
ITAmoji 2018: Emoji Prediction via Tree Echo State Networks

Daniele Di Sarli, Claudio Gallicchio, Alessio Micheli
Department of Computer Science

University of Pisa, Pisa, Italy
d.disarli@studenti.unipi.it, {gallicch,micheli}@di.unipi.it

Abstract

English. For the “ITAmoji”
EVALITA 2018 competition we mainly
exploit a Reservoir Computing approach
to learning, with an ensemble of models
for trees and sequences. The sentences
for the models of the former kind are
processed by a language parser and the
words are encoded by using pretrained
FastText word embeddings for the Italian
language. With our method, we ranked
3rd out of 5 teams.

Italiano. Per la competizione
EVALITA 2018 sfruttiamo principal-
mente un approccio Reservoir Computing,
con un ensemble di modelli per sequenze
e per alberi. Le frasi per questi ultimi
sono elaborate da un parser di linguaggi
e le parole codificate attraverso degli
embedding FastText preaddestrati per la
lingua italiana. Con il nostro metodo ci
siamo classificati terzi su un totale di 5
team.

1 Introduction

Echo State Networks (Jaeger and Haas, 2004) are
an efficient class of recurrent models under the
framework of Reservoir Computing (Lukoševičius
and Jaeger, 2009), where the recurrent part of
the model (“reservoir”) is carefully initialized and
then left untrained (Gallicchio and Micheli, 2011).
The only weights that are trained are part of a
usually simple readout layer1. Echo State Net-
works were originally designed to work on se-
quences, however it has been shown how to extend
them to deal with recursively structured data, and

1Trained in closed form, e.g. by Moore-Penrose pseudo-
inversion, or Ridge Regression.

20.27% 19.86% 9.45% 5.35% 5.13%

4.11% 3.54% 3.33% 2.80% 2.57%

2.18% 2.16% 2.03% 1.94% 1.78%

1.67% 1.55% 1.52% 1.49% 1.39%

1.37% 1.28% 1.12% 1.07% 1.06%

Figure 1: Emojis under consideration and their
frequency within the dataset.

trees in particular, with Tree Echo State Networks
(Gallicchio and Micheli, 2013), also referred to as
TreeESNs.

We follow this approach for solving the ITA-
moji task in the EVALITA 2018 competition (Ron-
zano et al., 2018). In particular, we parse the input
texts into trees resembling the grammatical struc-
ture of the sentences, and then we use multiple
TreeESN models to process the parse trees and
make predictions. We then merge these models by
using an ensemble to make our final predictions.

2 Task and Dataset

Given a set of Italian tweets, the goal of the ITA-
moji task is to predict the most likely emoji as-
sociated with each tweet. The dataset contains
250,000 tweets in Italian, each of them originally
containing only one (possibly repeated) of the 25
emojis considered in the task (see Figure 1). The
emojis are removed from the sentences and used
as targets.

The test dataset contains 25,000 tweets simi-
larly processed.

3 Preprocessing

The provided dataset has been shuffled and split
into a training set (80%) and a validation set
(20%).

We preprocessed the data by first remov-
ing any URL from the sentences, as most of
them did not contain any informative content
(e.g. “https://t.co/M3StiVOzKC”). We
then parsed the sentences by using two different
parsers for the Italian language: Tint2 (Palmero
Aprosio and Moretti, 2016) and spaCy (Honni-
bal and Johnson, 2015). This produced two sets
of trees, both including information about the de-
pendency relations between the nodes of each tree.
We finally replace each word with its correspond-
ing pretrained FastText embedding (Joulin et al.,
2016).

4 Description of the system

Our ensemble is composed by 13 different mod-
els, 12 of which are TreeESNs and the other one
is a Long Short-Term Memory (LSTM) over char-
acters. Different random initializations (“trials”)
of the model parameters are all included in the en-
semble in order to enrich the diversity of the hy-
potheses. We summarize the entire configuration
in Table 1.

