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Abstract. There are two main methods that are used to model the
spread of an infectious disease: agent-based modelling and equation based
modelling. In this paper, we compare the results from an example im-
plementation of each method, and show that although the agent-based
model takes longer to setup and run, it provides additional information
that is not available when using an equation based model. Specifically,
the ability of the agent-based model to capture heterogeneous mixing and
agent interactions enables it to give a better overall view of an outbreak.
We compare the performance of both models by simulating a measles
outbreak in 33 different Irish towns and measuring the outcomes of this
outbreak.
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1 Introduction

2018 marks the 100 year anniversary of the deadliest event in recent human
history, the Spanish flu outbreak that killed approximately 50 million people,
10 million more than those killed in World War 1 [27]. It is commonly believed
that the question concerning the next deadly pandemic is not if it will occur
but when it will occur. The World Health Organization (WHO) prepares an
annual review on priority diseases that they feel could be involved in a future
public health emergency [29] and the UK’s National Security Capability Review
(NSCR) has added the threat from infectious diseases to the list of challenges
that are expected to drive future security priorities [1].

One way to prepare for a pandemic is to evaluate preventative measures and
responses before a pandemic occurs. As it is impossible to test such measures
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in the real world prior to a disease outbreak, one way to evaluate how well pre-
vention measures or responses to an outbreak will work is through modelling. A
model is a simplified description of a system or process that can be used to bet-
ter understand that system or process, allowing one to run experiments without
having to test scenarios in the real world. An important part of modelling a dis-
ease outbreak is choosing an appropriate and realistic model. While all models
will make assumptions, it is important to determine which assumptions make
a difference to the results. It is also essential to consider the different types of
models available and the advantages and disadvantages of such models. Typi-
cally epidemic models are either created using an equation based model or with
a simulation model, such as an agent-based model. Both types of models have
advantages and disadvantages that may lead to the decision to choose one over
the other.
Equation based models tend to be less computationally intensive than simulation
models and are faster to run. However, equation based models are designed for a
homogeneous population and each additional characteristic added to the popula-
tion, such as age, vaccination status or socioeconomic status requires additional
equations to be added into the model, making the model more complicated and
harder to solve and analyse. In addition, equation based models assume homo-
geneous mixing, each agent has an equal probability of coming into contact with
every other agent. There can be adjustments added into equation based mod-
els that allow for different contact rates across groups, for example age groups,
however, within each group the mixing patterns are the same.
Alternatively, agent-based models are computationally intensive and may take
a long time to run to completion. However, one of the main advantages of mod-
elling at the agent level is the ability to create heterogeneous agents. Each agent
can have a list of their own characteristics such as age, gender or vaccination
status and theoretically each agent could be unique with a different combination
of characteristics. These characteristics can affect the agents’ likelihood to con-
tract a disease directly or by influencing the agents’ decisions and thus who they
come into contact with. Because agent-based models allow the agents to make
decisions and move throughout the environment the agents in an agent-based
model have realistic heterogeneous contact patterns.
When deciding which model is appropriate it is important to look into these
advantages and disadvantage but also to look at the ability of each model type
to successfully model a disease outbreak. We have created both an agent-based
model and an equation based model to better explore the differences between
the types of models when applied to the Irish context. Section 2 provides an
overview of agent-based models for epidemiology and equation based models
for epidemiology. Section 3 discusses the agent-based model and equation based
model we have created for Irish towns. Finally, Section 4 discusses and compares
the results obtained from both models.
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2 Background

In the following sections we describe both agent-based models and equation
based models for infectious disease epidemiology.

2.1 Agent-Based Models

Agent-based models (ABMs) are a type of computer simulation composed of
agents that can interact with each other and with an environment. The actions
of agents are governed by a set of coded rules [18]. Because agents can make
their own decisions in the model based on the rules given to them, ABMs can
capture unexpected aggregate phenomena that result from combined individual
behaviours in a model [5]. ABMs can be particularly useful in infectious disease
epidemiology as they have the ability to capture the dynamics of the disease
spread combined with the heterogeneous mixing and social networks of the agents
[3]. ABMs have been run on a wide range of infectious diseases such as various
strains of influenza, including H1N1[10] and H5N1[7], Ebola [21], measles [25],
and HPV [23]. The results from ABMs can be used to influence public policy,
for example the EpiSimdemics model looked at responses to an outbreak in
a military population and determined that counterintuitively sequestration of
military populations during an outbreak may lead to more infection [2]. Similarly,
FRED (A Framework for Reconstructing Epidemiological Dynamics) is an agent
based modelling system that is used to support research on the dynamics of
infectious diseases particularly for US state and county public health officials to
evaluate the effects of interventions [12]. FRED has been used by researchers to
look into different aspects of outbreaks such as shutting schools down and self
isolation [4].

