
Text analysis for hate speech detection
in Italian messages on Twitter and Facebook

Giulio Bianchini
University of Perugia

Italy
giulio.bianchini@studenti.unipg.it

Lorenzo Ferri
University of Perugia

Italy
lorenzo.ferri@studenti.unipg.it

Tommaso Giorni
University of Perugia

Italy
tommaso.giorni@studenti.unipg.it

Abstract
English. In this paper, we present a sys-
tem able to classify hate speeches in Ital-
ian messages from Facebook and Twit-
ter platforms. The system combines sev-
eral typical techniques from Natural Lan-
guage Processing with a classifier based
on Artificial Neural Networks. It has been
trained and tested on a corpus of 3000
messages from the Twitter platform and
3000 messages from the Facebook plat-
form. The system has been submitted to
the HaSpeeDe task within the EVALITA
2018 competition and the experimental
results obtained in the evaluation phase
of the competition are presented and dis-
cussed.

Italiano. In questo documento presenti-
amo un sistema in grado di classificare
messaggi di incitamento all’odio in lin-
gua italiana presi dalle piattaforme Face-
book e Twitter. Il sistema combina di-
verse tecniche tipiche del Natural Lan-
guage Processing con un classificatore
basato su una Rete Neurale Artificiale.
Quest’ultimo stato allenato e testato con
un corpus di 3000 messaggi presi dalla pi-
attaforma Twitter e 3000 messaggi presi
dalla piattaforma Facebook. Il sistema
stato sottomesso al task HaSpeeDe rela-
tivo alla competizione EVALITA 2018, e
sono presentati e discussi i risultati sper-
imentali ottenuti nella fase di valutazione
della competizione.

1 Introduction

In the last years, social networks have revolution-
ized in a radical way the world of communication

and the publication of contents. However, if on
one hand social networks represent an instrument
of freedom of expression and connection, on the
other hand they are used for propagation and in-
citement to hatred. For this reason, recently, many
softwares and technologies have been developed
to reduce this phenomenon (Zhang and Luo, 2018)
(Waseem and Hovy, 2016) (Del Vigna et al., 2017)
(Davidson et al., 2017) (Badjatiya et al., 2017)
(Gitari et al., 2015).
Specifically, approaches based on machine learn-
ing and deep learning are used by large companies
to stem and stop this widespread fact. Despite the
efforts spent to produce systems for the English
language, there are very few resources for Italian
(Del Vigna et al., 2017). In order to bridge this
gap, a specific task (Bosco et al., 2018) for the
detection of hateful contents has been proposed
within the context of EVALITA 2018, the 6th eval-
uation campaign of Natural Language Processing
and Speech tools for Italian. The EVALITA team
provided the participants with the initial starting
data sets, each consisting of 3000 classified com-
ments taken respectively from Facebook and Twit-
ter pages. The objective of the competition is
to produce systems able to automatically annotate
messages with boolean values (1 for message con-
taining Hate Speech, 0 otherwise).
In this paper we describe the system submitted
by the Vulpecula team. The system works in
four phases: preprocessing of the initial dataset;
encoding of the preprocessed dataset; training
of the Machine Learning model; testing of the
trained model. In the first phase, the comments
were cleaned by applying text analysis techniques
and some features have been extrapolated from
these; then in the second phase, using a trained
Word2Vec model (Mikolov et al., 2013), the com-
ments were coded in a vector of 256 real num-



bers. In the third phase, an artificial neural net-
work model was trained using the encoded com-
ments as input along with their respective extra
features. In order to have better and reliable re-
sults, to train and evaluate the model a cross-
validation was used. In addition, together with ac-
curacy and evaluation of the error, the F-measure
were used to evaluate the quality of the model. Fi-
nally, in the fourth and last phase, the test set com-
ments provided by EVALITA were classified. The
rest of the paper is organized as follows. A system
overview is provided in Section 2, while some de-
tails about the system components and the external
tools used are provided in Section 3. Experimen-
tal results are shown and discussed in Section 7,
while some conclusions and ideas for future works
are depicted in Section 8.

2 System overview

The system has a structure similar to (Castellini
et al., 2017); it has been organized into four main
phases: preprocessing, encondig, training, testing,
as also shown in Figure 1.

Figure 1: System architecture.

• In the first phase the corpus of 3000 Facebook
comments, and the corpus of 3000 Twitter
comments are cleaned and prepared to be en-
coded. In parallel within the cleaning we
have extrapolated some interesting features
for each comment. The entire phase is ex-
plained in details in section 4 and 5.

• In the second phase we trained a Word2Vec
model, starting from 200k comments we
download from some Facebook pages known
to contain hate messages. Each of the ini-
tial data set comment has been encoded in a
vector of real values by submitting it to the
Word2Vec model. This phase is explained in
details in the section 5.