4.1 TreeESN models
The TreeESN that we are using is a specialization
of the description given by Gallicchio and Micheli
(2013), and the reader can refer to that work for
additional details. Here, the state corresponding
to node n of an input tree t is computed as:

x(n) = f

(
Winu(n) +

1

k

k∑
i=1

Ŵn
i x(chi(n))

)
,

(1)
where u(n) is the label of node n in the input

tree, k is the number of children of node n, chi(n)
is the i-th child of node n, Win is the input-to-
reservoir weight matrix, Ŵn

i is the recurrent reser-
voir weight matrix associated to the grammatical
relation between node n and its i-th child, and f
is the element-wise applied activation function of
the reservoir units (in our case, it is a tanh). All
matrices in Equation 1 are left untrained.

2Emitting data in the CoNLL-U format (Nivre et al.,
2016), a revised version of the CoNLL-X format (Buchholz
and Marsi, 2006).

Note that Equation 1 determines a recursive ap-
plication (bottom-up visit) over each node of the
tree t until the state for all nodes is computed,
which we can express in structured form as x(t).
The resulting tree x(t) is then mapped into a fixed-
size feature representation via the χ state mapping
function. We make use of mean and sum state
mapping functions, respectively yielding the mean
and the sum of all the states. The result, χ(x(t)),
is then projected into a different space by a matrix
Wφ:

ŷ = fφ (Wφ χ(x(t))) , (2)

where fφ is an activation function.
For the readout we use both a linear regression

approach with L2 regularization known as Ridge
regression (Hoerl and Kennard, 1970) and a mul-
tilayer perceptron (MLP):

y = readout(ŷ), (3)

where y ∈ R25 is the output vector, which rep-
resents a score for each of the classes: the in-
dex with the highest value corresponds to the most
likely class.

4.2 CharLSTM model
The CharLSTM model uses a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005) with 2 layers, which takes as
input the characters of the sentences expressed as
pretrained character embeddings of size 300. The
LSTM output is then fed into a linear layer with
25 output units.

Similar models have been used in recent works
related to emoji prediction, see for example the
model used by Barbieri et al. (2017), or the one
by Baziotis et al. (2018), which is however a more
complex word-based model.

4.3 Ensemble
We take into consideration two different ensem-
bles, both containing the models in Table 1, but
with different strategies for weighting the NP pre-
dictions. In the following, let Y ∈ RNP×25 be the
matrix containing one prediction per row.

The weights for the first ensemble (correspond-
ing to the run file run1.txt) have been produced
by a random search: at each iteration we com-
pute a random vector w ∈ RNP with entries sam-
pled from a random variable W 2, W ∼ U [0, 1].
The square increases the probability of sampling

Class Reservoir units fφ Readout Parser Trials
1 TreeESN 1000 ReLU MLP Tint 10
2 TreeESN 1000 Tanh MLP Tint 10
3 TreeESN 5000 Tanh MLP Tint 1
4 TreeESN 5000 Tanh MLP spaCy 2
5 TreeESN 5000 ReLU MLP Tint 1
6 TreeESN 5000 ReLU MLP spaCy 1
7 TreeESN 5000 Tanh Ridge regression Tint 1
8 TreeESN 5000 Tanh Ridge regression spaCy 3
9 TreeESN 5000 ReLU Ridge regression Tint 1

10 TreeESN 5000 ReLU Ridge regression spaCy 3
11 TreeESN 5000 Tanh Ridge regression Tint 1
12 TreeESN 5000 Tanh Ridge regression spaCy 2
13 CharLSTM – – – – 1

Table 1: Composition of the ensemble, highlighting the differences between the models.

near-zero weights. After selecting the best con-
figuration on the validation set, the predictions
from each of the models are merged together in
a weighted mean:

ȳ = wY (4)

For the second type of ensemble (correspond-
ing to the run file run2.txt) we adopt a multi-
layer perceptron. We feed as input the NP predic-
tions concatenated into a single vector y(1...NP) ∈
R25NP , so that the model is:

ȳ = tanh
(
y(1...NP)W1 + b1

)
W2 + b2, (5)

where the hidden layer has size 259 and the out-
put layer is composed by 25 units.

