
Comparing Different Supervised Approaches to Hate Speech Detection

Michele Corazza†, Stefano Menini‡, Pinar Arslan†, Rachele Sprugnoli‡
Elena Cabrio†, Sara Tonelli‡, Serena Villata†

†Université Côte d’Azur, CNRS, Inria, I3S, France
‡Fondazione Bruno Kessler, Trento, Italy

{michele.corazza,pinar.arslan}@inria.fr
{menini,sprugnoli,satonelli}@fbk.eu
{elena.cabrio,serena.villata}@unice.fr

Abstract

English. This paper reports on the sys-
tems the InriaFBK Team submitted to the
EVALITA 2018 - Shared Task on Hate
Speech Detection in Italian Twitter and
Facebook posts (HaSpeeDe). Our submis-
sions were based on three separate classes
of models: a model using a recurrent layer,
an ngram-based neural network and a Lin-
earSVC. For the Facebook task and the
two cross-domain tasks we used the recur-
rent model and obtained promising results,
especially in the cross-domain setting. For
Twitter, we used an ngram-based neural
network and the LinearSVC-based model.

Italiano. Questo articolo descrive i mo-
delli del team InriaFBK per lo Shared Ta-
sk on Hate Speech Detection in Italian
Twitter and Facebook posts (HaSpeeDe)
di EVALITA 2018. Tre classi di modelli
differenti sono state utilizzate: un model-
lo che usa un livello ricorrente, una rete
neurale basata su ngrammi e un model-
lo basato su LinearSVC. Per Facebook e
i due task cross-domain, si è scelto un mo-
dello ricorrente che ha ottenuto buoni ri-
sultati, specialmente per quanto riguarda
i task cross-domain. Per Twitter, sono stati
utilizzati la rete neurale basata su ngram-
mi e il modello basato su LinearSVC.

1 Introduction

In this paper, we describe the submitted systems
for each of the four subtasks organized within
the HaSpeeDe evaluation exercise at EVALITA
2018 (Bosco et al., 2018): Hate speech detec-
tion on Facebook comments (Task 1: HaSpeeDe-
FB), Hate speech detection on tweets (Task 2:
HaSpeeDe-TW), Cross-domain task hate speech

detection from Facebook to Twitter posts (Task
3.1: Cross-HaSpeeDe FB) and Cross-domain task
hate speech detection from Twitter to Facebook
posts (Task 3.2: Cross-HaSpeeDe TW). We build
our models for these binary classification sub-
tasks testing recurrent neural networks, ngram-
based neural networks1 and a LinearSVC (Support
Vector Machine) approach2. In HaSpeeDe-TW,
which has comparatively short sequences with re-
spect to HaSpeeDe-FB, an ngram-based neural
network and a LinearSVC model were used, while
for HaSpeeDe-FB and the two cross-domain tasks
recurrent models were used.

2 System Description

We adopt a supervised approach and, to select the
best model for each task, we perform grid search
over different machine learning classifiers such
as Neural Networks (NN), Support Vector Ma-
chines (SVM) and Logistic Regression (LR). Both
ngram-based (unigram and bigram) and recurrent
models using embeddings were tested, but only
the ones that were submitted for the tasks will be
described. A LinearSVC model from scikit-learn
(Pedregosa et al., 2011a) was also tested, and it
showed good performance on the Twitter dataset.
In order to perform a grid search over the param-
eters and models, the training set released by the
task organisers was partitioned in three: 60% of it
was used for training, 20% for validation and 20%
for testing.3

2.1 Preprocessing
Since misspellings, neologisms, acronyms and jar-
gon are common in social media interactions, it
was necessary to carefully preprocess the data, in

1https://gitlab.com/ashmikuz/
creep-cyberbullying-classifier

2https://github.com/0707pinar/
Hate-Speech-Detection/

3To split the data we use the scikit-learn
train test split function, using 42 as seed value.

order to normalize it without losing information.
For this reason, we first replace URLs with the
word “url” and “@” user mentions with “user-
name” by using regular expressions.

Since hashtags often provide important seman-
tic content, they are normalized by splitting them
into the words composing them. To this end,
we adapted to Italian the Ekphrasis tool (Bazio-
tis et al., 2017), using as ngram model the Italian
Google ngrams starting from year 2000. In addi-
tion to the aforementioned normalizations, for the
LinearSVC model we also stemmed Italian words
via the Snowball Stemmer (Bird and Loper, 2004)
and we removed stopwords.

