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Abstract. A novel algorithm is proposed for the coloring of planar
graphs based on the construction of a maximal independent set S. The
maximal independent set S must fullfil certain characteristics. It must
contain the vertex that appears in the maximum number of odd cycles
of G. The construction of S considers the internal-face graph of the in-
put graph G in order to select the vertices that decomposes a maximal
number of initial faces of G.

The traversing in pre-order of the internal-face graph Gf , of the planar
graph G, provides us of a strategy in the construction of the maximal
independent set S that reduces (G− S) in a polygonal tree that will be
3-colorable.

1 Introduction

The graph vertex coloring problem consists of coloring the vertices of the graph
with the smallest possible number of colors, so that two adjacent vertices can
not receive the same color. If such a coloring with k colors exists, the graph is
k-colorable. The chromatic number of a graph G, denoted as X(G), represents
the minimum number of colors for proper coloring G. The k-colorability problem
consists of determining whether an input graph is k-colorable.

The inherent computational complexity, associated with solving NP-hard
problems, has motivated the search for alternative methods, which allow in poli-
nomial time the solution of special instances of NP-hard problems. For example,
in the case of the vertex coloring problem, 2-coloring is solvable in polinomial
time. Also, in polynomial time has been solved the 3-colorability for some graphs
topologies, such as: AT-free graphs and perfect graphs, as well as to determine
X(G) for some classes of graphs such as: interval graphs, chordal graphs, and
comparability graphs [1] . In all those cases, special structures (patterns) have
been found to characterize the classes of graphs that are colorable in polinomial
time complexity.

Graph vertex coloring is an active field of research with many interesting
subproblems. The graph coloring problem has many applications in areas such
as: scheduling problems, frequency allocation, planning, etc. [2–4].

Coloring planar graphs represents a relevant area of interest in graph and
complexity theory, since it involves the frontier between efficient and intratable

63



computational procedures. Into the set of planar graphs, the polygonal chain
graphs have been a relevant issue of researching in mathematical chemistry,
maybe because they express molecular graphs used to represent the structural
formula of chemical compounds [5, 7, 8].

The 3-coloring problem has been shown to be a hard problem (NP-complete
problem). We propose a novel greedy algorithm for the coloring on planar graphs.
Our proposal is based on the logical specification of the constraints given by a
3-coloring of an polygonal array as the core of the coloring on planar graphs.

2 Preliminaries

Let G = (V,E) be an undirected simple graph (i.e. finite, loop-less and without
multiple edges) with vertex set V (or V (G)) and set of edges E(orE(G)). Two
vertices v and w are called adjacent if there is an edge v, w ∈ E, joining them.
The Neighborhood of x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E} and its closed
neighborhood is N(x) ∪ {x} which is denoted by N [x]. Note that v is not in
N(v), but it is in N [v]. We denote the cardinality of a set A, by |A|. The degree
of a vertex x ∈ V , denoted by δ(x), is |N(x)|. The maximum degree of G, or
just the degree of G, is ∆(G) = max{δ(x) : x ∈ V }.

A path from a vertex v to w is a sequence of edges: v0v1, v1v2, ..., vn−1vn
such that v = v0, vn = w, vk is adjacent to vk+1 and the length of the path is
n. A simple path is a path such that v0, v1, ..., vn−1, vn are all different. A cycle
is just a nonempty path in which the first and last vertices are identical; and a
simple cycle is a cycle in which no vertex is repeated, except the first and last
vertices. A k-cycle is a cycle of length k (it has k edges). A cycle of odd length is
called an odd cycle, while a cycle of even length is called an even cycle. A graph
without cycles is called acyclic.

Given a subset of vertices S ⊆ V , the subgraph of G where S is the set of
vertices and the set of edges is {{u, v} ∈ E : u, v ∈ S}, is called the subgraph of
G induced by S, and it is denoted by G|S. G− S denotes the graph G|(V − S).
The subgraph induced by N(v) is denoted as H(v) = G|N(v), which contains
all the nodes of N(v) and all the edges that connect them.

