
Predicting Emoji Exploiting Multimodal Data:
FBK Participation in ITAmoji Task

Andrei Catalin Coman
Fondazione Bruno Kessler

coman@fbk.eu

Yaroslav Nechaev
Fondazione Bruno Kessler
nechaev@fbk.eu

Giacomo Zara
Fondazione Bruno Kessler

gzara@fbk.eu

Abstract

English. In this paper, we present our ap-
proach that has won the ITAmoji task of
the 2018 edition of the EVALITA evalu-
ation campaign1. ITAmoji is a classifi-
cation task for predicting the most prob-
able emoji (a total of 25 classes) to go
along with the target tweet written by a
given person in Italian. We demonstrate
that using only textual features is insuf-
ficient to achieve reasonable performance
levels on this task and propose a system
that is able to benefit from the multimodal
information contained in the training set,
enabling significant F1 gains and earning
us the first place in the final ranking.

Italiano. In questo articolo presentiamo
l’approccio con cui abbiamo vinto la com-
petizione ITAmoji dell’edizione 2018 di
EVALITA1. ITAmoji è un task di classi-
ficazione per predire l’emoji più proba-
bile (tra un totale di 25 classi) che possa
essere associato ad un dato tweet scritto
in italiano da uno specifico utente. Di-
mostriamo che utilizzare esclusivamente
dati testuali non è sufficiente per ottenere
un ragionevole livello di performance su
questo task, e proponiamo un sistema in
grado di beneficiare dalle informazioni
multimodali contenute nel training set, au-
mentando significativamente lo score F1

e guadagnando la prima posizione nella
classifica finale.

1 Introduction

Particularly over the last few years, with the in-
creasing presence of social networks and instant

1EVALITA: http://evalita.it/2018

messaging services in our lives, we have been wit-
nessing how common it has become for average
users to enrich natural language by means of emo-
jis. An emoji is essentially a symbol placed di-
rectly into the text, which is meant to convey a
simple concept or more specifically, as the name
says, an emotion.

The emoji phenomenon has attracted consider-
able research interest. In particular, recent works
have studied the connection between the natural
language and the emojis used in a specific piece
of text. The 2018 edition of EVALITA ITAmoji
competition (Ronzano et al., 2018) is a prime ex-
ample of such interest. In this competition, par-
ticipants were asked to predict one of the 25 emo-
jis to be used in a given Italian tweet based on a
text, the date and the user that has written it. Dif-
ferently from the similar SemEval (Barbieri et al.,
2018) challenge, the addition of the user informa-
tion significantly expanded the scope of potential
solutions that could be devised.

In this paper, we describe our neural network-
based system that exhibited the best performance
among the submitted approaches in this task. Our
approach is able to successfully exploit user in-
formation, such as the prior emoji usage history
of a user, in conjunction with the textual features
that are customary for this task. In our experi-
ments, we have found that the usage of just the
textual information from the tweet provides lim-
ited results: none of our text-based models were
able to outperform a simple rule-based baseline
based on prior emoji history of a target user. How-
ever, by considering all the modalities of the input
data that were made available to us, we were able
to improve our results significantly. Specifically,
we combine into a single efficient neural network
the typical Bi-LSTM-based recurrent architecture,
that has shown excellent performance previously
in this task, with the multilayer perceptron applied
to user-based features.



Figure 1: A diagram of the approach.

2 Description of the System

ITAmoji task is a classification task of predicting
one of the 25 emojis to go along with the tweet.
The training set provided by the organizers of the
competition consists of 250 000 Italian tweets, in-
cluding for each tweet the text (without the target
emoji), the user ID and the timestamp as features.
Participants were explicitly forbidden to expand
the training set. Figure 1 provides an overview of
our approach. In this section, we provide detailed
descriptions of the methods we employed to solve
the proposed task.

