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Abstract
We discuss what is known about logical reason-
ing concerning the sizes of sets, including expres-
sions like there are at least as many x as y, there
are more x than y, and most x are y. It turns
out that reasoning with expressions like this can
be done efficiently, that formal proofs can be ob-
tained which do not employ translation to standard
logic, and that counter-models can also be gen-
erated. The paper also contains a new result, a
completeness theorem for syllogistic reasoning in-
volving the sentences in our fragment, and adding
sentential negation. So we are not done with the
project of getting a complete logics for reasoning
about sizes of sets. At the same time, there are
some open questions. We show one implemen-
tation. We mention briefly some very new work
which allows one to do logical reasoning on sen-
tences as they come (not from a toy grammar), but
at some cost. Finally, we discuss connections to
cognitive science, many of which are waiting to
be made.

1 Introduction
This workshop is concerned with Bridging the Gap between
Human and Automated Reasoning. The specific contribution
here might be called automated reasoning pertaining to hu-
man reasoning, but done in a setting that deviates from the
normative frameworks in logic. We are interested in simple
forms of reasoning about the sizes of sets. Such reasoning is
very common in “real-world” settings, certainly more com-
mon than hard-core logical or mathematical reasoning of the
type that theorem-provers handle so well.

For example, if someone says that there are more ducks
than geese in the pond and then goes on to say that there are
more fish then ducks in the pond, it follows that there are more
fish than geese in the pond. This is the kind of reasoning we
are after in this study. It is natural, yet it is not expressible
in first-order logic. This means that no existing first-order
theorem prover could carry out our simple reasoning, simply
because it can’t be represented in the logic.

Now one might counter that our simple can be handled in
second-order logic, or in first-order logic with an extra the-

ory of natural numbers. We feel that this is misguided for
several reasons. First of all, first-order logic is already unde-
cidable, and adding extra gadgetry cannot fix this. One of the
primary lessons from cognitive science and AI to logic is that
we should aim for light systems, since these are the ones that
are the most cognitively plausible ones. And an additional
point about numbers: the kind of “more than” reasoning that
we are discussing has very little to do with counting, or at
least its scope goes beyond counting. Consider mass nouns
like sand and water. We can say that there is more sand than
water in the pond. To do reasoning with assertions like this
does not seem to require numbers. Finally, even if one had a
logical system with first-order logic, and also with numbers,
and implemented enough of the proof system to have a run-
ning implementation, would the resulting proofs be human-
readable? We doubt that they would.

The natural logic program For a number of years, the first
author has been working on a program of natural logic, build-
ing on the work of many others to be sure and also obtaining
new results. Here are the main goals:

1. Show the aspects of natural language inference that can
be modeled at all can be modeled using logical systems
which are decidable.

2. To make connections to proof-theoretic semantics, and
to psycholinguistic studies about human reasoning.

3. Whenever possible, to obtain complete axiomatizations,
because the resulting logical systems are likely to be in-
teresting, and also complexity results.

4. To implement the logics, and thus to have running sys-
tems that directly work in natural language, or at least
in formal languages that are closer to natural language
than to traditional logical calculi.

5. To re-think aspects of natural language semantics,
putting inference at the center of the study rather than
at the periphery.

The first, second, and third goals are rather close to those
of the workshop, while the last two goals are farther. Most of
the work on natural logic has been in the first and third goals,
and so this paper is largely a report of ongoing work in those
directions.



For more on natural logic, see [Abzianidze, 2015; van
Benthem, 1986; Icard and Moss, 2014; McAllester and Gi-
van, 1992; Moss, 2008; Pratt-Hartmann and Moss, 2009;
Moss, 2015; 2016; Zamansky et al., 2006].

It might come as a surprise, but reasoning about the sizes of
sets does not by itself require a “big” logical system. We get
an interesting logical system in the following way. Let’s take
nouns p, q, x, y, z, . . .. And then we form sentences in the fol-
lowing very simple way: if x and y are nouns, then all x are
y, some x are y, there are at least as many x as y, and there
are more x than y are sentences. The first two forms of sen-
tences are familiar from syllogistic logic, and indeed the log-
ics in this paper are all extended syllogistic logics. We should
emphasize that these logical systems do not have quantifiers;
for that matter, they do not have propositional connectives ∧,
∨, or ¬. The only sentences are the ones mentioned. In a
sense, they are the cognitive module for reasoning about size
comparison of sets, in the simplest possible setting.