2.2 Equation-Based Models

Historically equation based models have been used to model the spread of in-
fectious diseases. The most common type of equation based model used for in-
fectious disease modelling is the compartmental model, which is made up of a
set of differential equations [13]. The population in a compartmental model is
assumed to be homogeneous, well mixed, and split into compartments based off
of health status. Each compartment is defined with its own differential equation
[9]. The simplest compartmental model is the SIR model where the population is
split into three compartments: susceptible individuals (S), infected individuals
(I), and recovered individuals (R). The following equations define the system:

dS

dt
=

−βSI
N

(1)

dI

dt
=
βSI

N
− γI (2)

dR

dt
= γI (3)
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where N is the population size, β is the rate of transmission per contact, γ is
the recovery rate, and S(t) + I(t) +R(t) = N [13].

Typical variations of the SIR model include the SEIR model (susceptible,
exposed, infected and recovered), the SIS model (susceptible, infected and sus-
ceptible) and the SIRS model (susceptible, exposed, infected, recovered and sus-
ceptible). The models can be made more complicated and realistic by adding ad-
ditional compartments for various characteristics of agents including age groups
or vaccination status. These models can be used to better understand the dynam-
ics of a disease. Hogan et al. [14] create an age structured model for Respiratory
Syncytial Virus, a common childhood infection, where each age group has its
own compartments. The model can be useful when simulating age-dependent
interventions such as vaccination. The effects that vaccination rates have on
measles outbreaks are studied using the Pang et al. model [24].

There are many examples of equation based models beings used to analyse
a specific outbreak or epidemic after the fact. These models are often used to
determine lessons learned from the outbreak. For example, Vaidya et al. [28]
model the spread of H1N1 in a rural university town and determine that a portion
of the susceptible population was protected from infection through self-isolation,
social distancing or other preventative measures and this protected population
played a substantial role in the dynamics of the epidemic. Mamo and Rao [19]
show that to best capture the dynamics of Ebola spreading in West Africa an
additional compartment, isolated, is needed since isolation is commonly used in
Ebola cases. Equation based models have also been used to help shape policy
during an outbreak. A series of models were used to help inform policy decisions
to control the 2001 foot-and-mouth disease epidemic in the UK [17].

Although equation based models have proven to capture the macro level dy-
namics of an infectious disease outbreak and have been used in the development
of control policies and responses to outbreaks, there are some disadvantages to
using an equation based model. Equation based models can not provide detailed
information on the spread of the disease. In addition, the small set of variables
that are used in an equation based model may not be enough to define an out-
break. Assuming that the population is homogeneous within a compartment can
also be a problem in not capturing the individual variations and actions that
can have a major impact on the course of an outbreak [9].

3 Experimental Setup

The following sections discuss the models we use in our comparison.

3.1 Agent-Based Model

The ABM we use in this paper is the same as the infectious disease model
described in Hunter et al. [16]3. We use the computer software Netlogo [30] to

3 The model described in Hunter et al. uses a burn-in model as a step in setup to
capture socioeconomic segregation. This paper does not use the burn-in model during
setup
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implement our model. Netlogo is an easy to use and popular environment for
creating ABMs [11]. We chose to use Netlogo due to the increasing popularity
of the platform with agent-based modellers and its ability as a medium to large
scale modelling platform.