2.1 Textual features

In order to embed the textual content of the tweet,
we have decided to apply a vectorization based on
fastText (Bojanowski et al., 2017), a recent ap-
proach for learning unsupervised low-dimensional
word representations. fastText sees the words
as a collection of character n-grams, learning a
representation for each n-gram. fastText fol-
lows the famous distributional semantics hypoth-
esis utilized in other approaches, such as LSA,
word2vec and GloVe. In this work, we exploit the
Italian embeddings trained on text from Wikipedia
and Common Crawl2 and made available by the
fastText authors3. Such embeddings include
300-dimensional vectors for each of 2M words in
the vocabulary. Additionally, we have trained our
own4 embeddings using the corpus of 48M Ital-
ian tweets that were acquired from Twitter Stream-
ing API. This yielded 1.1M 100-dimensional word
vectors. Finally, we have also conducted experi-
ments with word vectors suggested by the task or-
ganizers (Barbieri et al., 2016).

2http://commoncrawl.org/
3https://github.com/facebookresearch/

fastText/blob/master/docs/crawl-vectors.
md

4https://doi.org/10.5281/zenodo.
1467220

2.2 User-based features

Rather than relying solely on a text of the target
tweet, we exploit additional user-based features
to improve performance. The task features many
variations of the smiling face and three different
heart emojis, making it impossible even for a hu-
man to determine the most suitable one just based
on a tweet. One of the features we considered
was the prior emoji distribution for a target author.
The hypothesis was that the choice of a particular
emoji is driven mainly by the personal user prefer-
ences exemplified by the previous emoji choices.

To this end, we have collected two different
types of emoji history for each user. Firstly, we
use labels in the training set to compute emoji dis-
tributions for each user yielding vectors of size 25.
Users from the test set that were not present in
the training set were initialized with zeroes. Sec-
ondly, we have gathered the last 200 tweets for
each user using Twitter API5, and then extracted
and counted all emojis that were present in those
tweets. This yielded a sparse vector of size 1284.
At this step we took extra care to prevent data
leaks: if a tweet from the test set ended up in the
collected 200 tweets, it wasn’t considered in the
user history. The runs that used the former, train-
ing set-based approach had a ” tr” suffix in its
name. The ones that used the full user history-
based approach had a ” ud” suffix.

In addition to prior emoji distribution, we did
preliminary experiments with user’s social graph.
Social graph, which is a graph of connections be-
tween the users, is shown to be an important fea-
ture for many tasks on social media, for example,
user profiling. We followed the recently proposed
approach (Nechaev et al., 2018a) to acquire 300-
dimensional dense user representations based on a
social graph. This feature, however, did not im-
prove the performance of our approach and was
excluded.

5https://developer.twitter.com



Layer Parameter Value

Textual Input seq. length 48

Embedding

input 256
output 100
trainable true
l2 regularization 10−6

Dropout probability 0.4

Bi-LSTM output 512

(a) Bi-LSTM model hyperparameters.

History Input input 1284

Dense
output 256
l2 regularization 10−5

activation tanh

Dense
output 256
l2 regularization 10−5

activation tanh

(b) User history model hyperparameters.

Concatenate output 768

Dense
output 25
l2 regularization –
activation softmax

Optimizer

method Adam
learning rate 0.001
β1 0.9
β2 0.999
decay 0.001

(c) Joint model and optimizer parameters.

Table 1: Model hyperparameters.

2.3 RNN exploiting textual features

The Recurrent Neural Networks have turned out
to be a powerful architecture when it comes to an-
alyzing and performing prediction on sequential
data. In particular, over the last few years, differ-
ent variations of the RNN has shown to be the top
performing approaches for a wide variety of tasks,
including tasks in Natural Language Processing
(NLP). RNN consumes the input sequence one
element at the time, modifying the internal state
along the way to capture relevant information from
the sequence. When used for NLP tasks, RNN is
able to consider the entirety of the target sentence,
capturing even the longest dependencies within
the text. In our system, we use the bi-directional
long short-term memory (Bi-LSTM) variation of
the RNN. This variation uses two separate RNNs
to traverse the input sequence in both directions
(hence bi-directional) and employs LSTM cells.

