
Model counting for]2SAT problem in
outerplanar graphs.

Marco A. López1, J. Raymundo Marcial-Romero1, José A. Hernández1, and
Guillermo De Ita2

1 Facultad de Ingenieŕıa, UAEM
2 Facultad de Ciencias de la Computación, BUAP

mlopezm158@alumno.uaemex.mx, jrmarcialr@uaemex.mx,

xoseahernandez@uaemex.mx, deita@cs.buap.mx

Abstract. The satisfiability problem for formulas in two conjunctive
Normal Form (2SAT) is solved in polynomial time, and]2SAT which is
the count version of 2SAT is]P-complete. It has been shown that for
certain types of formulas,]2SAT can be computed in polynomial time.
In this paper we define a new method, based on embedded cycles, to
compute]2SAT on the so-called outerplanar formulas. Our algorithm’s
time complexity is given by O(n+m) where n is the number of variables
and m the number of clauses of the formula. Although the time com-
plexity is similar to other methods, experimental results show that the
new method is faster.

1 Introduction

]SAT (the problem of model counting for a Boolean formula) concerns espe-
cially to artificial intelligence (AI), and has a direct relationship with the au-
tomated theorem proving, as well as to approximate reasoning [1–3].]SAT is
a]P complete problem, even for formulas in two conjunctive normal form, so
for complete methods, only exponential time algorithms are known. The exact
algorithm with the best bound until now was presented by Wahlström [4], who
provides an O(1.2377n)-time algorithm, where n is the number of variables of
the formula. Exists some formula classes where,]2SAT can be solved in linear
time [1]. Relevant classes of this formulas are monotone formulas and cactus
formulas [5].

In practice there are some tools, called SAT solvers to solve]SAT in efficient
time. sharpSAT is a SAT solver reported in literature as the fastest exact and
randomized tool, it uses a component cache system that ensures a minimum
evaluation on subformulas, generated in the formula decomposition, which are
similar.

Besides sharpSAT, in [5] they present an algorithm that uses formula de-
composition until achieve a certain type of formulas called cactus. The evidence
presented [5] shows that using formula decomposition and a cactus formula as a
base case, computing models is faster than the strategy used by sharpSAT .

76

In [6] a method for counting models in the so calles outerplannar formulas is
presented. The method is based on a treewidth decomposition.

In this paper we present a new method to count models in the so called
outerplanar formulas. This method to compute]2SAT on outerplanar formu-
las is based on a transformation in the input formula on its constraint signed
graph. Evidences show that, using outerplanar formulas as a base case is efficient
compared to [5] and sharpSAT.

Another special class of graphs contained into outerplanar graphs is the class
of polygonal array graphs that has been widely used in mathematical chemistry,
since they are molecular graphs used to represent the structural formula of chem-
ical compounds. In particular, hexagonal arrays are the graph representations of
an important subclass of benzenoid molecules, unbranched catacondensed ben-
zenoid molecules, which play a distinguished role in the theoretical chemistry of
benzenoid hydrocarbons [7, 8].

In our case, we are more interested in the application of counting models
on conjunctive normal form formulas as a medium to develop methods for ap-
proximate reasoning. For example, for computing the degree of belief on propo-
sitional formulas, or for building Bayesian models. It is relevant to know how
many models are maintained while input conjunctive normal form formulas are
being updating [2, 9, 10].

This method works using the embedded form of outerplanar graphs, those
embedded graphs are then used to compute]2SAT in linear time.

The paper is organized as follows, in Section 2 the preliminaries are estab-
lished. In Section 3 an embedded graph representation of outerplanar formulas is
presented. In Section 4, our main procedure is presented, in section 5 the results
of the paper are shown and finally, the Conclusion.

2 Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal is either a variable
xi or a negated variable xi. As usual, for each xi ∈ X, we write x0i = xi and
x1i = xi. A clause is a disjunction of different literals (sometimes, we also consider
a clause as a set of literals). For k ∈ N , a k-clause is a clause consisting of exactly
k literals and, a (≤ k)-clause is a clause with at most k literals. A variable x ∈ X
appears in a clause c if either the literal x1 or x0 is an element of c.

A Conjunctive Normal Form (CNF) F is a conjunction of clauses (we also
call F a Conjunctive Form). A k-CNF is a CNF containing clauses with at most
k literals.