Up until now, we have only given the syntax of a logical
system. For the semantics, we consider modelsM consisting
of a set M and subsets [[x]] ⊆ M for all nouns x. We then
declare

M |= all x are y iff [[x]] ⊆ [[y]]
M |= some x are y iff [[x]] ∩ [[y]] 6= ∅
M |= there are at least as many x as y iff |[[x]]| ≥ |[[y]]|
M |= there are more x than y iff |[[x]]| > |[[y]]|

Then we ask some very traditional questions. For a set Γ of
sentences in this language, and for another sentence ϕ, we say
that Γ |= ϕ if every modelM which satisfies all sentences in
Γ also satisfies ϕ. This is the notion of semantic consequence
from logic. We are especially interested in a refined notion,
where we require that every finite model M which satisfies
all sentences in Γ also satisfies ϕ. There is a difference, and
we shall explore it below. For now, note that ifM is finite,
the we have the following inference: on the assumption that
all x are y and also that there are at least as many x as y, it
follows that (x and y are the same set, and hence) all y are x.

Again, the main reason to restrict to finite models is that
this could be more relevant to natural reasoning.

Up until now, everything we have said concerns the se-
mantics. In addition, there is a proof system. The relation
between proof-theoretic and model-theoretic reasoning is ex-
tremely relevant to all studies of logic and cognitive science.
This paper studies what might be taken as the classical ap-
proach, but we feel that this approach is worth re-thinking in
future studies.

The proof system for this logic is a fairly standard system,
in the natural deduction style. The rules are given in Figure 1,
the part above the line. We have abbreviated all of the sen-
tences in the logic, in the following way: ∀(p, q) stands for all
p are q, ∃(p, q) stands for some p are q, and ∃≥(p, q) stands
for there are at least as many p as q, and ∃>(p, q) stands for
there are more p than q.

For the most part, the rules in the system are evidently
sound. This adds to the naturality of the system. The first
few rules in are a complete syllogistic logic for sentences all
x are y and some x are y [Moss, 2008]. The only place so far

where the finiteness assumption is in the rule (CARD-MIX),
and we have discussed this already.

The logic does not have reductio ad absurdum, but it has
the related principle of ex falso quodlibet.

Adding set complements We obtain a more interesting
system by adding more features to this logic. The one which
we wish to explore here is set complement. For a noun x, we
read x as “non-x”. We allow nouns to be complemented. We
identify the double complement x with x itself in the syntax.
And in the semantics, we take [[x]] to be the complement set
M \ [[x]].

The (HALF) rule, and other rules. If there are at least as
many p as non-p, then the p’s are at least half of the universe.
So if there are at most as many q as non-q, then q’s have at
most half of the elements in the unvierse. Thus there are at
least as many p as q. This is the content of the (HALF) rule.

The (MAJ) rule is the most complicated (and unexpected)
rule in the system. It says that if there are at least as many p as
non-p, and if there are at least as many q as non-q, and if some
non-p is a non-q, then some p is a q. Why is this sound? The
first two premises imply that they ps and q are each at most
half of everything. Suppose towards a contradiction that no p
are q. Then by size considerations, we see that the ps and qs
are complementary halves. And so we contradict the last as-
sumption. Now this form of reasoning, using reductio is not
available in the logic. (Indeed, having ex falso rather than re-
ductio makes the proof search which we describe below much
more efficient.) So we need to take (MAJ) as a rule on its own
rather than derive it from other principles. But then the rule is
so complicated, it would be interesting to know whether edu-
cated “people on the street” could even understand it the same
way that they naturally understand (BARBARA) or (DARII).

Theorem 1.1. [Moss, 2016] The logic in Figure 1 is sound
and complete: Γ ` ϕ iff Γ |= ϕ. Moreover, for finite Γ∪{ϕ},
it is decidable in time polynomial in the length of Γ ∪ {ϕ}
whether or not Γ ` ϕ.

1.1 Implementation
The logic has been implemented in CoCalc. (This language is
close to Python and runs in Jupyter notebooks.) This imple-
mentation is on the cloud, and the first author shares it. See
https://cocalc.com/. Other syllogistic logics have
been implemented in Haskell.