• In the third phase we trained a multi-layer
feed-forward neural network using the 3000

encoded comments and the respective fea-
tures we extracted in the first phase. The de-
scription of the ANN is in the section 6.

• In the last phase the test set comments pro-
vided by EVALITA were classified and we
joined the competition. This phase is ex-
plained in details in the section 7.

The source code of the project is provided on-
line1.

3 Tools Used

The entire project was developed using the Python
programming language, for which several libraries
are available and usable for the purpose of the
project. Specifically, the following libraries were
used for the preprocessing phase of the dataset:

• nltk: toolkit for natural language processing;

• unicode emoji: library for the recognition
and translation of emoticons;

• treetaggerwrapper: library for lemming and
word tagging;

• textblob: another library for natural language
processing;

• gensim: library that contains word2vec;

• sequence matcher: library for calculating the
spelling distance between words;

For the training phase of the ML model the fol-
lowing libraries were used:

• keras (Chollet and others, 2015): High-level
neural network API;

• sklearn (Pedregosa et al., 2011): Simple and
efficient tools for data mining and data anal-
ysis ;

Finally, some corpora have been used:

• SentiWordNet (Baccianella et al., 2010);

• dataset of badwords, provided by Prof. Spina
and research group of the University for For-
eigners of Perugia;

• dataset of italian words;
1https://github.com/VulpeculaTeam/

Hate-Speech-Detection



• dataset of 220k comments downloaded from
Facebook pages (Italia agli italiani stop
ai clandestini, matteo renzi official, matteo
salvini official, noiconsalvini, politici cor-
rotti)

4 Preprocessing

In the Knowledge Discovery in Databases (KDD)
one of the crucial phases is data preparation. In
this project this phase was tackled and the com-
ments given to us were processed and prepared.
Specific text analysis techniques have been ap-
plied in order to prepare the data in the best pos-
sible way in order to extract the most important
information from them. All the operations per-
formed for the data cleaning and for the extra-
feature extraction are listed below. Each operation
is iterated for all the 3000 comments of the data
set.

• Extraction of the first feature: length of the
comment.

• Extraction of the second feature: percent-
age of words written in CAPS-LOCK inside
the comment. Calculated by the number of
words written in CAPS-LOCK divided by the
number of words in the comment.

• Replace the characters ’&’, ’@’ respectively
in the letters ’e’, ’a’.

• Conversion of disguised bad words. An in-
teresting function added to the preprocessing
is the recognition of censored bad-words, i.e.
bad-words where some of their middle let-
ters are replaced by special character (sym-
bol, punctuation...) to make it recognizable
by an human but not by a computer. At this
scope we don’t use a large vocabulary but
it’s better a simple list of most common bad-
words censored (because only a small group
of bad words is commonly censored). At this
python function we pass an entire sentence
creating a list splitting this by space. We scan
the list of sentence words and we control if
the first and last characters are letters and not
number or symbols. Then we take this word
without first and last letters and control if this
middle sub-word is formed by special sym-
bols/punctuation or by letter x (because ”x”
is often used for hiding bad-words). If yes,

this middle sub-word is deleted from the cen-
sored bad-word, taking the top and end part
of this formed by letters. At the end we scan
the list of bad-words and we control if this
top and end part matching with one of this
scanned bad-words. If yes, this is replaced
by the real word.

• Hashtag splitting. One of the most diffi-
cult cleaning phases is the Hashtag Splitting.
For this we used a large dictionary of italian
words in .csv format. First, we scan every
word in this file and we control if these word
is in the hashtag and then (for convenience
we avoid the words of lenght 2) saving it in
a list. In this phase will be taken also use-
less words not contextualized to the hashtag,
so we will need to filter them. For this, first
we sort all found words in decreasing length
and we scan the list. So, starting to the first
word on, we delete it from the hashtag. In this
way the useless words in the list contained in
larger words are found, saved in another list,
and deleted from the beginning list contain-
ing all the words (both useful and useless) in
the hashtag. In the final phase for each word
in the resulting list we find its position within
the hashtag and with this we create the real
sentence, separating every word with a space.

• Removal of all the links from the comment.

• Editing of each word in the comment by this
way: removal of nearby equal vowels, re-
moval of nearby equal consonants if they are
more than 2. Examples: from ”caaaaane” to
”cane”, from ”gallllina” to ”gallina”.

• Extraction of the third feature: number of
sentences inside the comment. By sentence
we mean a list of words that ends with ’.’ or
’?’ or ’!’.

• Extraction of the fourth feature: number of
’?’ or ’!’ inside the comment.

• Extraction of the fifth feature: number of ’.’
or ’,’ inside the comment.

• Punctuation removal.

