
Aspie96 at IronITA (EVALITA 2018): Irony Detection in Italian Tweets
with Character-Level Convolutional RNN

Valentino Giudice
Computer Science Department of the University of Turin

valentino.giudice96@gmail.com

Abstract

English. Irony is characterized by a strong
contrast between what is said and what is
meant: this makes its detection an impor-
tant task in sentiment analysis. In recent
years, neural networks have given promis-
ing results in different areas, including
irony detection. In this report, I describe
the system used by the Aspie96 team in the
IronITA competition (part of EVALITA
2018) for irony and sarcasm detection in
Italian tweets.

Italiano. L’ironia è caratterizzata da un
forte contrasto tra ciò che viene detto e
ciò che si intende: questo ne rende la
rilevazione un importante task nell’analisi
del sentimento. In anni recenti, le reti
neurali hanno prodotto risultati promet-
tenti in aree diverse, tra cui la rile-
vazione dell’ironia. In questo report, de-
scrivo il sistema utilizzato dal team As-
pie96 nella competizione di IronITA (parte
di EVALITA 2018) per la rilevazione
dell’ironia e del sarcasmo in tweet italiani.

1 Introduction

Irony is a rhetorical trope characterized by a strong
contrast between what is literally said and what
is really meant. Detecting irony trough automatic
devices is, therefore, important for other tasks of
text analysis too, such as sentiment analysis, as it
strongly changes the meaning (and the sentiment)
of what is said.

Sarcasm is defined in different ways in different
contexts. One such definition is that it is a partic-
ular kind of irony: irony with a specific target to
attack, more offensive and delivered with a hash
tone.

IronITA (Irony Detection in Italian Tweets)
(Cignarella et al., 2018), a shared task organized
within EVALITA 2018, the 6th evaluation cam-
paign of Natural Language Processing and Speech
tools for Italian, has, as a purpose, irony and sar-
casm detection in Italian tweets and considers sar-
casm as a kind of irony. The competition con-
tained two subtasks: subtask A was about labeling
each tweet as either non ironic or ironic, whereas
subtask B was about labeling each tweet as non
ironic, ironic but not sarcastic or sarcastic. The
training dataset was provided by the organizers:
within it, the annotations specify, for each tweet,
if it is ironic and if it is sarcastic, marking no non-
ironic tweet as sarcastic. The non-annotated test
dataset was given to the teams to annotate. Each
team was allowed a maximum of 4 runs (attempts
to annotating the dataset) for either task, each of
which was ranked in the leaderboard. Taking part
in subtask B implied taking part in subtask A with
the same run annotations. Of the maximum of
4 runs for each task, each team was allowed 2
constrained runs (using no other dataset contain-
ing irony or sarcasm annotations of tweets or sen-
tences but the provided one) and 2 unconstrained
runs (where teams were allowed to use other train-
ing data), and taking part in a subtask with an un-
constrained run implied taking part in the same
subtask with a constrained run as well.

A separate leaderboard was provided for sub-
task A and subtask B. For each leaderboard, the
F1-score of every run for each of the two (for sub-
task A) or three (for subtask B) classes is shown.
The actual score of each run in either leaderboard
is the arithmetical average of the F1-scores for all
classes in the corresponding subtask.

In recent years, neural network have proven
themselves to be a promising approach to various
problems of text analysis, including irony detec-
tion; the following sections propose, for the task,
the model used by the Aspie96 team: a multilayer

neural network for binary classification.
The proposed model was used by the team for

an individual, constrained, run for the subtask B
(therefore also taking part in subtask A with the
same annotations). The results of the competition,
as well as the details of the model, are described
in the following sections.

2 Description of the System

The proposed system is a neural network com-
posed as follows.

It begins with a series of unidimensional convo-
lutional layers, followed by a bidirectional recur-
rent layer based on GRU units (Cho et al., 2014)
(a variation of LSTM (Hochreiter and Schmidhu-
ber, 1997)). The output of the bidirectional layer
is then used as the input for a simple feed forward
neural network, whose output is just one number
between 0 and 1 (low numbers represent the neg-
ative class, whereas large numbers represent the
positive class): the sigmoid activation function is
used to ensure an output within the range. The pur-
pose of the convolutional layers is to convert the
input to a form more meaningful for the neural net-
work and to recognize short sequences within the
text, whereas the recurrent part of the network has
the purpose of converting a sequence of vectors
into an individual vector of high-level features.