For example, one may enter in the CoCalc implementation
the following.

assumptions= [’All non-a are b’,

’There are more c than non-b’,

’There are more non-c than non-b’,

’There are at least as many non-d as
d’,

’There are at least as many c as
non-c’,



∀(p, p)
(AXIOM)

∀(n, p) ∀(p, q)

∀(n, q)
(BARBARA)

∃(p, q)

∃(p, p)
(SOME)

∃(q, p)

∃(p, q)
(CONVERSION)

∃(p, n) ∀(n, q)

∃(p, q)
(DARII)

∀(p, q) ∃≥(p, q)

∀(q, p)
(CARD-MIX)

∀(p, q)

∃≥(q, p)
(SUBSET-SIZE)

∃≥(n, p) ∃≥(p, q)

∃≥(n, q)
(CARD-TRANS)

∃(p, p) ∃≥(q, p)

∃(q, q)
(CARD-∃)

∃>(p, q)

∃≥(p, q)
(MORE-AT LEAST)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(MORE-LEFT)

∃≥(n, p) ∃>(p, q)

∃>(n, q)
(MORE-RIGHT)

∃≥(p, q) ∃>(q, p)
ϕ (X)

∀(p, p)

∀(p, q)
(ZERO)

∀(p, p)

∀(q, p)
(ONE)

∀(q, p) ∃(p, q)

∃>(p, q)
(MORE)

∃>(p, q)

∃(p, q)
(MORE-SOME)

∃>(q, p)

∃>(p, q)
(MORE-ANTI)

∀(p, q)

∀(q, p)
(ANTI)

∃≥(p, q)

∃≥(q, p)
(CARD-ANTI)

∃(p, p) ∃≥(q, q)

∃(q, q)
(INT)

∃≥(p, p) ∃≥(q, q)

∃≥(p, q)
(HALF)

∃>(p, p) ∃≥(q, q)

∃>(p, q)
(STRICT HALF)

∃≥(p, p) ∃≥(q, q) ∃(p, q)

∃(p, q)
(MAJ)

Figure 1: Rules for the logic with all p are q (written ∀(p, q) above), some p are q (∃(p, q)), there are at least as many p as q (∃≥(p, q)), and
there are more p than q (∃>(p, q)). The rules below the line are for the system enlarged by taking set complements.

’There are at least as many non-d as
non-a’]

conclusion = ’All a are non-c’

follows(assumptions,conclusion)

We are asking whether the conclusion follows from the as-
sumptions. This particular set of assumptions is more compli-
cated than what most people deal with in everyday life, even
when they consider the sizes of sets. This is largely due to the
set complements.

Please note that the implementation does not translate the
assumptions into any other logical system. The interesting
thing about logics in the syllogistic family is that if a sentence
does not follow from a set of assumptions in the proof theory,
then the proof search itself gives a counter-model. (This fact
is not automatic, and it takes special arguments in each logic,
but it generally does hold true.) The counter-model takes a
little bit of extra work, but it is nothing like a search using a
model-finder like Mace (1). Indeed, the counter-model search
is a small add-on to the proof-search. In this example, the
result appears instantly. We get back

1https://www.cs.unm.edu/ mccune/mace4/

The conclusion does not follow

Here is a counter-model.

We take the universe of the model
to be {0, 1, 2, 3, 4, 5}
noun semantics

a {2, 3}
b {0, 1, 4, 5}
c {0, 2, 3}
d {}

So the system gives the semantics of a, b, c, and d as
subsets of {0, . . . , 5}. Notice that the assumptions are true in
the model which was found, but the conclusion is false.

Here is an example of a derivation found by our implemen-
tation. We ask whether the putative conclusion below really
follows:

All non-x are x
Some non-y are z
There are more x than y

In this case, the conclusion does follow, and the system
returns a proof.



¬∃≥(x, y)

∃>(y, x)
(NEGATE-AT LEAST)

¬∃>(x, y)

∃≥(y, x)
(NEGATE-MORE)

M(x, y)

M(x, x)
(MOST-LEFT)

M(x, y)

M(y, y)
(MOST-RIGHT)

M(x, y) ∃≥(x, y)

M(y, x)
(MOST-AT LEAST)

¬M(x, y) M(y, x)

∃>(x, y)
(MOST-MORE)

∃≥(x, x)
(AT LEAST-AXIOM)

¬M(x, y) ∃≥(y, x)

¬M(y, x)
(NOT-MOST-AT LEAST)

¬M(x, x)