We use ν(Y) to express the set of variables involved in the object Y , where Y
could be a literal, a clause or a Boolean formula. Lit(F) is the set of literals which
appear in a CNF F , i.e. ifX = ν(F), then Lit(F) = X∪X = {x11, x01, . . . , x1n, x0n}.
We also denote {1, 2, . . . , n} by [[n]].

An assignment s for F is a Boolean function s : ν(F)→ {0, 1}. An assignment
can be also considered as a set which does not contain complementary literals.
If xε ∈ s, being s an assignment, then s turns xε true and x1−ε false, ε ∈ {0, 1}.

77

Considering a clause c and assignment s as a set of literals, c is satisfied by s if
and only if c ∩ s 6= ∅, and if for all xε ∈ c, x1−ε ∈ s then s falsifies c.

If F1 ⊂ F is a formula consisting of some clauses of F , then ν(F1) ⊂ ν(F),
and an assignment over ν(F1) is a partial assignment over ν(F).

Let F be a Boolean formula in CNF, F is satisfied by an assignment s if
each clause in F is satisfied by s. F is contradicted by s if any clause in F is
contradicted by s. A model of F is an assignment for ν(F) that satisfies F . We
will denote as SAT (F) the set of models for the formula F .

Given a CNF F , the SAT problem consists on determining if F has a model.
The]SAT problem consists of counting the number of models of F defined over
ν(F).]2-SAT denotes]SAT for formulas in 2-CNF.

2.1 The signed primal graph of a 2-CF

There are some graphical representations of a CNF (see e.g. [11]), we use here
the signed primal graph of a two conjunctive normal form.

Let F be a 2-CNF, its signed primal graph (constraint graph) is denoted by
GF = (V (F), E(F)), with V (F) = ν(F) and E(F) = {{ν(x), ν(y)} : {x, y} ∈
F}, that is, the vertices of GF are the variables of F , and for each clause {x, y}
in F there is an edge {ν(x), ν(y)} ∈ E(F). For x ∈ V (F), δ(x) denotes its
degree, i.e. the number of incident edges to x. Each edge c = {ν(x), ν(y)} ∈ E
is associated with an ordered pair (s1, s2) of signs, assigned as labels of the edge
connecting the literals appearing in the clause. The signs s1 and s2 are related to
the literals xε and yδ, respectively. For example, the clause {x0, y1} determines
the labelled edge: ”x−+y” which is equivalent to the edge ”y+−x”.

Formally, let S = {+,−} be a set of signs. A graph with labelled edges
on a set S is a pair (G,ψ), where G = (V,E) is a graph, and ψ is a function
with domain E and range S. ψ(e) is called the label of the edge e ∈ E. Let
G = (V,E, ψ) be a signed primal graph with labelled edges on SxS. Let x and
y be vertices in V , if e = {x, y} is an edge and ψ(e) = (s, s′), then s(resp.s′) is
called the adjacent sign to x(resp.y). We say that a 2-CNF F is a path, cycle,
a tree, or an outerplanar graph, if its signed constraint graph GF represents a
path, cycle, a tree, an outerplanar graph, respectively. We will omit the signs on
the graph if all of them are +.

Notice that a signed primal graph of a 2-CNF can be a multigraph since two
fixed variables can be involved in more than one clause of the formula forming so
parallel edges. Furthermore, a unitary clause is represented by a loop (an edge
to join a vertex to itself). A polynomial time algorithm to process parallel edges
and loops to solve]SAT has been shown in [1].

Let ρ : 2-CNF→ GF be the function whose domain is the space of Boolean
formulas in 2-CNF and codomain the set of multi-graphs, ρ is a bijection. So
any 2-CNF formula has a unique signed constraint graph associated via ρ and
viceversa, any signed constraint graph GF has a unique formula associated.

78

2.2 Cumulative operations

We define a set of cumulative operations as macro, in this paper a macro must be
constructed using the method shown in [5], using the fact that a macro is a linear
equation of the form M = αx+ β where α and β represent the models already
counted and x the models to be computed. Since the models of an outerplannar
formula always belongs to a simple cycle, M = {αα + βα, αβ + ββ}, where we
omit the variable x. A macro contains four elements, so we need to perform
operations using two more elements than [5].

A new set of equations must be constructed, associated to every pair of signs
(ε, δ) of an edge {xε, yδ}, in a graph.