2.2 Feature Description
We used the following text-derived features:

• Word Embeddings: Italian fastText embed-
dings (Bojanowski et al., 2016)4 employed in
the recurrent models (Section 2.3);

• Ngrams: unigrams and bigrams, used for
the ngram-based neural network and the lin-
earSVC (Sections 2.4, 2.5);

• Social-network specific features: the num-
ber of hashtags and mentions, the number of
exclamation and question marks, the number
of emojis, the number of words that are writ-
ten in uppercase.

• Sentiment and Emotion features: the word-
level emotion and sentiment tags for Italian
words extracted from the EmoLex (Moham-
mad and Turney, 2013; Mohammad and Tur-
ney, 2010) resource.

2.3 Recurrent Neural Network Model
In order to classify hate speech in social media
interactions, we believe that recurrent neural net-
works are a useful tool, given their ability to re-
member the sequence of inputs while considering
their order, differently from the feed-forward mod-
els. In the context of our classifier, this allows the
model to remember the whole sequence of words
in the order they appear in.

More specifically, our recurrent models, imple-
mented using Keras (Chollet and others, 2015),
combine both sequences of word embeddings and
social media features. In order to achieve that, an

4https://github.com/facebookresearch/
fastText

asymmetric topology is used for the neural net-
work: the sequences of word embeddings are fed
to a recurrent layer, whose output is then concate-
nated with the social features. The concatenated
vector is then fed to one or two feed forward fully
connected layers that use the Rectified Linear Unit
(ReLU) as their activation function. The output
layer is a single neuron with a sigmoid activation,
while binary cross-entropy is used as the loss func-
tion for the model.

Batch normalization and various kinds of
dropout have been tested to reduce the variance of
the models. Experimental results suggested that
applying the former to the output of the recur-
rent layer had a negative effect on performance.
For this reason, batch normalization was applied
only to the output of the hidden layers. As for
dropout, we tried three different mechanisms. A
simple dropout layer (Srivastava et al., 2014) is
applied to the output of the hidden layers, as ap-
plying dropout to the output of the recurrent layer
introduces too much noise and does not improve
performance. We also tested a dropout on the em-
beddings (Gal and Ghahramani, 2016) that effec-
tively skips some of the word embeddings in the
sequence, as dropping part of the embedding vec-
tor causes a loss of information, while dropping
entire words can help reduce overfitting. In ad-
dition, a recurrent dropout (Gal and Ghahramani,
2016) was also tested. While evaluating the
models, we tested both a Long Short Term Mem-
ory (LSTM) (Gers et al., 1999) and a Gated Re-
current Unit (GRU) (Cho et al., 2014) as recurrent
layers. The latter is functionally very similar to
an LSTM but by using less weights it can some-
times reduce the variance of the model, improving
its performance.

2.4 Ngram-based Neural Networks

Ngram-based neural networks are structurally
similar to the recurrent models. We first com-
pute the unigrams and bigrams over the lemma-
tized social media posts. The resulting vector is
then normalized by using tf-idf from scikit-learn
and concatenated to the social-specific features.
One or two hidden feed-forward layers are then
used, and the same output layer as in the recurrent
models is used. The same dropout and batch nor-
malization techniques used in the recurrent models
have been tested for the ngram-based neural net-
works as well. For the first submitted run of Task

2: HaSpeeDe-TW, we used unigrams and bigrams
along with the required preprocessing steps based
on tf-idf model.

2.5 Linear SVC System

We implemented a Linear Support Vector Clas-
sification system (i.e., LinearSVC) (Fan et al.,
2008) based on bag-of-words (i.e., unigrams), us-
ing scikit-learn (Pedregosa et al., 2011b) for the
first submitted run in Task 2: HaSpeeDe-TW. We
chose this system as it scales well for large-scale
samples, and it is efficient to solve text classifica-
tion problems. To deal with imbalanced labels, we
set the class weight parameter as “balanced”.
To mitigate overfitting, penalty parameter C was
scaled as 0.7.