To better understand the role of the convolu-
tional layers, the first layer should be considered.
Its main difference with the following ones is that
it also has the purpose of reducing the depth of
the input (which can be done without loss of in-
formation as the input vectors are rather sparse).
Its inputs are in a sequence and every short subse-
quence is converted into an individual vector. This
preserves the information in the order of the se-
quence since only a short subsequence is used to
produce every output vector and, thus, each out-
put vector depends on a specific (short) part of the
input sequence. The sequence every output vec-
tor depends on is shifted by one for each of them.
The reason to use convolutional layers is to pro-
vide a context for each character being encoded as
the meaning and importance of a character in an
alphabetical language depends on its surrounding
ones as well. The output of the last convolutional
layer, thus, is a sequence of vectors which is just
shorter than the original one and still encodes the
useful information of each individual character in
the sequence, but provides, for each character, a

context dependent on the surrounding ones. Each
convolutional layer expands the amount of charac-
ter each vector depends on, while still keeping im-
portant information encoded in the sequence (in-
deed, the context of each character also provides
information about which information is most use-
ful and has to be represented). The input produced
for the recurrent layer is slightly smaller, preserves
temporal information and, for each character, pro-
vides information depending on the context, which
constitutes a higher level feature than the charac-
ter itself. The benefit of using convolutional lay-
ers is that the kernel doesn’t vary throughout the
sequence. This is particularly useful because short
sequences within the text might have the same or
similar meanings regardless of their position.

The convolutional layers do not use any padding
and, because of that, they slightly reduce the
length of the sequence (the length of the input se-
quence is slightly larger than the length of the out-
put sequence), but no subsampling layer is used.
The width of each kernel is rather small, as is
the depth of the output of each layer and they are
both hyperparameters that can be decided arbitrar-
ily (except, of course, for the depth of the output
layer, which has to be 1). After the recurrent layer,
no use was found in adding extra fully connected
layers before the output to deal non-linearity, so it
is followed only by a fully connected layer whose
input is the output of the recurrent layer and whose
output is the output of the neural network.

In order to have regularization, dropout layers
between the layers of the network of above and a
gaussian noise layer applied to the input are used.
Their purpose is similar and is to make the neu-
ral network better able to generalize, even with-
out a very big training dataset. Particularly, thanks
to the gaussian noise applied to the input, during
training, the same tweet, read multiple times, does
not constitute the same input data and the alter-
ation in the data is propagated through the net-
work.

A visualization of the model is given in fig. 1.
The depth of the data at every layer isn’t shown
for simplicity, thus each box is meant to represent
a vector (rather than an individual value). The
length of the input sequence would actually be
larger, but only a part is shown for simplicity. The
regularization layers aren’t shown.

The input is represented as an array with length
140, where each element is a vector of flags whose

Figure 1: Visualization of the proposed model.

values are either 0 or 1. Each vector represents a
character of the tweet: the tweet representation is
either padded (by adding vectors with every flag
at 0 at the beginning) or truncated (by ignoring
its right part) in order to meet the length require-
ment. Most of the flags (namely 62 of them) are
mutually exclusive and each of them represents a
known character. Additional flags (namely 6) are
used to represent properties of the current charac-
ter (such as being an uppercase one). The total
lenght of each vector is 68. Emojis are represented
similarly to their Unicode (English) name, with
no delimiters, and flags are used to mark which
letters and underscores belong to the name of an
emoji and which letter is the start of the name of
an emoji. Spaces at the beginning or the end of the
tweet and multiple spaces, as unknown characters,
are ignored. The full list of known characters (ex-
cluding emojis) is as follows:

Space ! ” # $ % & ’ () ∗ + , − . / 0 1 2 3 4 5 6 7
8 9 : ; = ? @ [] a b c d e f g h i j k l m n o p q
r s t u v w x y z | ˜

The subtask A is of binary classification: the
model can be directly applied. The subtask B,
however, has three classes. Since taking part in

subtask B implied taking part in subtask A as well
with the same annotations, the following approach
was used: two identical copies of the model were
created and trained, the purpose of one was to
tell apart non ironic tweets and ironic ones and
that of the other was to distinguish, among ironic
tweets, which ones were not sarcastic and which
ones were. In essence, the subtask B was seen as
two separate problems of classification: one iden-
tical to subtask A and the second between non sar-
castic and sarcastic ironic tweets.

The two identical models were trained individ-
ually by using only the data provided by the task
organizers for the training phase: all data was used
to train the model for the subtask A and only the
ironic tweets were used to train the model for the
second part of subtask B (detection of sarcasm in
ironic examples).