• Translation of emoticons (for Twitter mes-
sages). Given the large presence of emoti-
cons in Twitter messages, it was decided to



translate the emoticons with the respective
English translations. To do this, each sen-
tence is scanned and if there are emoticons,
these are translated into their corresponding
meaning in English. Using the library uni-
code emoji,

• Emoticon removal.

• Replacement of the abbreviations with the re-
spective words, using a list of abbreviations
created by ourselves.

• Removal of articles, pronouns, prepositions,
conjunctions and numbers.

• Removal of the laughs.

• Replacement of accented characters with
their unaccented characters.

• Lemmatization of each comment with the
treetaggerwrapper library.

• Extraction of the sixth feature : polarity of the
message. This feature is compute using the
SentiWordNet corpora and his APIs. Since
SentiWordNet was created to find the polar-
ity of sentences in English, each message is
translated using TextBlob in English and the
polarity is then calculated.

• Extraction of the seventh feature : Percentage
of spelling errors in the comment. To calcu-
late a spelling error a word is compared with
all the words of the Italian Vocabulary cor-
pora; if the word is not present in the corpora
there is a spelling error. Calculated by the
number of spelling error divided by the num-
ber of words in the comment.

• Replacement of spelling error: In parallel
with the previous step every spelling error is
replaced with the most similar word in the
Italian Vocabulary corpora. The similarity
between the wrong word and all the other
is calculated using a function of Sequence-
Matcher library. The wrong word is replaced
with the most similar word in Italian Vocabu-
lary corpora.

• Extraction of the eighth feature: number of
bad words in the comment. Every word in
the comment is compared with all the word
in the Bad Words corpora; if the word is in
the corpora it’s a bad word.

• Extraction of the ninth feature: percentage of
bad words. Calculated by the number of bad
words divided by the number of words in the
comment.

• Extraction of the tenth feature : Polarity
TextBlob. This value is compute using a
TextBlob function that allows to calculate the
polarity. Also in this case the message is
translated into English.

• Extraction of the final feature : Subjectivity
TextBlob. Another value computed with a
function in TextBlob.

5 Word Embeddings with Word2Vec

Very briefly, Word Embedding turns text into num-
bers. This transformation is necessary because
many Machine Learning algorithms don’t work
with plain text but they require vectors of con-
tinuous values. Word Embedding has fundamen-
tal advantages in particular, it is a more efficient
representation (dimensionality reduction) and also
it is a more expressive representation (contex-
tual similarity). So we have created a Word2Vec
model for word embedding. For the training of
the model, 200k messages were downloaded from
several Facebook pages. These messages were
preprocessed as explained in the previous sec-
tion 4 and (in addiction with the messages pro-
vided by EVALITA’s team) were used to train the
Word2Vec model. The trained model encode each
word in a vector of 128 real numbers. Each sen-
tence is instead encoded with a vector of 256 real
numbers divided into two components of 128 el-
ements: the first component is the vector sum of
the coding of each word in the sentence, while the
second component is the arithmetic mean. At this
point each of the 3000 comments of the starting
training set is a vector of 265 reals: 256 for the
coding of the sentence and 9 for the previously cal-
culated features.

6 Model training

The vectors obtained by the process described in
section 5 were used as input for training an Artifi-
cial Neural Network - ANN. (Russell and Norvig,
2016) The Articial Neural Network mathematical
model composed of artificial ”neurons”, vaguely
inspired by the simplification of a biological neu-
ral network. There are different types of ANN, the
one used in this research is a feed-forward: this



means that the connections between nodes do not
form cycles as opposed to recurrent neural net-
works. In this neural network, the information
moves only in one direction, ahead, with respect to
input nodes, through hidden nodes (if existing) up
to the exit nodes. In the class of feed-forward net-
works there is the multilayer perceptron one. The
network we have built is made up of two hidden
layers in which the first layer consists of 128 nodes
and the second one is 56. The last layer is the out-
put one and is formed by 2 nodes. The activation
functions for the respective levels are sigmoid, relu
and softmax and the chosen optimizer is Adagrad,
each layer has a dropout of 0.45. The reason why
these parameters have been chosen is because after
having tried countless configurations, the best re-
sults during the training phase have been obtained
with these parameters. In particular, have been
tried all the possible combinations of these param-
eters:

• Number of nodes of the hidden layers: 56,
128, 256, 512;

• Activation function of the hidden layers:
sigmoid, relu, tanh, softplus;

• Optimizer: Adagrad, RMSProp, Adam.