(αα+βα, αβ+ββ) =


(αβ−1 + ββ−1 , (αα−1 + αβ−1) + (βα−1 + ββ−1)), if (εi, δi) = (−,−)

((αα−1 + αβ−1) + (βα−1 + ββ−1), αβ−1 + ββ−1), if (εi, δi) = (−,+)

(αα−1 + βα−1 , (αα−1 + αβ−1) + (βα−1 + ββ−1)), if (εi, δi) = (+,−)

((αα−1 + αβ−1) + (βα−1 + ββ−1), αα−1 + βα−1), if (εi, δi) = (+,+)

Counting on acyclic graphs, like tree or paths, using a different equation
than [5] gives a new panorama, counting in graphs like cactus graphs with always
non intersecting cycles, we can use this set of operations and define a macro as
the cumulative operations in a simple and non intersecting cycle.

3 Outerplanar 2-CNF Formulas

An outerplanar 2-CNF formula is one whose signed primal graph is ourterplanar
e.g the graph has a planar drawing for which all vertices belong to the outer
face of the drawing. Outerplanar graphs may be characterized (analogously to
Wagner’s theorem for planar graphs) by the two forbidden minors K4 and K2,3,
or by their Colin de Verdière graph invariants. They have Hamiltonian cycles if
and only if they are biconnected, in which case the outer face forms the unique
Hamiltonian cycle. Every outerplanar graph is 3-colorable, and has degeneracy
and treewidth at most 2 [12]. The outerplanar graphs are a subset of the planar
graphs, of the serial-parallel graphs, and of the circle graphs.

3.1 Counting on outerplanar graphs

Using the representation of an outerplanar graph as a graph with embedded
cycles, there is a method to solve the most internal cycles as simple cycles,
and replacing the set of vertices that form the cycle with a macro. In this way
it is possible to count models on any outerplanar graph its representation as
embedded graph is known.

79

3.2 Common edges identification

One characteristic of the outerplanar graphs is that they do not contain the
subgraph K2,3, this subgraph can be obtained with two cycles intersected by
two edges, that is, there exists two common edges between a pair of cycles. With
this we found that an outerplanar graph has at most one edge between any pair
of cycles (Fig. 1).

1 2

34

5

6

Fig. 1. Simple cycles intersected in one edge

1 2 3

4

5 6

Fig. 2. Simple cycles intersection in a depth first search construction

12 34 56

Fig. 3. Embedded graph of two intersected simple cycles

80

Identification of common edges is done by constructing an expansion tree of
the graph, which we can find a set of back edges or cycles within the graph, this
is necessary to identify intersection edges that belongs to the expansion tree or
back edges (Fig. 2).

To substitute an edge of the expansion tree for one of the back edges, for
a new construction of a embedded graph, an edge of the expansion tree can
become in one of the back edges in the embedded graph (Fig. 3), the following
considerations allow this exchange to be made between the sets of tree and back
edges:

– If a pair of the back edges intersect on a tree edge, the back edge that closes
at a low level, on the tree, is replaced by the intersecting tree edge.

– If two back edges intersect on a tree edge, and they form two sub-partitions,
that is, each one belongs to a different branch in the tree. The back edge
that closes at a low level, on the tree, is replaced by the intersecting tree
edge.

3.3 Embedded graph transformation

If we identify the common edges between cycles it is possible to find an expansion
tree, which the common edges form the set of back edges, so that the back edges
form an embedded graph.

By obtaining the common edges in a graph and eliminating them, it is possi-
ble to generate a set of possible paths, obtaining Cn, a simple cycle of n vertices.
This way it is possible to generate multiple expansion trees that can be seen as
a set of embedded cycles (Fig. 4).

1

2

3 4

5

6

7

8

9

10 11

12

1

2

3 4

5

6

7

8

9

10 11

12

Fig. 4. Outerplanar graph and common edges identification

81

With these graphs it can be shown that no matter which vertex the construc-
tion of the new expansion tree begins on, adding the common edges will always
result in an embedded graph (Fig. 5).

1 2345 6 7 8 9101112

1 2 3 4 56789 10 11 12

Fig. 5. Embedded graph transformations from Fig. 4 from the vertex labeled as 1.

By constructing an embedded graph it is possible to assign an order in which
each embedded cycle must be solved, inner cycles first. This way all cycles on
outerplanar formulas can be handled independently.

82

4 Computing]2SAT on outerplanar 2-CNF formulas

If F consists of disconnected sub-formulas then]2SAT (F) =
∏k
i=1]2SAT (Fi)

where Fi, i = 1, . . . , k, are the disconnected sub-formulas of F [3]. The time
complexity for computing]2SAT (F), denoted as T (]2SAT (F)), is given by the
rule T (]2SAT (F)) = max{T (]2SAT (Fi)) : Fi is a disconnected subformula
of F}. Thus, a first decomposition of the formula is done via its connected
components, and from here on, we consider only outerplanar connected formulas.