Our model is a data driven ABM for human airborne infectious diseases
such as the flu or measles. We have created a simulation with a more general
disease model so that it can adjusted for various airborne diseases. It follows an
SEIR (susceptible, exposed, infected, and recovered) type compartmental model
with the agents moving between the four states relating to infectiousness [13].
Parameters for infectivity, exposed time and recovery time can be adjusted based
on the disease being modeled. Our society model is created using openly available
data mostly from the Irish Central Statistics Offices to create a realistic synthetic
population for a town in Ireland. We also use data from the HPSC to get age
specific vaccination rates for the population. The data sources used to create
the population and a description of how the society is set up can be found in
the paper [15]. The model includes transportation with agents moving between
their current location and desired destination in a straight line in steps allowing
them to interact with other agents along their route. The model environment
includes maps of the towns being modelled. The small area boundary files4 from
the CSO were used to determine the layout of the towns and zoning data is
used to determine where residential, community and industrial areas should be
placed. School location data from the Irish Department of Education is used
to place primary and secondary schools in appropriate locations within towns.
Figure 1 shows an example of a town in the agent-base model. The white lines
are the outlines of the small areas and the yellow figures represent people in the
town. The model runs on time steps of two hours and runs until no agents are
exposed or infected.

Fig. 1. An example setup of the Agent-Based Model. The town modelled here is Schull,
Ireland.

4 Small areas are the smallest area over which census data is aggregated. Each small
area is made up of 50 to 200 households.
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3.2 Equation-Based Model

We created an equation based model to compare to the ABM. The equation base
model is a compartmental model with age groups that determine vaccination
status. There are 61 equations in the model and 29 age groups. There is one
age group for each age between 0 and 27 and then another group for all other
adults. These match with the vaccination data that we have and with our ABM.
For each age group there are two equations: susceptible but not vaccinated, and
susceptible and vaccinated. We consider homogeneous mixing within the model
so the exposed, infected and recovered groups contain individuals from all 29
age groups. The model is represented with the following equations:

dSi
dt

=
−βSiI
N

(4)

dSvi
dt

= −(1 − α)
βSviI

N
(5)

dE

dt
= Σ(

βSiI

N
+ (1 − α)

βSviI

N
) − σE (6)

dI

dt
= σE − γI (7)

dR

dt
= γI (8)

Where Si is the susceptible, unvaccinated population for age group i, Svi is
the susceptible, vaccinated population for age group i, E is the exposed but not
infectious population, I is the infectious population, R is the recovered popula-
tion, N is the total population, β is the rate of transmission per contact, α is the
vaccination success rate, 1

σ is the duration of the exposed period and 1
γ is the

duration of the infectious period. We take the duration of the exposed period
to be 10 days and the duration of the infectious period to be 8 days. We then
determine β using the formula β = R0γ [8]

The model is solved using Matlab ODE solver [20]. The initial conditions
for each town were adjusted to match the 2011 census data and the vaccination
statistics. Both datasets are also used in the creation of the ABM.

4 Results

To compare the two models we simulate a measles outbreak in 33 different towns.
The towns are small to medium size towns in Ireland with populations between
390 and 9,548. The areas of the towns range from 5.26 km2 to 63.96 km2. The
towns included were selected to have a range of diverse towns to test the models.
Data for each town is used to setup the ABM and we use the population statistics
from the town as initial conditions in the equation based model. We keep age-
based vaccination rates constant across all towns using all Ireland vaccination
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levels. The models run until no agents are exposed or infected, which means that
the length of a simulation varies between towns and between runs for the same
town. For example, across 100 runs for the town of Schull, the average length of
a simulation was 8 weeks but the simulation ended in some runs after one week
and in some runs after 15 weeks.

For the purpose of comparison we take as the outcome of an outbreak5 the
final recovered number from the equation based model, this is the number of
individuals in the model who started as susceptible, became exposed, moved to
infected and then recovered and represents the magnitude of the outbreak. For
the ABM we use the average number of infected agents across 200 runs, as ABMs
have stochasticity in the model each run can have different results. For each
model run there is a total number of immune agents, these are the agents who
have been infected and recovered. We take the average across the 200 runs for
each town and find an average magnitude of the outbreak for the town. The ABM
provides us with a range of outbreaks that might occur in the current system.
The average does not need to be calculated for the equation based model because
there is no stochasticity in the system. The lack of stochasticity in the model
means that the same result is found each time. Table 1 presents the results for
the equation based model for each town, the average number of immune agents
from the ABM and the maximum number of infected agents across all runs of the
ABM. Looking at the results it can be noted that in some towns such as Arainn,
Kilkee and Schull the results are similar between the ABM and the equation-
based model. However, many of the towns have different results between the two
models, showing that the results can vary and that a comparison is necessary. It
is important to note that there are only two towns, Blarney and Kilcock, where
the number of infected people in the equation based model is greater than the
maximum number infected in the ABM. This means that for all other towns
the outbreak produced in the equation-based could be in the range of outbreaks
produced in the ABM.