An independent or stable set is a set of vertices in a graph such that none of
its vertices is adjacent to another. That is, it is a set S ⊆ V (G) of vertices such
that for any pair of them there is not an edge that connects them.The size of
an independent set is the number of vertices it contains. An independent set is
maximal if it is not a proper subset of another another independent set, and it
is maximum in G if there is not another independent set in G with a cardinality
higher than |S|.

A coloring of a graph G = (V,E) is an assignment of colors to its vertices. A
coloring is proper if adjacent vertices always have different colors. A k-coloring
of G is a mapping from V into the set {1,2,...,k} of k ”colors”. The k- colorability
problem consists of deciding wheter an input graph is k-colorable. The chromatic
number of G denoted by X(G) is the minimum value k such that G has a proper
k-coloring. If X(G) = k, then G is said to be k-chromatic or k- colorable.
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Let G = (V,E) be a graph. G is a bipartite graph if V can be partitioned
into two subsets U1 and U2, called partite sets, such that every edge of G joins
a vertex of U1 to a vertex of U2. If G = (V,E) is a k-chromatic graph, then it is
possible to partition V into k independent sets V1, V2, ..., Vk called color classes,
but it is not possible to partition V into k − 1 independent sets.

3 Planar Graphs

Planar graphs play play an important role both in the graph theory and in the
graph drawing area. In fact, planar graphs have several interesting properties:
they are sparse, four-colorables, and their inner structure is described succintly
and elegantly [9].

A drawing Γ of a graph G maps each vertex v to a distinct point Γ (v) of the
plane and each edge (u, v) to a simple open Jordan curve Γ (u, v) with endpoints
Γ (u) and Γ (v). A drawing is planar if no two distinct edges intersect except,
possibly, at common endpoints. A graph is planar if it admits a planar drawing.
A planar drawing partitions the plane into connected regions called faces. The
unbounded face is usually called external face or outer face. If all the vertices
are incident to the outer face the planar drawing is called outerplanar, and the
graph admitting it is an outerplanar graph.

Given a planar drawing, the (clockwise) circular order of the edges incident
to each vertex is fixed. Two planar drawings are equivalent if they determine
the same circular orderings of the edges incident to each vertex (sometimes
called rotation scheme). A (planar) embedding is an equivalent class of planar
drawings and is described by the clockwise circular order of the edges incident to
each vertex. A graph put together with one of its planar embedding is sometimes
referred to as a plane graph. A non-connected graph is planar if and only if all
its connected components are planar.

Perhaps the most renown property is the one stated by Euler’s Theorem,
which shows that planar graphs are sparse. Namely, given a plane graph with
n vertices, m edges and f faces, we have n − m + f = 2. A simple corollary
that can be deduced from the Euler’s rule, is that for a maximal planar graph
with at least three vertices, where each face is a triangle, then (2m = 3f), and
as m = 3n − 6, and, therefore, for any planar graph we have m ≤ 3n − 6. This
number reduces to m = 2n − 3 for maximal outerplanar graphs with at least
three vertices (and m ≤ 2n − 3 for general outerplanar graphs). Also, if n ≥ 3
and the graph has no cycle of length 3, then m ≤ 2n− 4. Finally, if the graph is
a tree, then m = n− 1.

These considerations allow us to replace m with n in any asymptotic calcu-
lation involving planar graphs, while for general graphs only m ∈ O(n2) can be
assumed. From a more practical perspective, they allow us to decide the non-
planarity of denser graphs without reading all the edges (which would yield a
quadratic algorithm).