In both types of ensemble, as before, the out-
put vector contains a score for each of the classes,
providing a way to rank them from the most to the
least likely. The most likely class c̃ is thus com-
puted as c̃ = argmax

i
ȳi.

5 Training

The training algorithm differs based on the kind of
model taken under consideration. We address each
of them in the following paragraphs.

Models 1-6 The first six models are TreeESNs
using a multilayer perceptron as readout. Given
the fact that the main evaluation metric for the
competition is the Macro F-score, each of the
models has been trained by rebalancing the fre-
quencies of the different target classes. In partic-
ular, the sampling probability for each input tree

has been skewed so that the data extracted dur-
ing training follows a uniform distribution with re-
spect to the target class. For the readout part we
use the Adam algorithm (Kingma and Ba, 2015)
for the stochastic optimization of the multi-class
cross entropy loss function.

Models 7-10 Models from 7 to 10 are again
TreeESNs, but with a Ridge Regression read-
out. In this case, 25 classifiers are trained with
a 1-vs-all method, one for each class, using binary
targets.

Models 11-12 Models 11 and 12 are again
TreeESNs with a Ridge Regression readout, but
they are trained to distinguish only between the
most frequent class, the second most frequent
class and all the other classes aggregated together.
This is done to try to improve the ensemble preci-
sion and recall for the top two classes.

Model 13 The last model is a sequential LSTM
over character embeddings. Like in the first 6
models, the Adam algorithm is used to optimize
the cross entropy loss function.

6 Results

The ensemble seems to bring a substantial im-
provement to the performance on the validation
set, as highlighted in Table 2. This is possible
thanks to the number and diversity of the differ-
ent models, as we can see in Figure 2 where we
show the Pearson correlation coefficients between
the predictions of the models in the ensemble.

On the test set we scored substantially lower,

1 2 234 5678 89 1011 13
1

2
2

3
4

5
6

7
8

8
9

1
0

1
1

1
3

0.2

0.4

0.6

0.8

Figure 2: Plot of the correlation between the pre-
dictions of the models in the ensemble. For rea-
sons of space, not all labels are shown on the axes.

5 10 15 20 25

Predicted label

5

10

15

20

25

T
ru

e
la

be
l

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25
0

0.5

1

Figure 3: Confusion matrix (top) and accuracy at
top-N (bottom) on the test set. Labels are ordered
by frequency.

Run Avg F1 Max F1 Ens. F1 CovE
run1 14.4 18.5 24.9 4.014
run2 14.4 18.5 26.7 3.428

Table 2: Performance obtained on the validation
set for the two submitted runs. The columns are,
in order, the average and maximum Macro-F1 over
the models in the ensemble, and the Macro-F1 and
Coverage Error of the ensemble.

Run Macro-F1 Coverage Error
run1 19.24 5.4317
run2 18.80 5.1144

Table 3: Performance on the test set. These values
have been obtained by retraining the models over
the whole dataset (training set and validation set)
after the final model selection phase.

with the Macro-F1 and Coverage Errors reported
in Table 3. These numbers are close to those ob-
tained by the top two models applied to the Span-
ish language in the “Multilingual Emoji Predic-
tion” task of the SemEval-2018 competition (Bar-
bieri et al., 2018), with F1 scores of 22.36 and
18.73 (Çöltekin and Rama, 2018; Coster et al.,
2018). In Figure 3 we report the confusion matrix
(with values normalized over the columns to ad-
dress label imbalance) and the accuracy over the
top-N classes.

An interesting characteristic of this approach,
though, is computation time: we were able to train
a TreeESN with 5000 reservoir units over 200,000
trees in just about 25 minutes, and this is without
exploiting parallelism between the trees.