3 Submitted Runs and Results

In this Section we describe the single runs submit-
ted for each task and we present the results. The
official ranking reported for each run is given in
terms of macro-average F-score.

3.1 Task 1: HaSpeeDe-FB

For Task 1: HaSpeeDe-FB, two recurrent models
were used. The first submitted run used a single
fully connected layer of size 200 and a GRU of
size 100 as the recurrent layer. Recurrent dropout
was applied to the GRU with value 0.2. The sec-
ond submitted run used two fully connected layers
of size 500 and a GRU of size 300 as the recurrent
layer. Simple dropout was applied to the output of
the feed-forward layers with value 0.5. The first
run ranked third and the second ranked fourth out
of 18 submissions (Table 1). As shown in Table
1, both runs yield a better performance on the hate
speech class.

First Run
Category P R F1 Instances
Non Hate 0.763 0.687 0.723 323

Hate 0.858 0.898 0.877 677
Macro AVG 0.810 0.793 0.800 1000

Second Run
Non Hate 0.716 0.703 0.709 323

Hate 0.859 0.867 0.863 677
Macro AVG 0.788 0.785 0.786 1000

Table 1: Results on HaSpeeDe-FB

3.2 Task 2: HaSpeeDe-TW

In the first submitted run for Task 2: HaSpeeDe-
TW, we used the LinearSVC-based model de-

scribed in subsection 2.5. This run was ranked
sixth out of 19 submissions. As our second run on
the Task 2: HaSpeeDe-TW, an ngram-based neu-
ral network was used having a single fully con-
nected hidden layer with size 200. Simple dropout
was applied to the hidden layer with value 0.5.
This run ranked fourth. Both runs show better
performance when classifying the non hate speech
class as displayed in Table 2.

First Run
Category P R F1 Instances
Non Hate 0.873 0.827 0.850 676

Hate 0.675 0.750 0.711 324
Macro AVG 0.774 0.788 0.780 1000

Second Run
Non Hate 0.842 0.899 0.870 676

Hate 0.755 0.648 0.698 324
Macro AVG 0.799 0.774 0.784 1000

Table 2: Results on HaSpeeDe-TW

3.3 Task 3.1: Cross-HaSpeeDe FB
For Task 3.1: Cross-HaSpeeDe FB two recurrent
models were used. In the first submitted run, two
hidden layers of size 500 were used. An LSTM of
size 200 was adopted as the recurrent layer. Em-
beddings dropout was applied with value 0.5 and
a simple dropout was applied to the output of the
feed-forward layers with value 0.5. The recurrent
model for the second run had one hidden layer of
size 500. A GRU of size 200 was used as the re-
current layer and no dropout was applied. The first
run ranked second out of 17 submissions while the
second run registered the best score in the Task
3.1: Cross-HaSpeeDe FB. In both runs, the mod-
els showed good performance over the non hate
speech class, whereas the precision on the hate
speech class does not exceed 0.5 (see Table 3).

First Run
Category P R F1 Instances
Non Hate 0.810 0.675 0.736 676

Hate 0.497 0.670 0.570 324
Macro AVG 0.653 0.672 0.653 1000

Second Run
Non Hate 0.818 0.660 0.731 676

Hate 0.494 0.694 0.580 324
Macro AVG 0.656 0.677 0.654 1000

Table 3: Results on Cross-HaSpeeDe FB

3.4 Task 3.2: Cross-HaSpeeDe TW
For Task 3.2: Cross-HaSpeeDe TW two recurrent
models were used. In the first submitted run, two

hidden layers of size 500 were used together with
a GRU of size 200 as the recurrent layer. Sim-
ple dropout was applied to the output of the feed-
forward layers with value 0.2, whereas the recur-
rent dropout has value 0.2. In the second submit-
ted run, one hidden layer of size 200 was used
adopting an LSTM of size 200 as the recurrent
layer. Embeddings dropout was applied with value
0.5. The first run ranked fourth out of 17 submis-
sions, while the other run ranked second. Table 4
shows that in both cases the system showed good
performance over the hate speech class, while de-
tecting negative instances proved difficult, in par-
ticular in terms of precision over the non hate
speech class.