The first complete characterization of planar graphs is due to Kuratowsky [14],
and states that a graph is planar if and only if it contains no subgraph that is a
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subdivision of K5 or K3,3, where K5 is the complete graph of order 5 and K3,3 is
the complete bipartite graph with 3 vertices in each of the sets of the partition.
A similar result, recasted in terms of graph minors, is Wagners theorem that
states that a graph G is planar if and only if it has no K5 or K3,3 as minor, that
is, K5 or K3,3 cannot be obtained from G by contracting some edges, deleting
some edges, and deleting some isolated vertices [15, 16]. Observe that the two
characterizations are different since a graph may admit K5 as minor without
having a subgraph that is a subdivision of K5.

4 Coloring a planar graph

From now on, we consider only planar graphs as working graphs. The purpose
of this research is to determine when a planar graph is 3 or 4-colorable. The
famous four coloring theorem (4CT) [10–12] guarantees us that all planar graph
is 4-colorable. Furthermore, 4CT provides an O(n2) time algorithm to 4-color
any planar graph [11, 12]. However, the current known proof for the 4CT is
computer assisted. In addition, the correctness of the proof is still lengthy and
complicated [17].

On the other hand, any planar graph triangle-free is 3-colorable, according to
the relevant theorem by Grotszch [13]. In a similar sense, it is easy (in lineartime
on the size of the graph) to recognize if an input graph is 2-colorable, since it
involves to recognize if the graph has (or not) even cycles.

Thus, the hard part to recognize the 3-colorable or 4-colorable planar graphs
is when they contain triangles, because it exists planar graphs for both cases.

For example, any planar graph containing K4 or odd wheels will request four
colors to proper coloring those graphs. However, those patterns are no the unique
4-colorable cases. If we compose two (or more) wheels sharing one triangle and
adding one edge to join the vertices of the last triangle of each wheel, we can form
3 or 4-colorables planar graphs. We show in the following section our proposal
for the coloring of planar graphs

4.1 An algorithm for the coloring of planar graphs

We consider as input a planar graph G = (V,E) whose draw has been already
embedded in the plane. Let Tres = {1, 2, 3} be the set of the three possible colors
to use. To each vertex x ∈ V (G) a set of prohibited colors is associated with it,
denoted by Tabu(x). The following lemma proposes a method for the 3-coloring
of acyclic components whose vertices have at most one prohibited color.

Lemma 1 An acyclic component where its vertices have at most one color as a
restriction is 3-colorable.

Proof 1 The acyclic component is considered as a tree rooted in vr. A pre-order
coloring is made from vr, where Color(vr) = MIN{Tres − Tabu(vr)}. When
advancing in pre-order in each new level to be colored, all vertex yi in the new
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level will have at most two restricted colors from its parent node and the color
that could exist in Tabu(yi). Thus, it has been always available a color of the
three possible in Tres. The 3-coloring process ends when all nodes of the tree
have been visited in pre-order.

We will call the above procedure for coloring acyclic graphs, as the ISAT (G)
process. A planar graph G has a set of closed non-intersected regions R =
{r1, . . . , rk} called faces. Each face ri is represented by the set of edges that
bound its inside area. All edge {u, v} in G that is not the border of some face
from G, is represented by its vertices label uv, and they are called acyclic edges.

Two faces ri, rj ∈ R are adjacents if they have common edges, this is,
E(ri) ∩ E(rj) 6= ∅. Otherwise, they are independent faces. Two acyclic edges
are adjacents if they share a common endpoint. An acyclic edge is adjacent to
a region ri if they have just one common vertex. A set of faces is independent if
each pair of them are independent.

Lemma 2 Let A = {f1, f2, . . . , fn} be a set of n faces where each face has at
least one vertex that does not restrict color 3. If the set of faces is independent
or all of them have a common vertex, then A is 3- colorable

Proof 2 This Lemma is shown by induction on the number of faces in the set.