In ITAmoji 2018, our team ranked 3rd out of
5. Detailed results and rankings are available at
http://bit.ly/ITAmoji18.

7 Discussion and conclusions

Different authors have highlighted the difference
in performance between SVM models and (deep)
neural models for emoji prediction, and more in
general for text classification tasks, suggesting that
simple models like SVMs are more able to cap-
ture the features which are most important for
generalization: see for example the reports of
the SemEval-2018 participants Çöltekin and Rama
(2018) and Coster et al. (2018).

In this work, instead, we approached the prob-
lem from the novel perspective of reservoir com-
puting applied to the grammatical tree structure of
the sentences. Despite a significant performance
drop on the test set3 we showed that, paired with
a rich ensemble, the method is comparable to the
results obtained in the past by other participants in
similar competitions using very different models.

3Probably due to overtraining: we observed that Macro-
F1 overcame 0.40 in training.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are Emojis Predictable? arXiv
preprint arXiv:1702.07285.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval 2018 Task 2:
Multilingual Emoji Prediction. In Proceedings
of The 12th International Workshop on Semantic
Evaluation, pages 24–33.

Christos Baziotis, Nikos Athanasiou, Georgios
Paraskevopoulos, Nikolaos Ellinas, Athanasia
Kolovou, and Alexandros Potamianos. 2018.
NTUA-SLP at SemEval-2018 Task 2: Predicting
Emojis using RNNs with Context-aware Attention.
arXiv preprint arXiv:1804.06657.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on Multilingual Dependency Parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, pages 149–164.
Association for Computational Linguistics.

Çağrı Çöltekin and Taraka Rama. 2018. Tübingen-
Oslo at SemEval-2018 Task 2: SVMs perform better
than RNNs in Emoji Prediction. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 34–38.

Joël Coster, Reinder Gerard Dalen, and Nathalie
Adriënne Jacqueline Stierman. 2018. Hatching
Chick at SemEval-2018 Task 2: Multilingual Emoji
Prediction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 445–448.

Claudio Gallicchio and Alessio Micheli. 2011. Ar-
chitectural and Markovian factors of echo state net-
works. Neural Networks, 24(5):440–456.

Claudio Gallicchio and Alessio Micheli. 2013. Tree
Echo State Networks. Neurocomputing, 101:319–
337.

Alex Graves and Jürgen Schmidhuber. 2005.
Framewise phoneme classification with bidirec-
tional LSTM networks. In Neural Networks, 2005.
IJCNN’05. Proceedings. 2005 IEEE International
Joint conference on, volume 4, pages 2047–2052.
IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Arthur E Hoerl and Robert W Kennard. 1970. Ridge
regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67.

Matthew Honnibal and Mark Johnson. 2015. An Im-
proved Non-monotonic Transition System for De-
pendency Parsing. In Proceedings of the 2015

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1373–1378, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Herbert Jaeger and Harald Haas. 2004. Harnessing
nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. Science,
304(5667):78–80.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of Tricks
for Efficient Text Classification. arXiv preprint
arXiv:1607.01759.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
Amethod for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Mantas Lukoševičius and Herbert Jaeger. 2009. Reser-
voir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3):127–
149.

Joakim Nivre, Marie-Catherine De Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan T McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal De-
pendencies v1: A Multilingual Treebank Collection.
In LREC.

A. Palmero Aprosio and G. Moretti. 2016. Italy goes
to Stanford: a collection of CoreNLP modules for
Italian. ArXiv e-prints, September.

Francesco Ronzano, Francesco Barbieri, Endang
Wahyu Pamungkas, Viviana Patti, and Francesca
Chiusaroli. 2018. Overview of the EVALITA 2018
Italian Emoji Prediction (ITAMoji) Task. In Tom-
maso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso, editors, Proceedings of the 6th evalua-
tion campaign of Natural Language Processing and
Speech tools for Italian (EVALITA’18), Turin, Italy.
CEUR.org.