Furthermore, the dropout was essential to prevent
over-fitting. In fact, dropout consists to not con-
sider neurons during the training phase of cer-
tain set of neurons which is chosen randomly.
The dropout rate is set to 45%, meaning that the
45% of the inputs will be randomly excluded from
each update cycle. As methods of estimation,
cross-validation was used, partitioning the data
into 10 disjoint subsets. As metrics for perfor-
mance evaluation, the goodness of the model was
analyzed by calculating True Positive, True Neg-
ative, False Positive and False Negative. From
these the cost-sensitive measures precision, recall
and f-score were calculated. These are the best
results achieved with the training dataset of Face-
book comments obtained during the cross valida-
tion:

• Accuracy: 83.73%;

• Standard deviation: 1.09;

• True Positive: 1455;

• True Negative: 1057;

• False Positive: 163;

• False Negative: 325;

• Precision: 0.899%;

• Recall: 0.817%;

• F1-Score: 0.856%;

• F1-Score Macro: 0.856%;

7 Experimental Results

After the release of the unlabelled test set, the new
2000 messages (1000 of them from Facebook and
1000 of them from Twitter) were cleaned as ex-
plained in section 4 and the respective features
were extrapolated. Then, these new comments
were added to the comment’s pool used to cre-
ate the Word2Vec model, and a new Word2Vec
model was created with the new pool. Finally, the
2000 comments were encoded as previously ex-
plained in section 5 in the 265 component vectors
and these were the input of the neural network that
classified them. From the training phase, two neu-
ral network models were built: one trained with
the dataset of 3000 Facebook messages and the
other trained with the dataset of 3000 Twitter mes-
sages. We call the first model VTfb and the sec-
ond one VTtw. EVALITA’s task consisted in four
sub-tasks that were:

• HaSpeeDe-FB: test VTfb with the 1000 mes-
sages taken from Facebook;

• HaSpeeDe-TW: test VTtw with the 1000
messages taken from Twitter;

• Cross-HaSpeeDe-FB: test VTfb with the
1000 messages taken from Facebook;

• Cross-HaSpeeDe-TW: test VTtw with the
1000 messages taken from Twitter;

Sub-task Model F1 Distance
HaSpeeDe-FB VTfb 0.7554 0.0734
HaSpeeDe-TW VTtw 0.7783 0.021
Cross-HaSpeeDe-FB VTfb 0.6189 0.0089
Cross-HaSpeeDe-TW VTtw 0.6547 0.0438

Table 1: Team results in the HaSpeeDe sub-tasks.

In Table 1 we report the Macro-Average F1 score
for each sub-task together with the differences



with the best result obtained in the competition
(column ”Distance” in the table). Compared with
the results we had in the training phases (section
6), we would have expected better results in the
HaSpeede-FB task. However, our system appears
to be more general and not specifically targeted to
a platform, in fact the differences in the other tasks
are minimal.

8 Conclusion and Future Work

In this paper we presented a system based on neu-
ral networks for the hate speech detection in social
media messages in Italian language. Recognizing
negative comments is not easy, as the concept of
negativity is often subjective. However, good re-
sults have been achieved that are not so far from
the results obtained by the best within the compe-
tition. The proposed system can certainly be im-
proved, an idea can be to use clustering techniques
to categorize the messages (cleaned and with the
related features) in two subgroups (positive and
negative) and then, for each comment, calculate
how much this is more similar to negative com-
ments or positive comments and add it as a feature.

Acknowledgments

The authors would like to thank prof. Valentina
Poggioni who has helped and supported us in
the development of the whole project. A special
thanks to Manuela Sanguinetti, our shepherd in
EVALITA competition for all the support she has
given to us.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In Proceedings of Lrec 2010, pages 2200–2204.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Cristina Bosco, Felice Dell’Orletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. 2018.
Overview of the EVALITA 2018 Hate Speech De-
tection Task. In Tommaso Caselli, Nicole Novielli,
Viviana Patti, and Paolo Rosso, editors, Proceed-
ings of the 6th Evaluation Campaign of Natural
Language Processing and Speech Tools for Italian
(EVALITA 2018), Turin, Italy. CEUR.org.

Jacopo Castellini, Valentina Poggioni, and Giulia
Sorbi. 2017. Fake Twitter Followers Detection by
Denoising Autoencoder. In Proceedings of the In-
ternational Conference on Web Intelligence, WI ’17,
pages 195–202.

François Chollet et al. 2015. Keras. https://
keras.io.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate Me, Hate Me Not: Hate Speech Detection on
Facebook. In ITASEC, volume 1816 of CEUR Work-
shop Proceedings, pages 86–95. CEUR-WS.org.

Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura
Damien, and Jun Long. 2015. A lexicon-based
approach for hate speech detection. International
Journal of Multimedia and Ubiquitous Engineering,
10(4):215–230.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Stuart J. Russell and Peter Norvig. 2016. Artificial In-
telligence: A Modern Approach. Malaysia; Pearson
Education Limited.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. arXiv preprint arXiv:1803.03662.