1. For a single face this is 3-colorable, since every cycle with at least one unre-
stricted vertex is 3-colorable.

2. Suppose that the hypothesis on sets up to n− 1 faces is validated.
3. Let A be a set of n faces where each face has at least one vertex that does not

restrict color 3. If there is a face fa ∈ A that is independent with all other
regions in A, since fa is 3-colorable (as in the case 1), fa can be removed
from A. The remaining set in A has n−1 faces, and the inductive hypothesis
is held.
Otherwise, the n faces in A share a common vertex. Let x ∈ fi,∀fi ∈ A be
the common vertex. If 3 /∈ Tabu(x) then by assigning the color 3 to x and
removing it from the graph, all the faces in A become opened and form an
acyclic graph, which is 3-colorable by Lemma 1.
Assuming Tabu(x) = 3, but ∀fi ∈ A, there is yi ∈ V (fi) such that Tabu(yi) =
∅. By assigning color 3 to each one of these y′is, and eliminating them from
each V (fi), an acyclic component is formed, that it is 3-colorable by Lemma
1.

Lemma 3 For any vertex v ∈ V (G), N [v] is δ(v) + 1-colorable.

Proof 3 Assume that all y ∈ N(v) have different colors from each other. Then,
v has δ(v) neighborhood colors and it can take only a different color from its
neighborhood, so N [v] takes δ(v) + 1 colors. If there are repeated colors in the
neighborhood of v, then it is needed the use of at most δ(v) colors, therefore,
N [v] is δ(v) + 1-colorable.

67



The previous lemma is applied in the sense that for any vertex of minimal
degree (e.g less than 3), 3 colors is enough to be colored. Afterwards, it can be
removed at the beginning of any 4-coloring algorithm in order to simplify the
resulting graph. Also this Lemma justifies to keep only one edge between adjacent
faces, because more than two edges between adjacent faces imply vertices of
degree 2 that can be contracted to any of the extremal points of the common
boundary between both faces.

We build an internal-face graph Gf = (X,E(Gf )) from G, in the following
way:

1. Each face ri ∈ R has attached a node x ∈ V (Gf ) labeled by its composing
edges.

2. Each acyclic edge from G has attached a node of Gf labeled by its vertices
label.

3. There is an edge {u, v} ∈ E(Gf ) joining two adjacent nodes of Gf when its
corresponding faces (or acyclic edges) are adjacent in G.

4. Each edge in Gf is labeled by the common elements (a vertex or edge)
between the two adjacent nodes.

Gf is called the internal-face graph of G. Notice that Gf is not the dual graph
of G, since in the construction of Gf the external face is not considered. Notice
that Gf is a planar graph too, where its nodes represent faces or edges from G,
but it is not neccesarily a tree graph. However, if Gf has a tree topology, then
we achieve a relevant property for the coloring of G.

When Gf is a tree we call to G, its corresponding planar graph, a polygonal
tree [6]. In this case, an order for visiting the faces of the planar graph provides
efficient procedures for 3-coloring G, as the following thereom claims.

Theorem 1 If the internal-face graph of a planar graph G has a tree topology,
then G is 3-colorable.

Proof 4 Let Gf be the internal-face graph of a planar graph G. Each face of G
represented by a node x ∈ V (Gf ) is 3-colorable since it is a simple cycle. Fur-
thermore, all acyclic edge of G, represented by a node of Gf , is also 3-colorable
since all acyclic graph is in fact 2-colorable. Now, we propose a 3-coloring for
G based in traversing the nodes of Gf in pre-order, coloring first the face of the
father node of Gf and after, the faces of its children. In each current level, the
two adjacent faces (father and children in G) are considered. Both regions have
two common extremal vertices x, y in its common boundaries. Those common
vertices are colored first, and then, the remaining vertices in both faces have two
prohibited colors at most. Notice that there is not a pair of adjacent vertices u
and v in any of the both faces, such that {u, v} ⊆ (N(x) ∩N(y)), because then
{x, y, u, v} form K4 and this subgraph can be not part of any polygonal tree.
Thus, for all remaining vertices in both faces, it is available at least one color of
the three possible in Tres. The 3-coloring process ends when all the nodes of the
tree Gf have been visited in pre-order.
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The order in the traversing of the common edges between adjacent faces by
the previous theorem, provides us maximal paths formed by the common edges
and common vertices from the root node until a leaf node of Gf is achieved.
This strategy is described in the following procedure.