To determine which descriptors of the towns (e.g. population and area) are
most related to the results of the model simulations we calculated Pearson cor-
relation coefficients between simulation results and town descriptors. Table 2
shows the correlations between the results of the ABM and the equation based
model and other variables including the population size, percent of unvaccinated
individuals, percent students in the town and the area of the town. From the
correlations it can be seen that the results for both models are correlated with
the population of the town. However, the equation based model has a much
higher correlation with population than the agent based model.
In fact the ABM has a higher correlation with the equation based model results
than with the population. From the correlations it can also be seen that the
equation based model is correlated with the percent of unvaccinated individuals
and the percent of students in the town. This makes sense as these are variables
that are included in the model. Area, however, has a near zero correlation with

5 We define an outbreak as two or more cases of measles. This is based off of the
WHO’s definition of a measles outbreak
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the equation based model as the variable is not included. The ABM has a small
correlation with the percent of unvaccinated agents, the percent of students in
the town and the area. The smaller correlations compared to the equation based
model are believed to be because the results of the ABM are not simply de-
termined by the variables programmed into the model but by the individual
agent decisions and interactions between the variables that are not found within
the equation based model. The correlations help to show that ABM captures
more complex relationships and interactions between variables than the equa-
tion based model.
For a more in depth look at the output from both models we look at the results
of both models for Kinsale. We picked Kinsale because it was determined, based
on a detailed analysis of the Irish census data, that Kinsale was the town that
statistically best represents Ireland [22]. It also has a large variation between
the results in the ABM and the equation based model. As ABMs are designed
to be stochastic each model run produces a different result, Table 1 presents the
average number of infected agents but we can find additional statistics on the
outbreaks such as the percent of runs that lead to an official outbreak (2 or more
cases). The equation based model is non stochastic and thus we only get the one
outbreak. It would be possible to change the initial conditions of the equation
based model to get different results, however, the initial conditions are based
off of the actual population. In the ABM there are 87% of runs that lead to an
outbreak.
To test how both models react to a change in the initial conditions we look at
how a change in the vaccination policy would influence the outbreak. For all
non school age individuals we leave the vaccination levels the same, however,
for any individual in the model who is in school we implement the policy that
all school age children must be vaccinated for measles. This is a policy that is
implemented in many states in the USA,and France and has been discussed as a
potential policy for Ireland [6]. To account for children with medical exemptions
we use the average percent of children in the USA that do not receive the MMR
vaccination due to medical reasons, resulting in a 99.25% vaccination rate among
school children in the model [26]. In the equation based model for Kinsale this
results in a reduction of the size of the outbreak from an outbreak of size 23
individuals to an outbreak of size 2. The ABM for Kinsale sees a reduction in
the average number of infected agents from 438 to 129, a reduction in the max-
imum number of infected agents from 655 to 534 and a reduction in the percent
of runs that lead to an outbreak from 87% to 63%.
Both models show that a reduction in the outbreak size occurs when changing
the vaccination policy, however, because we have a range of outbreaks that might
occur with the ABM results we are better able to understand how the vaccina-
tion policy might influence an outbreak in the real world. It is highly unlikely
that a real outbreak will match the equation based model results exactly. It is
much more likely that a real outbreak will fall into the range of our ABM re-
sults. Thus we can show a vaccination policy will influence the likelihood of an
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Town Population Area Population Average Infected Max Infected Total Infected
(km2) Density ABM ABM Mathematical Model