Input text provided by the organizers is split into
tokens using a modified version of the Keras tok-
enizer (can be found in our repository). Then, the
input tokens are turned into word vectors of fixed

dimensionality using the embedding matrix of one
of the approaches listed in Section 2.1. The result-
ing sequence is padded with zeroes to a constant
length, in our case 48, and fed into the neural net-
work.

2.4 Overall implementation
In order to accommodate both textual and user-
based features, we devise a joint architecture that
takes both types of features as input and produces
probability distribution for the target 25 classes.
The general logic of our approach is shown in Fig-
ure 1. The core consists of two main components:

• Bi-LSTM. The recurrent unit consumes the
input sequence one vector at a time, modify-
ing the hidden state (i.e., memory). After the
whole sequence is consumed in both direc-
tions, the internal states of the two RNNs are
concatenated and used as a tweet embedding.
Additionally, we perform l2-regularization of
the input embedding matrix and the dropout
to prevent overfitting and fine-tune the perfor-
mance. Table 1a details the hyperparameters
we used for a textual part of our approach.

• User-based features. The emoji distribution
we collected (as described in Section 2.2)
was fed as input to a multilayer perceptron:
two densely-connected layers with tanh as
activation and l2-regularization to prevent
overfitting. Table 1b showcases the chosen
hyperparameters for this component using
the full user history as input.

The outputs of the two components are then con-
catenated and a final layer with the softmax ac-
tivation is applied to acquire the probability dis-
tribution of the 25 emoji labels. The network is
then optimized jointly with cross entropy as the
objective function using Adam optimizer. Table 1c
includes all relevant hyperparameters we used for
this step.

Since the runs are evaluated based on macro-F1,
in order to optimize our approach for this metric,
we have introduced class weights into the objec-
tive function. Each class i is associated with the
weight equal to:

wi =

(
maxi(N)

Ni

)α
(1)

where Ni is the amount of samples in a particular
class and α = 1.1 is a hyperparameter we tuned



for this task. This way the optimizer is assigning
a greater penalty for mistakes in rare classes, thus
optimising for the target metric.

During the training of our approach, we employ
an early stopping criteria to halt the training once
the performance on the validation set stops im-
proving. In order to properly evaluate our system,
we employ 10-fold cross-validation, additionally
extracting a small validation set from the train-
ing set for that fold to perform the early stopping.
For the final submission we use a simple ensemble
mechanism, where predictions are acquired inde-
pendently from each fold and then averaged out to
produce the final submission. Additionally, one of
the runs was submitted using predictions from the
random fold. Runs exploiting the ensemble ap-
proach have the ” 10f” suffix, while runs using
just one fold have the ” 1f” suffix.

The code used to preprocess data, train and eval-
uate our approach is available on GitHub6.

3 Evaluation setting

In this section, we provide details on some of the
approaches we have tested during the development
of our system, as well as the models we submitted
for the official evaluation. In this paper, we report
results for the following models:

• MF HISTORY. A rule-based baseline that al-
ways outputs the most frequent emoji from
the user history based on a training set.

• BASE CNN. A basic Convolutional Neural
Network (CNN) taking word embeddings as
input without any user-based features.

• BASE LSTM. A Bi-LSTM model described
in Section 2.3 used with textual features only.

• BASE LSTM TR. The complete approach in-
cluding both feature families with emoji dis-
tribution coming from the training set.

• BASE LSTM UD. The complete approach
with emoji distribution coming from the most
recent 200 tweets for each user.

For the other models tested during our local eval-
uation and complete experimental results, please
refer to our GitHub repository.

Additionally, for the BASE LSTM approach we
report performance variations due to a choice

6GitHub repository: https://github.com/
Remper/emojinet

of a particular word embedding approach. In
particular, provided refers to the ones that
were suggested by organisers, custom-100d
indicates our fastText-based embeddings and
common-300d refers to the ones available on
fastText website. Table 2 details the perfor-
mances of the mentioned models.