The testing dataset was, therefore, annotated as
follows: every tweet which was recognized by the
first copy of the model as belonging to the negative
class was labeled as non-ironic and non-sarcastic.
Every tweet recognized in the positive class was
labeled as ironic and also evaluated using the sec-
ond copy of the model, marking it as non sarcastic
when it was recognized in the negative class and
as sarcastic otherwise. Therefore, no tweet was

Perceived class Actual class
Non ironic Ironic (non sarcastic) Sarcastic

Non ironic 1008 453 295
Ironic (non sarcastic) 184 637 188
Sarcastic 138 449 227

Table 1: Confusion matrix from the 10-fold cross
validation on the training dataset.

marked as sarcastic without being also marked as
ironic.

3 Results

After training on the dataset provided by the orga-
nizers, an individual run was generated from the
testing dataset and used for both subtask B and
subtask A.

The proposed model ranked 9th among 17 runs
(ignoring the baseline ones) in subtask A, as the
5th among 7 teams, considering the best run for
each team. The F1-score for the negative class
(non-ironic) was 0.668 (precision 0.742 and re-
call 0.606) and the F1-score for the positive class
(ironic) was 0.722 (precision 0.666 and recall
0.789). The score was, thus, 0.695. This is consis-
tent with the results obtained during the testing of
the model (before the actual submission of the re-
sults), with a relatively low drop in the F1-scores.
As a comparison, the first ranked team, with two
runs, ranking first and second, got a score of 0.731
and 0.713.

In subtask B, the model ranked 5th among 7
runs (3rd among 4 teams), with the same F1-score
for the neutral class (0.668), 0.438 for the ironic
(non-sarcastic) class and 0.289 for the sarcastic
class, with a score of 0.465.

A 10-fold cross validation using the training
data produced the confusion matrix shown in Ta-
ble 1.

The F1-score of the ironic (sarcastic and non
sarcastic combined) class is 0.737. The F1-score
for the ironic non-sarcastic class is 0.500 and the
F1-score of the sarcastic class is 0.298. The F1-
score for the negative class is, instead, 0.653 (for
both subtasks). Therefore, using this data to com-
pute the scores for the two subtasks, the score is
0.695 for the subtask A (the same as in the com-
petition) and 0.484 for subtask B.

Table 2 shows, for the copy of the model trained
to distinguish between irony and non irony, a few
examples of tweets correctly and wrongly clas-
sified. These classifications were obtained using
cross validation.

Similarly, Table 3 shows a few examples of
tweets correctly and wrongly classified by the
copy of the model trained to distinguish between
ironic non sarcastic and sarcastic tweets, among
those correctly detected as ironic.

4 Related work

A roughly similar model based on convolutions
for text classification has been presented in 2014
(Kim, 2014) in the context of EMNLP. The model
used word-level features (trough a pretrained and
then fine-tuned embedding layer) as the input
for an individual convolutional layer. The con-
volutional layer used multiple kernels of differ-
ent sizes, to detect different high-level feature.
To convert the output of the convolutional layer
(whose depth was the number of its filters) into an
individual vector of high-level features, a timewise
max-pooling layer was used, producing a vector
whose length was the same as the number of ker-
nels in the convolutional layer (for each element
in the resulting vector, its value was the maximum
produced by the corresponding kernel along its in-
put). The resulting vector was the input of a fully
connected layer producing the output of the neu-
ral network. The model produced results better of
those of the state of the art at the time on 4 out of
7 tasks.

In 2015 (Zhang et al., 2015), a model more
similar to the one proposed was presented. The
model used a character-level convolutional neural
network for text classification, achieving compet-
itive results. However, it did not use a recurrent
layer (and was, in fact, compared with recurrent
neural networks) and represented each input char-
acter as a one-hot encoded vector (without any ad-
ditional flags). The model was trained using very
big datasets (hundreds of thousands of instances,
whereas only 3977 tweets were provided for
IronITA) as this works better for character-level
neural networks (because other kind of model of-
ten depend on pretrained layers and can, thus, use
knowledge, for instance that related to the mean-
ing of words, which couldn’t be derived from the
training dataset alone). Because of its structure
and attributes, the model wasn’t much flexible and
easily adaptable to different kinds of usage.

5 Discussion

The system is different from others proposed in
the past because it strictly works at character-level,

Tweet Predicted class Actual class
@matteorenzi ma quale buona scuola con un ministro incompe-
tente? #gianninidimettiti miur ha combinato pasticcio su #concor-
sonazionale

Non ironic Non ironic

#sfplm85bis #labuonascuola dopo 5 anni di sfp nel 2017, noi del
NO che faremo? Fuori dal concorsone del 2015 e senza supplenze!

