (2013)

3. Bruhn, S., Grancharov, V., Kleijn, W.B.: Low-complexity, non-intrusive speech
quality assessment (June 2012), US Patent 8,195,449

4. Garofolo, J.S.: Timit acoustic phonetic continuous speech corpus. Linguistic Data
Consortium (1993)

5. Giannakopoulos, T.: A method for silence removal and segmentation of speech
signals. University of Athens, Athens 2 (2009)

6. Harte, N., Gillen, E., Hines, A.: TCD-VoIP, a research database of degraded speech
for assessing quality in VoIP applications. In: Quality of Multimedia Experience
(QoMEX), Seventh International Workshop. pp. 1–6 (2015)

7. Hines, A., Gillen, E., Harte, N.: Measuring and monitoring speech quality for Voice
over IP with POLQA, ViSQOL and P.563. INTERSPEECH, Dresden, Germany
(2015)

8. Hines, A., Skoglund, J., Kokaram, A., Harte, N.: Monitoring the effects of temporal
clipping on VoIP speech quality. In: INTERSPEECH (2013)



12 Rahul Jaiswal, Andrew Hines

9. Hirsch, H.G., Pearce, D.: The Aurora experimental framework for the performance
evaluation of speech recognition systems under noisy conditions. In: ASR2000-
Automatic Speech Recognition: Challenges for the new Millenium ISCA Tutorial
and Research Workshop (ITRW) (2000)

10. Kim, D.S., Tarraf, A.: ANIQUE+: A new American national standard for non-
intrusive estimation of narrow-band speech quality. Bell Labs Technical Journal
12(1), 221–236 (2007)

11. Kim, J., Hahn, M.: Voice activity detection using an adaptive context attention
model. IEEE Signal Processing Letters (2018)

12. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arxiv 1412.6980
(2014)

13. Malfait, L., Berger, J., Kastner, M.: P.563-The ITU-T standard for single-ended
speech quality assessment. IEEE Transactions on Audio, Speech, and Language
Processing 14(6), 1924–1934 (2006)

14. Möller, S., Chan, W.Y., Côté, N., Falk, T.H., Raake, A., Wältermann, M.: Speech
quality estimation: Models and trends. IEEE Signal Processing Magazine 28(6),
18–28 (2011)

15. Ooster, J., Huber, R., Meyer, B.T.: Prediction of perceived speech quality using
deep machine listening. Proc. Interspeech 2018 pp. 976–980 (2018)

16. P.563, I.T.R.: Single-ended method for objective speech quality assessment in
narrow-band telephony applications. International Telecommunication Union,
Geneva, Switzerland (2004)

17. Pham, T.V., Tang, C.T., Stadtschnitzer, M.: Using artificial neural network for
robust voice activity detection under adverse conditions. In: Computing and Com-
munication Technologies. International Conference. pp. 1–8 (2009)
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