Finally, we submitted three of our best mod-
els for the official evaluation. All of the sub-
mitted runs use the Bi-LSTM approach with
our custom-100d word embeddings along with
some variation of user emoji distribution as de-
tailed in Section 2.2. Two of the runs use the en-
sembling trick using all available cross-validation
folds, while the remaining one we submitted
(” 1f”) uses predictions from just one fold.

4 Results

Here we report performances of the models bench-
marked both during our local evaluation (Table 2)
and the official results (Table 3). We started
experiments with just the textual models testing
different architectures and embedding combina-
tions. Among those, the Bi-LSTM architecture
was a clear choice, providing 1-2% F1 over CNN,
which led to us abandoning the CNN-based mod-
els. Among the three word embedding mod-
els we evaluated, our custom-100d embed-
ding exhibited the best performance on Bi-LSTM,
while common-300d showed the best perfor-
mance using the CNN architecture.

After we have acquired the user emoji dis-
tributions, we have devised a simple baseline
(MF HISTORY), which, to our surprise, outper-
formed all the text-based models we’ve tested so
far: 3% F1 improvement compared to the best Bi-
LSTM model. When we introduced the user emoji
histories in our approach, we have gained a signif-
icant performance gain: 4% when using the scarce
training set data and 12% when using the complete
user history of 1284 emojis from recent tweets.
During the final days of the competition, we have
tried to exploit other user-based features to further
bolster our results, for example, the social graph
of a user. Unfortunately, such experiments did not
yield performance gains before the deadline.

During the official evaluation, complete user
history-based runs exhibited top performance with
ensembling trick actually decreasing the final F1.
As we expected from our experiments, training
set-based emoji distribution was much less per-



Approach Embedding Accuracy Precision Recall F1 macro

MF HISTORY – 0.4396 0.4076 0.2774 0.3133
BASE CNN common-300d 0.4351 0.3489 0.2464 0.2673
BASE LSTM common-300d 0.4053 0.3167 0.2534 0.2707
BASE LSTM provided 0.4415 0.3836 0.2408 0.2622
BASE LSTM custom-100d 0.4443 0.3666 0.2586 0.2809
BASE LSTM TR custom-100d 0.4874 0.4343 0.3218 0.3565
BASE LSTM UD custom-100d 0.5498 0.4872 0.4097 0.4397

Table 2: Performance of the approaches as tested locally by us.

Run Accuracy@5 Accuracy@10 Accuracy@15 Accuracy@20 F1 macro

BASE UD 1F 0.8167 0.9214 0.9685 0.9909 0.3653
BASE UD 10F 0.8152 0.9194 0.9681 0.9917 0.3563
BASE TR 10F 0.7453 0.8750 0.9434 0.9800 0.2920
gw2017 p.list 0.6718 0.8148 0.8941 0.9299 0.2329

Table 3: Official evaluation results for our three submitted runs and the runner-up model.

formant but still offered significant improvement
over the runner-up team (gw2017 p.list) as
shown in Table 3. Additionally, we detail the per-
formance of our best submission (BASE UD 1F)
for each individual emoji in Table 4 and Figure 2.

5 Discussion and Conclusions

Our findings suggest that emojis are currently used
mostly based on user preferences: the more prior
user history we added, the more significant per-
formance boost we have observed. Therefore, the
emojis in a text cannot be considered indepen-
dently from the person that has used them and
textual features alone can not yield a sufficiently
performant approach for predicting emojis. Addi-
tionally, we have shown that the task was sensitive
to the choice of a particular neural architecture as
well as to the choice of the word embeddings used
to represent text.