¬M(x, y)
(NEGATE-MOST-LEFT)

¬M(x, x)

¬M(y, x)
(NEGATE-MOST-RIGHT)

¬M(x, x)

∃≥(y, x)
(NEGATE-MOST-CARD)

¬M(x, x) ∃≥(x, y)

¬M(y, y)
(NEGATE-MOST-AT LEAST)

¬M(x, x) M(y, y)

∃>(y, x)
(NEGATE-MOST-MORE) M(x, y) ¬M(x, y)

ϕ (X-MOST)

M(x1, x2) ¬M(x2, x1) M(x2, x3) ¬M(x3, x2) · · · M(xn−1, xn) ¬M(xn, xn−1) M(xn, x1)

M(x1, xn)
(INF)

Figure 2: Most, at least, and more than, allowing sentential negation. Not shown: (CARD-TRANS) , (MORE-LEFT), (MORE RIGHT), (X), and
(MORE-AT LEAST).

Here is a formal proof in our system:

1 All non-x are x Assumption

2 All y are x One 1

3 All non-x are x Assumption

4 All non-y are x One 3

5 Some non-y are z Assumption

6 Some non-y are non-y Some 5

7 Some non-y are x Darii 4 6

8 Some x are non-y Conversion 7

9 There are more x than y More 2 8

Open question 1.2. If one drops the (MAJ) rule, is there a se-
mantics which results in a sound and complete logic? If one
adds (REDUCTIO) to the logic, then (MAJ) and several other
rules become derivable. Would this new system be more cog-
nitively plausible? Would it be possible to carry out the same
kinds of questions that we ask concerning psycholingusitic
studies (for example, those of [Geurts, 2005]) of syllogistic
reasoning in order to craft a system which behaved like hu-
man reasoners?
Open question 1.3. The set complement operation here is
understood as in classical logic: [[x]] = M \ [[x]]. Occasion-
ally people feel that this is too strong, that people would not

say that every point belongs to either [[x]] or to [[x]]. One could
try to do experiments to see how people actually behave re-
garding set complements in this setting, and then craft logical
systems based on the data.

Variations The finiteness assumption is needed in the rules:
(CARD-MIX), (MORE), (MORE-ANTI), (CARD-ANTI), and
(STRICT-HALF); see [Moss and Topal, 2018]. If one wishes
to interpret the same syntax on sets which are infinite, then
the logic changes. We need to drop the rules which were
mentioned just above, and in their place we need to add a
few different rules. It is open to axiomatize the logic on sets
which might be either finite or infinite.

It also is open to craft a logic that directly expresses size
comparison about mass nouns. One place where we our logic
is inappropriate is in the (INT) rule.

Additions Propositional connectives make complex sen-
tences from sentences. We did not add the propositional con-
nectives to this particular logic to keep the complexity low,
and also to illustrate the idea that one should find special-
purpose logics for topics like sizes of sets. However, one cer-
tainly could add in the connectives. The resulting logic has
been explored, but we lack the space to expand on this.



most x are y
some x are y

m1
some x are x
most x are x

m2
most x are y all y are z

most x are z
m3

most x are z all x are y all y are x
most y are z

m4

all y are x all x are z most z are y
most x are y

m5
most x are y most x are z

some y are z
m6

Figure 3: Rules of the logical system for All, Some, and Most. We have not shown the rules (AXIOM), (BARBARA), (SOME), (CONVERSION),
and (DARII). Also (m6) is really just the first of an infinite sequence of rules.

2 Syllogistic Reasoning with the Word “Most”
We now turn to a different topic, reasoning with the word
most, as in Most dogs chase cats. Settling on a semantics is
already a difficult matter. We decided on strict majority:

M |= most x are y iff |[[x]] ∩ [[y]]| > 1
2 |[[x]]|

We abbreviate most x are y by M(x, y). We add sentential
negation. That is, the logic is rather trivial without sentential
negation; see [Moss, 2008].