Due that we can assign an order to solve inner cycles first, in embedded
graphs, and replace that cycle with a macro. We can compute]2SAT in a out-
erplanar graph in linear time.

We built a linear equation, macro, that represents the values mi = (αα +
βα, αβ + ββ) on each cycle in the embedded graph. And a linear equation for
each node (αα + βα, αβ + ββ).

Giving the first transformation in Fig. 5, we can handle two cycles at same
time and perform two operation sets, M1 and M2, where the vertices {5, 6, 7} ∈
M1 and {8, 12, 11, 10, 9, 4} ∈M2.

5

6

7

(1+0 , 0+1) - (0+0 , 0+1)

(1+1 , 1+0) - (0+1 , 0+0)

(2+1 , 1+1) - (0+0 , 0+1)

Fig. 6. Embedded cycle counting, M1.

The final operation gives a new macro M1 = (2 + 1, 1 + 0), a second macro
analogously can be obtained M2 = (8+5, 5+0). A third macro can be computed,
replacing the embedded cycles, we have that the vertices {5, 7, 8, 4} ∈ M3 and
{M1,M2} ∈M3 (Fig. 7).

83

4

5

7

8

(1+0 , 0+1) - (0+0 , 0+1)

(2+1 , 1+0) - (0+1 , 0+0)

(3+1 , 2+1) - (0+1 , 0+1)

(34+13 , 15+5) - (0+0 , 0+5)

Fig. 7. Embedded cycle counting, M3.

As a result we have M3 = (34 + 13, 15 + 0), to obtain a new set of values
when we replace an inner cycle by a macro we need to apply another set of
equations. If we have that Mi = (ααi + βαi , αβi + ββi) and a node with values
(αα−1

+ βα−1
, αβ−1

+ ββ−1
), to obtain (αα + βα, αβ + ββ):

– αα = ααi ∗ αα−1 + βαi ∗ αβ−1

– βα = ααi ∗ αβ−1
+ βαi ∗ ββ−1

– αβ = αβi ∗ αα−1
+ ββi ∗ αβ−1

– ββ = αβi ∗ αβ−1 + ββi ∗ ββ−1

This set of new equations only needs to use when a macro is applied, then
we can compute the next macro M4 where {1, 5, 4, 3, 2} ∈ M4 and M3 ∈ M4,
then M4 = (109 + 83, 62 + 0). Finally with the initial values of (1 + 0, 0 + 1) we
can obtain the total models in this example,]SAT (M4) = (192, 62) = 254

A relevant property of a macro, as defined in this paper, is the possibility to
represent cumulative operations via symbolic variables, making macros indistin-
guishable from individual operators. If subsequences of operators are repeated,
a hierarchy of macros can represent a more compactly plan than a simple op-
erator sequence, replacing each occurrence of a repeating subsequence with a
macro [13].

The correctness of our method is based in the following Theorem from [6].

Theorem 1. Let F1 and F2 be two formulas in 2-CNF. If F1 ∩ F2 = {xε1, xδ2},
e.g. a single clause then

]2SAT (F1 ∪ F2) =]2SAT (F1 |{xε1,xδ2}⊆s)×]2SAT (F2 |{xε1,xδ2}⊆s)+
]2SAT (F1 |{xε1,xδ−1

2 }⊆s)×]2SAT (F2 |{xε1,xδ−1
2 }⊆s)+

]2SAT (F1 |{xε−1
1 ,xδ2}⊆s

)×]2SAT (F2 |{xε−1
1 ,xδ2}⊆s

)

84

Proof. In order to satisfy F1 ∪ F2 the clause {xε1, xδ2} has to be satisfied, so
either {xε1, xδ2} ⊆ s or {xε1, xδ−12 } ⊆ s or {xε−11 , xδ2} ⊆ s. The computation of the
satisfying assignments of F1 ∪ F2 is given by

]2SAT (F1 ∪ F2) =]2SAT (F1 ∪ F2 |{xε1,xδ2}⊆s)+
]2SAT (F1 ∪ F2 |{xε1,xδ−1

2 }⊆s)+

]2SAT (F1 ∪ F2 |{xε−1
1 ,xδ2}⊆s

)

Assigning truth values to the variables x1 and x2 to satisfy {xε1, xδ2} in F1∪F2

gives two disconnected formula, by the hypothesis that F1 ∩ F2 = {xε1, xδ2}, so
the conclusion holds. ut

The previous theorem states that if we know the models of F1 where the
truth values of the variables x1 and x2 which joint F1 to another formula F2 via
a clause {xε1, xδ2} are known, then we can substitute the models where xε1 and xδ2
appears in F1 into those of F2 considering the truth values of x1 and x2 in F2.