An analogous task was proposed to the par-
ticipants of the SemEval 2018 competition. The
winners of that edition applied an SVM-based ap-
proach for the classification (Çöltekin and Rama,
2018). Instead, we have opted for a neural
network-based architecture that allowed us greater
flexibility to experiment with various features
coming from different modalities: the text of the
tweet represented using word embeddings and the
sparse user-based history. During our experiments
with the SemEval 2018 task as part of the NL4AI
workshop (Coman et al., 2018), we have found the
CNN-based architecture to perform better, while
here the RNN was a clear winner. Such discrep-
ancy might suggest that even within the emoji

Precision Recall F1 Support

0.7991 0.6490 0.7163 5069
0.4765 0.7116 0.5708 4966
0.6402 0.4337 0.5171 279
0.5493 0.4315 0.4834 387
0.4937 0.4453 0.4683 265
0.7254 0.3229 0.4469 319
0.3576 0.5370 0.4293 2363
0.4236 0.4089 0.4161 834
0.4090 0.3775 0.3926 506
0.4034 0.3354 0.3663 1282
0.4250 0.3299 0.3715 885
0.3743 0.3184 0.3441 1338
0.3684 0.3239 0.3447 1028
0.3854 0.2782 0.3231 266
0.3844 0.2711 0.3179 546
0.3899 0.2648 0.3154 642
0.3536 0.2743 0.3089 700
0.3835 0.2566 0.3075 417
0.3525 0.1922 0.2488 541
0.2866 0.2639 0.2748 341
0.2280 0.2922 0.2562 373
0.2751 0.2133 0.2403 347
0.2845 0.1741 0.2160 379
0.3154 0.1822 0.2310 483
0.2956 0.1824 0.2256 444

Table 4: Precision, Recall, F1 of our best submis-
sion and the number of samples in test set for each
emoji.

prediction task the effectiveness of different ap-
proaches may significantly vary based either on
a language of the tweets or based on a way the
dataset was constructed.

In the future, we would like to investigate this
topic further by trying to study differences in



Figure 2: Confusion matrix for our best submission normalized by support size: each value in a row is
divided by the row marginal. Diagonal values give recall for each individual class (see Table 4).

emoji usage between languages and communities.
Additionally, we aim to further improve our ap-
proach by identifying more user-based features,
for example, by taking into account the feature
families suggested by Nechaev et al. (Nechaev et
al., 2018b).

References
Francesco Barbieri, German Kruszewski, Francesco

Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task
2: Multilingual Emoji Prediction. In Proc. of
the 12th Int. Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, United States.
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Çagri Çöltekin and Taraka Rama. 2018. Tübingen-
oslo at semeval-2018 task 2: Svms perform bet-
ter than rnns in emoji prediction. In Proc. of
The 12th Int. Workshop on Semantic Evaluation,
SemEval@NAACL-HLT, New Orleans, Louisiana,
pages 34–38.

Andrei Catalin Coman, Giacomo Zara, Yaroslav
Nechaev, Gianni Barlacchi, and Alessandro Mos-
chitti. 2018. Exploiting deep neural networks for
tweet-based emoji prediction. In Proc. of the 2nd
Workshop on Natural Language for Artificial Intel-
ligence co-located with 17th Int. Conf. of the Italian
Association for Artificial Intelligence (AI*IA 2018),
Trento, Italy.

Yaroslav Nechaev, Francesco Corcoglioniti, and Clau-
dio Giuliano. 2018a. Sociallink: Exploiting graph
embeddings to link dbpedia entities to twitter pro-
files. Progress in AI, 7(4):251–272.

Yaroslav Nechaev, Francesco Corcoglioniti, and Clau-
dio Giuliano. 2018b. Type prediction combining
linked open data and social media. In Proc. of the
27th ACM Int. Conf. on Information and Knowl-
edge Management, CIKM 2018, Torino, Italy, pages
1033–1042.

Francesco Ronzano, Francesco Barbieri, Endang
Wahyu Pamungkas, Viviana Patti, and Francesca
Chiusaroli. 2018. Overview of the evalita 2018
italian emoji prediction (itamoji) task. In Tom-
maso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso, editors, Proceedings of the 6th evalua-
tion campaign of Natural Language Processing and
Speech tools for Italian (EVALITA’18), Turin, Italy.
CEUR.org.