Of course, our semantics is a revisable choice. For just one
example, we might decide to strengthen the definition of most
x are y to mean that at least 2

3 of the x’s are also y’s.
The logical system is shown in Figure 2. Actually, that

figure shows the system needed when we add ∃≥. The main
significant rule is the infinite scheme (INF) at the bottom. Ex-
tended syllogistic logics frequently have one or more rules
which are highly non-trivial. One is tempted to say that it
would take advanced training in mathematics to appreciate
(INF); it would be surprising to find many real-life uses. Here
is the understanding of the infinite scheme in Figure 2. Sup-
pose that most x1s are x2s, but not conversely. Then there
must be more x2s than x1s. So if we have a sequence of sets,
say x1, x2, . . ., xn as in the hypothesis of the rule, then we
must have more x2s than x1s, more x3s than x2s, . . ., more
xns than xn−1s. We cannot have more x1s than xns, because
we would have a cycle of numbers in the > ordering. So if
most xns are x1s, we must also have that most x1s are xns.
Theorem 2.1 ([Lai et al., 2016]). The complete logic for
the logic containing sentences M(x, y) and all propositional
connectives is given by the rules (MOST-LEFT) and (MOST-
RIGHT) in Figure 2, and adding the infinite scheme at the bot-
tom of the figure. Moreover, the satisfiability problem for this
logic is NP-complete.

The second author has extended this result2.
Theorem 2.2 ([Raty, 2017]). The complete logic for sen-
tences M(x, y), ∃≥(x, y), ∃>(x, y), and sentence negations
is given by the rules (MOST-LEFT) and (MOST-RIGHT) in Fig-
ure 2, and the infinite scheme (INF). Moreover, the satisfia-
bility problem for this logic is NP-complete.

We would also like to mention another completeness result
in the area.

2Should this paper be accepted, and should there be enough
space, we would like the eventual conference volume to contain a
sketch of the proof.

Theorem 2.3 ([Endrullis and Moss, 2015]). The complete
syllogistic logic of All, Some, and Most (but without senten-
tial negation) is given by the logic in Figure 3, together with
an infinite (but regular) scheme not shown in the figure. The
inference problem for this logic is in polynomial time.

Remark 2.4. Many of the algorithmic questions on the logics
of this paper follow from results in a different line of work,
namely that of set constraints involving cardinality; see, for
example [Kuncak et al., 2006]. Here are some comparisons
with our work. Work in our line involves logics rather than
complexity results. Our work usually gives logics with lower
complexity, matching the lower expressivity of our systems.
The two areas call on different kind of combinatorial results.

Open question 2.5. The next big technical question in this
line of work would be to combine the systems mentioned in
Theorems 2.2 and 2.3. This seems like a challenging combi-
natorial problem.

Open question 2.6. We mentioned above that there are other
options in thinking about most. But all of the options which
we studied are in a way too “orthodox.” One should inves-
tigate connections of most to default logic or to reasoning
via prototypes, since these provide attractive ways of think-
ing about related phenomena.

Open question 2.7. [Rett, 2018] deals with the words many,
much, few, and little. Of course there are many other publica-
tions on similar items, both in English and other languages.
Are there convenient ways to directly incorporate linguistic
treatments into logical systems? In the other direction, lin-
guistics semanticists usually do not concern themselves with
inference but rather stick to truth conditions. Is there any way
that paying attention to inference, either in the standard sense
or perhaps in some “non-monotonic” sense could help the se-
manticist?

3 Reasoning about sizes, without a fully
specified grammar, without completeness,
but allowing a broader set of input
sentences

Up until now in this paper, we have worked with the most
standard assumptions concerning logic and language. Logical
languages come with a perfectly defined syntax and seman-
tics. One of the things which we would like to do in natural
logic is to question this set of assumptions, or at least to be



aware of it at all times. What we want to do in this final sec-
tion is to show how to loosen this assumption in connection
with sizes of sets. It is based on [Hu and Moss, 2018].

This section calls on some knowledge of linguistic seman-
tics. We are interested in polarity marking, as shown below:

More dogs↓ than cats↑ walk↓

Most↑ dogs= who= every= cat= chased= cried↑

Every dog↓ scares ↑ at least two↓ cats↑

The ↑ notation means that whenever we use the given sen-
tence truthfully, if we replace the marked word w with an-
other word which is “≥ w” in an appropriate sense (see be-
low), then the resulting sentence will still be true. So we have
a semantic inference. The ↓ notation means the same thing,
except that when we substitute using a word ≤ w, we again
preserve truth. Finally, the = notation means that we have nei-
ther property in general; in a valid semantic inference state-
ment, we can only replace the word with itself rather than
with something larger or smaller. We call ↑ and ↓ polarity
indicators.