First Run
Category P R F1 Instances
Non Hate 0.493 0.703 0.580 323

Hate 0.822 0.656 0.730 677
Macro AVG 0.658 0.679 0.655 1000

Second Run
Non Hate 0.537 0.653 0.589 323

Hate 0.815 0.731 0.771 677
Macro AVG 0.676 0.692 0.680 1000

Table 4: Results on Cross-HaSpeeDe TW

4 Error Analysis and Discussion

Although all our runs obtained satisfactory re-
sults in each task, there is still room for improve-
ment. In particular, we noticed that our models
have problems in classifying social media mes-
sages containing the following specific phenom-
ena: (i) dialects (e.g. “un se ponno sentı̀...ma come
se fà...”) or bad orthography (e.g. “Io no nesdune
delle due.....momti pesanti”); (ii) sarcasm, “Dopo
i campi rom via pure i centri sociali. L’unico
problema sarà distinguere gli uni dagli altri”; (iii)
references to world knowledge, typically used for
an indirect attack not containing an explicit insult
(e.g. “un certo Adolf sarebbe utile ancora oggi
con certi soggetti”); (iv) metaphorical expressions,
usually referring to ways to physically eliminate
the targets of hate speech messages (e.g. “Rus-
pali”).

As for false positives, some errors come from
the misclassification of messages containing the
lemmas “terrorista”, “terrorismo”, “immigrato”
that are extremely frequent in particular in the
Twitter dataset. These lemmas are associated to
the hate speech class even when they appear in

messages reporting the title of a news, eg. “Il Gi-
appone senza immigrati a corto di forza lavoro”.

In Task 2: HaSpeeDe-TW, when the classifier
relies on sentiment and emotion features, we reg-
istered several misclassified instances containing
relevant content words not covered by EmoLex.
This is due to the fact that for every English word,
EmoLex provides only one translated entry, thus
limiting the overall coverage. For instance, “to
kill” is translated in Italian with “uccidere” not
considering synonyms such as “ammazzare” often
used in the dataset.

Finally, we noticed some inconsistencies in the
gold standard. For example, the message “Al solo
vederle danno il voltastomaco!” is annotated as
hate speech while, the almost equivalent, “Appena
le ho viste ho vomitato” is considered a non hate
speech instance while our models identify it as
hate speech. Similarly, an insult like “ridicoli”
is annotated as non hate speech in “CERTO CHE
GLI ONOREVOLI DEL PD SI RICONOSCONO
A KILOMETRI ... RIDICOLI” but as hate speech
in “Ci vorrebbe anche qua Putin, invece di quei
RIDICOLI...PAROLACCE PAROLACCE”.

5 Conclusions

In this paper we presented an overview of the
runs submitted for the four subtasks of HaSpeeDe
evaluation exercise. We implemented a number
of different models, comparing recurrent neural
networks, ngram-based neural networks and lin-
ear SVC. While RNNs perform better in three of
four tasks, classification on Twitter data achieves
a better ranking using the ngram based neural net-
work. Our system was ranked first among all
the teams in one of the cross-domain task, i.e.
Cross-HaSpeeDe FB. This is probably due to the
fact that considering the whole sequence of inputs
with a recurrent neural networks and using a pre-
learned representation by using word embeddings
help the model to learn some common traits of
hate speech across different social media.

Acknowledgments

Part of this work was funded by the CREEP
project (http://creep-project.eu/), a
Digital Wellbeing Activity supported by EIT
Digital in 2018. This research was also sup-
ported by the HATEMETER project (http://
hatemeter.eu/) within the EU Rights, Equal-
ity and Citizenship Programme 2014-2020.

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. DataStories at SemEval-2017 Task
4: Deep LSTM with Attention for Message-level
and Topic-based Sentiment Analysis. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 747–754, Van-
couver, Canada, August. Association for Computa-
tional Linguistics.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching Word Vec-
tors with Subword Information. arXiv preprint
arXiv:1607.04606.

Cristina Bosco, Felice Dell’Orletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. 2018.
Overview of the EVALITA 2018 HaSpeeDe Hate
Speech Detection (HaSpeeDe) Task. In Tom-
maso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso, editors, Proceedings of the 6th evalua-
tion campaign of Natural Language Processing and
Speech tools for Italian (EVALITA18), Turin, Italy,
December. CEUR.org.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
LSTM.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011a. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011b. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