1. To build the internal-face graph Gf from G.
2. If(Gf is a tree, or it is formed by independent faces, or all faces have a

common vertex) then Return(G is 3-Colorable) /* by previous Lemmas and
theorem */

3. Otherwise, let M be the set of common edges between each pair of adjacent
faces.

4. To build the maximal independent sets from M .
5. It iterates over each one of the maximal independent sets from M . Let e.g.
S = {s1, s2, . . . , sk} be one of those maximal independent sets.

6. The color 3 is assigned to each si ∈ S, and ∀y ∈ N(si), Tabu(y) = 3.
7. G = G− S
8. The iteration on the maximal independent sets continues until all the sets

are processed.
9. Only the new individual closed regions that were created by coloring the

graph will remain in G.

At the end of this process we have as output: If Gf holds the conditions of
the lemma or previous theorem, then G is 3-colorable. If the process returns a
new graph G′, where there is a face of odd length and all their adjacent vertices
are restricted with the color 3, then G is 4-colorable.

4.2 Design of the proposal

We present now, a polynomial-time algorithm for the coloring of a planar graph
G. Given an embedding of a planar graph G, the first step consists in reducing
more than two edges between adjacent faces to only one common edge. It must
be removed all v ∈ V (G) such that δ(v) < 3, since those vertices are 3-colorable
(based on Lemma 3). Afterwards, a new planar graph Ga is formed from the
remaining vertices and edges from G.

Furthermore, if Ga is 3-colorable then G is also 3-colorable. For example,
if Ga is a polygonal tree, outerplanar, serial - parallel, or Ga is a triangle-free
graph, then G is 3-colorable, based on the previous Lemmas and theorem.

The second step is to choose an initial region of Ga to start the process
of vertices-coloring. For this, we look for the region (face) fr where the sum
of the degrees of its vertices is maximal. When such region is identified, we
search for the vertex xa ∈ V (fr) of maximum degree to be colored first, that is:
f(xa) = color(xa);∀y ∈ N(xa) : Tabu(y) = Tabu(y) ∪ {f(xa)};

Once the first vertex xa and a color c have been chosen, S = S ∪ {xa};
Ga = Ga − {xa}, an iterative process is performed with the purpose to form
a maximal independet set S from Ga. Thus, the main strategy in our proposal
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consists in calculating the maximal independent set S of G and assigning a color
for every vertex y ∈ S. To the remaining graph (G− S) is colored by using the
ISAT procedure.

The following pseudo-codes apply the above described procedures.

Algorithm 1 3-coloring

Input: a planar graph G
Output: the graph G with a validate coloring
1: List the faces of the graph G
2: Form the graph Gf (internal-face graph of G)
3: S = Max Ind Set(Gf ); a maximal independent set of vertices of G
4: for each vertex x ∈ S do
5: assign color 3 to x
6: for each y ∈ N(x) do
7: Assign Tabu(y) = Tabu ∪ {3}
8: end for
9: end for

10: G = G− S
11: if G contains an odd cycle whose vertices are restricted with color 3 then
12: X(G) = 4; exit
13: end if
14: if G is a base case (acyclic or a polygonal tree) then
15: Apply ISAT procedure to assign a valid coloring to G
16: else
17: repeat
18: end if

Algorithm 2 Max Ind Set(G): Construction of a maximal independent set of
G
Input: a planar graph G and his graph Gf (internal-face graph)
Output: S is a maximal independent set of G
1: Select x ∈ V (G) the vertex that belongs to the largest number of odd cycles in G
2: Select y ∈ V (Gf ) the vertex of higher degree in Gf