For example, suppose that we had a collection of back-
ground facts like cats ≤ animals, beagles ≤ dogs, scares ≤
startles, and one ≤ two. This kind of background fact could
be read off from WordNet, thought of as a proxy for word
learning by a child from her mother. In any case, our ↑ and ↓
notations on Every dog↓ scares ↑ at least two↓ cats↑ would al-
low us to conclude Every beagle startles at least one animal.
In general, ↑ notations permit the replacement of a “larger”
word and ↓ notations permit the replacement of a smaller one.

The goal of the paper [Hu and Moss, 2018] is to provide
a computational system to determine the notations ↑, ↓,= on
input text “in the wild”. That means that the goal would be
to take text from a published source or from the internet, or
wherever, and to then accurately and automatically determine
the polarity indicators. Then using a stock of background
facts, we get a very simple “inference engine,” suitable for
carrying out a reasonable fraction of the humanly interest-
ing inferences. The system would handle monotonicity in-
ferences [Geurts, 2005; van Benthem, 1986]. Such a system
would not be complete at all, because many forms of infer-
ence are not monotonicity inferences. For example, earlier in
this paper we mentioned rules like (CARD-MIX) and (MAJ).
Neither of these is a monotonicity rule. One could imag-
ine taking our monotonicity inference engine and enriching
it with natural logic rules; this is under active development.

We must emphasize that [Hu and Moss, 2018] is also not
a complete success. The work there depends on having a
correctly parsed representation of whatever sentence is un-
der consideration, either as a premise of an argument or as
the conclusion. And here is the rub: it is rather difficult to
obtain semantically useable parses. We have wide-coverage
parsers; that is, programs capable of training on data (proba-
bilistically) and then giving structure to input sentences. And
the parses of interest to us are those in a grammatical frame-
work called combinatory categorial grammar (CCG). CCG is
a descendant of categorial grammar (CG), and so it is lexical-
ized; that is, the grammatical principles are encoded in com-
plex lexical types rather than in top-down phrase structure
rules. From our point of view, this is a double-edged sword.

On the one hand, CG and CCG connect syntax and seman-
tics because combining constituents in the syntax is matched
by function application in the semantics, or to combinators of
various sorts. On the other hand, there is no real hope of writ-
ing a complete set of rules for logical systems whose syntax
is so complicated as to require a grammar of this form. In
effect, we give up on completeness in order to study a syn-
tax that is better than a toy. For that matter, working with a
wide-coverage parser for a framework like CCG means that
some of the parses will be erroneous in the first place. And
so the entire notion of deduction will have to be reconsidered,
allowing for mistakes along the way.

As we mentioned, CCG parses are rather close to semantic
representations, closer than the parses of other grammatical
systems. And yet, they are still not always close enough to
the semantics to be usable. So the project of inference from
text “in the wild” is just beginning.
Open question 3.1. Would a monotonicity inference engine
together with the simplest rules in this paper, together with
logical principles like reductio ad absurdum be in practice
complete for reasoning about the sizes of sets?

The question is vague, admittedly. In a sense, what it is
asking is whether the various forms of work in this paper can
be combined to give a full account of what people do when
they reason about the sizes of sets.

4 Conclusion
Let us reiterate the main points in this paper.

First-order logic is both too big and too small to serve as
the ideal logical language to represent human inference. It
is too big because it is undecidable, and too small because
it cannot represent many interesting phenomena that people
reason about, such as size comparisons. So for this reason,
we should look for other representational frameworks. Rather
than dismiss the logical tradition entirely, we opt in this line
of work to rehabilitate syllogistic logic, but enhanced with
extra devices to talk about sizes of sets directly.

The logical systems that we propose are sound and com-
plete, and frequently they are of polynomial complexity.
When one adds propositional connectives, those connectives
dominate the complexity. If one were to add boolean opera-
tions on the nouns and verbs, then again the extra expressive
power due to the additions would dominate the complexity.
But the basic logical systems of size comparison and of most
are algorithmically manageable. And the systems have inter-
esting principles, so those systems should be of independent
interest.

The kind of work which we are describing is mainly a con-
tribution to logic. But at every turn, we come face to face with
interesting issues in semantics, in cognitive science, and in
the study of human reasoning. We feel that people interested
in the gap between automated and human reasoning might
look at “small” phenomena, like reasoning about the sizes of
sets, as a starting point for other studies. There is much to be
done both on the side of automated reasoning, and on human
reasoning.
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