Arainn 1,251 47.48 26.35 11.64 62 10.65
Ardamine 3,293 23.33 141.15 173.96 334 44.80
Ardfert 997 7.97 125.09 7.77 47 24.60
Arranmore 514 18.08 28.43 15.95 59 5.40
Bagenalstown 3,421 18.00 190.06 10.16 59 52.80
Ballyjamesduff 3,134 21.60 145.09 219.27 406 106.33
Banagher 1,993 19.85 100.40 118.17 220 38.05
Blarney 5,310 23.30 227.90 5.08 52 82.27
Castlereagh 3,077 40.09 76.75 170.82 277 14.90
Clane 7,527 18.89 398.46 687.12 1024 219.75
Croom 1,690 18.17 93.01 5.80 88 62.33
Donegal 4,010 31.49 127.34 266.22 415 35.97
Gort 2,671 11.21 238.27 185.99 340 38.17
Kenmare 2,912 55.61 52.36 69.07 234 14.81
Kilcock 6,234 16.40 385.61 6.26 56 162.07
Kildare 9,325 37.09 251.42 871.69 1206 259.71
Kilkee 1,037 5.26 197.15 10.05 62 8.16
Killadysert 922 63.96 14.42 8.08 62 9.61
Kinsale 6,871 12.96 530.17 438.14 655 22.92
Lisdoonvarna 861 12.96 66.44 7.21 45 12.08
Louisburgh 983 23.30 42.19 8.70 51 11.50
Moate 3,046 21.34 149.75 258.04 401 55.86
Oranmore 4,325 22.38 193.25 8.92 114 90.72
Portmagee 390 16.77 23.26 4.67 40 6.17
Rathnew 3,294 6.90 477.39 25.28 176 85.89
Roscrea 6,318 48.45 130.40 638.40 843 146.30
Rosslare 2,057 17.90 114.91 3.60 40 11.01
Roundstone 459 28.01 16.39 21.43 48 15.57
Schull 987 17.03 57.96 13.88 88 12.57
Shanagolden 946 17.79 53.18 4.73 42 7.26
Stamullin 4,694 37.68 124.58 173.70 516 95.05
Strokestown 1,003 18.11 55.38 16.86 63 13.14
Tramore 9,548 16.60 575.18 44.63 228 141.75

Table 1. Area, population and model results for each of the 33 selected towns

outbreak occurring along with how it will reduce the magnitude of an outbreak
if it does occur.

5 Conclusion

The work in this paper presents a comparison between an ABM for a measles
outbreak in Irish towns and an equation based model for the same outbreak.
Through analysis of the results we show that the two models can appear to
produce very different outbreaks, however, in most cases the equation based
model is in the range of outbreaks that the ABM produces. Looking at the
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Mathematical Model ABM Population Unvaccinated Students Area
Mathematical Model 1 0.700 0.844 0.596 0.543 0.005
ABM 0.700 1 0.674 0.286 0.209 0.333
Population 0.844 0.674 1 0.462 0.388 0.203
Unvaccinated 0.596 0.286 0.462 1 0.589 -0.105
Students 0.542 0.209 0.388 0.589 1 0.001
Area 0.005 0.333 0.203 -0.105 0.001 1
Table 2. Correlation table for percent outbreaks and the other town characteristics

correlations between the results of the models and factors that are coded into
or included in the model we can conclude that the agent-based model captures
interactions that the equation based model does not.

As the ABM follows agents through the environment it can provide us with
more detailed information such as where an agent becomes infected or who
infected them. This could lead to a better understanding of how the disease
spreads and allow public health officials to focus on specific areas. While some
exploratory work, such as looking at overall changes in vaccination rates, can be
done easily in both agent-based and equation based models, something such as
including push vaccinations during an outbreak or studying the effects of isola-
tion are more complicated when done with an equation based model requiring
additional equations and interaction terms, while the same could be done in an
ABM with the introduction of a few extra behavioural rules. Further work could
be done to expand both models to include such interventions. It should be noted,
however, that one of the advantages of the ABM comes in its adaptability. In
order to add push vaccinations or change contact patterns the same ABM could
be used just with different parameters while a new equation based model would
need to be created.

Using an ABM allows one to capture the stochasticity that exists in a real
world system. Agents are allowed to make decisions similar to how individuals
in the real world will. Running the ABM multiple times will capture different
possible scenarios for the outbreak that are all determined by how the agents
interact. For example, if the initial infected agent decides to self isolate and does
not come into contact with other individuals once they know they are sick the
outbreak will be much smaller than if the agent does not stay home at all. This
is similar to what could happen in a real world scenario.

The equation based model does not capture these different decisions and
simply presents one course of the outbreak. The equation based model, however,
does have the advantage of time and computing power. Running 200 runs of the
agent-based model depending on the population size and area can take days while
the equation based model takes seconds. Despite the extra time it takes to run
the agent-based model we feel that the results show that it has more advantages
over the equation based model when trying to capture the true course of an
outbreak. More work should be done to compare not only the end results of the
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models but also the overall patterns of the outbreaks from each type of model
and how the early stages of an outbreak differ between the two models.
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