3: for each u ∈ N(y) do
4: mark u as visited
5: end for
6: for each vertex u ∈ Gf that is not visited do
7: visit u and mark N(u)
8: end for
9: for each vertex u visited in the previous step do

10: calculate the partial maximal independent set considering the edges of G
11: end for
12: S is the conjunction among the partial maximal independent sets already calculated
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Example of planar graph G where the faces are labeled (Figure 1).
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Fig. 1. Graph G with faces identified
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Fig. 2. The internal-face graph Gf of G

A relevant strategy in our algorithm is to consider the vertex appearing in
the maximum number of odd cycles of G as part of the maximal independent
S to be built. For example, according to the graphs in Figure 1 and 2, two
maximal independent sets are: S1 = {2, 4, 6, 8}, and S2 = {1, 4, 7, 11}. However,
S2 contains the vertex 11 which appears in the maximum number of odd cycles
of G, then S2 is a better option than S1.
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Table 1. Odd cycles table

Vertex x Odd cycles

1 0
2 0
3 0
4 0
5 0
6 1
7 0
8 1
9 2
10 2
11 3

The following tables show the results from step 1 through 7 of the algorithm.
For example, Table 1 shows the list of all vertices of G in the first column, the
second column represents the number of odd cycles in which this vertex belongs.
Meanwhile, Table 2 shows the vertices obtained after executing the steps 2-8 of
the algorithm.

Table 2. N(x) table

Vertex visited x N(x)

1 2,6,5,4
3 4,2,8
7 2,6,8
9 8,5,4

Table 3. Maximal independent sets: partial and total

Vertex Edge label Partial maximal independent set

1 (11,8),(8,7),(7,6),(6,11) 11,7
3 (11,10),(10,9),(9,11) 11
7 (4,9),(9,8),(8,3) 4
9 (1,6),(5,10),(10,6) 1

Maximal independent set 1,4,7,11

72



1

5 2

4 3

6

11

10 7

9 8

1

2

3

4

5

6

7

8

9

Fig. 3. Assigning color 3 to the vertices of S - a maximal independent set of G

After removing the vertices already colored, a base coloring case graph is
obtained (applying ISAT), making it a 3-colorable instance.
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Fig. 4. A 2-coloring on the resulting graph (G− S)

4.3 Time-Complexity Analysis

The most expensive time-procedure in our proposal is the algorithm 2. The
time-complexity analysis of this procedure follows in this section.

It’s known that to build the internal-face graph Gf requires time O(m+ n).
Into the algorithm 2, the step 1 can be performed in time O(m+ n), based in a
depth-first search on G, in order to recognize the parity of the cycles in G. The
step 2 requires time O(f), that in a worst case, it is of order O(m), when the
faces in G has minimal lengths. The for in steps: 3 → 5, consists in visiting all
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vertex in Gf , that in a worst case, it is also of O(m). The for in steps: 6 → 8,
is similar to previous for, and it has also a time complexity of O(m), in a worst
case. The last for (steps: 9 → 11), consists in visiting all vertex in G, and it
has a complexity time of O(n). The most expensive step in algorithm 2 is the
last step (step 12). It must to check the constraint for independence vertices in
the arrays containing partial maximal independent sets, and in a worst case, it
requires time of O(n2). Then, algorithm 2 has a polynomial time complexity of
order O(n2).

5 Conclusion

A polynomial-time algorithm for coloring planar ghaphs has beeen shown. Our
proposal is based on the computation of a maximal independent set S of the
input graph G. The maximal independent set S has some characteristics. One
of those is that it contains the vertex that appears in the maximum number of
odd cycles of G. The construction of S considers the internal-face graph of G in
order to select the vertices that decomposes a maximal number of initial faces
of G.

A set of partial maximum sets on the internal-face of the graph are computed.
The maximal union of those partial sets form the maximal independent set S,
avoiding to visit all vertices of the original graph, and coloring first the vertices
that are crucial for decomposing the input graph in a set of acyclic graphs.
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