Non ironic Non ironic

#Terremoto #Cile. 3 differenze con l’Italia: magnitudo superiore,
rischio #Tsunami e nessuno che nell’emergenza incolpi i #migranti.
#Natale

Non ironic Ironic

Ma in italia non viene Obama a terrorizzarci nel caso di una vittoria
del NO? #IoVotoNO #IoDicoNo

Non ironic Ironic

Mario Monti senatore a vita? Ironic Non ironic
l’imbarbarimento è avvenuto perchè ai rom ormai è concesso
tutto:rubano,schippano,ti entrano in casa e se ti difendi arrestano
te #tagadala7

Ironic Non ironic

SpecialiTG dopo attacchi terroristici: Sigla A)ISLAM è religione
di Pace B)Attentatori eran depressi,omofobi,vittime bullismo o folli
Sigla

Ironic Ironic

Com’è che vince il no, Renzi si dimette ma i migranti arrivano an-
cora???? Perzone falzeeeee

Ironic Ironic

Table 2: Examples of ironic and non ironic tweets classified by the proposed model.

Tweet Predicted class Actual class
#governo #Monti: ma non c’è nessun indagato fra i #ministri?
Nemmeno fra i sottosegretari? E’ possibile? In Italia?

Non sarcastic Non sarcastic

@matteorenzi le risorse della scuola pubblica alle private... Questa
è la buona scuola!

Non sarcastic Non sarcastic

Incredibile, la Gelmini è entusiasta delle linee guida della riforma
Renzi - Giannini. Chi lo avrebbe mai detto!? #labuonascuola

Non sarcastic Sarcastic

#terroristaucciso oltre che nome e cognome dei due agenti,date
anche gli indirizzi e i numeri di telefono, cosı̀ li trovano prima .

Non sarcastic Sarcastic

Qui nell’hinterland m.se siamo alla follia, posti di blocco
dovunque, scene d’apocalisse zombie, rom inseguiti nei parchi
#papamilano2017

Sarcastic Non sarcastic

Passare da Berlusconi a Mario Monti è un salto troppo grosso. Ci
vorrebbe almeno un governo di transizione presieduto da Checco
Zalone

Sarcastic Non sarcastic

#tfaordinario = morto che cammina. Anche quest’anno mi fate
lavorare 18h...ma sono SENZA futuro grazie a #labuonascuola di
@matteorenzi

Sarcastic Sarcastic

Salvini,oltre a propagandare aggressività,riuscirà a superare il
complesso del narciso felpato?Dopo immigrati,rom,si dedicherà ai
politici?

Sarcastic Sarcastic

Table 3: Examples of non sarcastic and sarcastic ironic tweets classified by the proposed model.

without any word features and because it doesn’t
use any data but what is provided for the specific
task during learning, nor is it based on other, sim-
pler, models to extract features. Many other mod-
els are instead based on feature-engineering and
they, thus, often use layers (such as word embed-
ding) pretrained on data different from that gener-
ated for the task. The results of the model in sub-
task A differ from those of the top ranked run by
slightly less than 0.04 and by a maximum of 0.018
from all other runs in between. If other models are
based on word-level features or on other simple
and pretrained models extracting high level fea-
tures, this suggests that good and similar results
can be obtained by using strictly the data provided
and without any word-level feature. The proposed
model is not claimed to be the best possible with
this properties; rather, it is an extremely simple at-
tempt to the task. Other models may be built in
the future which do not use any information out-
side of that provided in the learning dataset, but
obtaining significantly better results than the pro-
posed one. Still, the ranking position of the pro-
posed model suggests that there is value in using
knowledge outside of that available for a specific
task, giving information about the language (and
the meaning and sentiment of words and phrases):
further research is needed to understand where the
limits of strict character-level text analysis lay and
the contexts in which it is a better or a worse solu-
tion.

References
Kyunghyun Cho, Bart van Merriënboer, Çağlar

Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar, oct. Association for Computa-
tional Linguistics.

Alessandra Teresa Cignarella, Simona Frenda, Vale-
rio Basile, Cristina Bosco, Viviana Patti, and Paolo
Rosso. 2018. Overview of the evalita 2018 task on
irony detection in italian tweets (ironita). In Tom-
maso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso, editors, Proceedings of the 6th evalua-
tion campaign of Natural Language Processing and
Speech tools for Italian (EVALITA’18), Turin, Italy.
CEUR.org.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. 9:1735–80, 12.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Xiang Zhang, Junbo Zhao Jake, and Yann LeCun.
2015. Character-level convolutional networks for
text classification. CoRR, abs/1509.01626.