5 Results

We implement our proposal and compare its runtime against sharpSAT which to
the best of our knowledge is the leading sequential implementation.Additionally,
in Table 1, we compare our proposal based on embedded cycles against our
previous version of markSAT based on bags [6]. Other outerplannar formulas,
Tables [2, 3, 4], represent polygonal tree graphs where each polygon has three
to eight sides. It is work to said that this implementation is sound and complete
hence the exact number of models is computed in all of them.

Table 1 shows instances of polygonal chains, with three sides each polygon,
which provides the maximum number of edges in outerplanar graphs.

Time in Seconds

Variables Clauses sharpSAT markSAT [6] markSAT

5002 10001 4.898 1.726 0.192

10002 20001 19.335 6.927 0.268

15002 30001 43.411 21.821 0.508

20002 40001 77.283 47.379 0.824

25002 50001 121.271 83.371 1.215

30002 60001 174.213 129.012 1.647

35002 70001 237.553 186.094 2.193

40002 80001 310.091 249.291 2.782
Table 1. Formulas whose signed constraint graph is outerplannar and polygonal chain,
using three sides polygons.

85

Table 2 shows instances of polygonal trees, with six sides each polygon.

Time in Seconds

Variables Clauses sharpSAT markSAT

40002 50001 1.793 0.492

60002 75001 3.036 0.753

80002 100001 4.766 1.515

100002 125001 6.822 2.593
Table 2. Formulas whose signed constraint graph is outerplannar and polygonal tree,
using six side polygons.

Table 3 shows results on polygonal trees using a side-randomizer, which gen-
erate graphs with polygons from three to eight sides each.

Time in Seconds

Variables Clauses sharpSAT markSAT

20173 25172 0.724 0.231

40331 50330 1.839 0.483

60980 75979 3.421 0.762

80797 100796 5.183 1.558

101146 126145 7.457 2.631
Table 3. Formulas whose signed constraint graph is outerplannar and polygonal tree,
using a side-randomizer.

Table 4 shows the running time of our proposal against sharpSAT using
outerplanar graphs as base case in a general formula decomposition.

Time in Seconds

Variables Clauses sharpSAT markSAT

6000 14397600 230.728 33.824

6000 16197300 261.389 38.072

6500 10560875 179.876 24.982

6500 12673050 216.774 29.875

6500 14785225 254.181 34.756

6500 16897400 292.413 39.849
Table 4. Decomposition on General Formulas using outerplanar graphs as a base case.

86

Conclusion

We present a new method for model counting in outerplanar graphs, with linear
time complexity.

Our procedure requires the construction of the expansion tree of the outer-
planar graphs, which in this case it is done in time O(n), the number of vertices
of the input formula. Once an expansion tree has been built a common edge
identification on both the tree and their back edges is done in time complexity
O(m), where m is the number of edges in the graph. A new expansion tree is
built with non common edges, in time O(n). Embedded edges can be added in
time O(n−12), the maximum number of back edges in a outerplanar graph. Model
counting is done in O(n+m).

References

1. Guillermo De Ita, Pedro Bello, and Meliza Contreras. New polynomial classes for
#2SAT established via graph-topological structure. Engineering Letters, 15(2),
2007.

2. Darwiche A. On the tractability of counting theory models and its application
to belief revision and truth maintenance. Journal of Applied Non-classical Logics,
11(1-2):11–34, 2001.

3. Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, April 1996.

4. Magnus Wahlström. A Tighter Bound for Counting Max-Weight Solutions to 2SAT
Instances. Springer Berlin Heidelberg, pages 202–213, 2008.

5. M. A. López, José Raymundo Marcial-Romero, Guillermo De Ita Luna, Héctor
A. Montes Venegas, and Roberto Alejo. A linear time algorithm for solving #2SAT
on cactus formulas. CoRR, ams/1702.08581, 2017.

6. Marco A. López, J. Raymundo Marcial-Romero, Guillermo De Ita, and Yolanda
Moyao. A Linear Time Algorithm for Computing #2SAT for Outerplanar 2-CNF
Formulas. Lecture Notes in Computer Science, 10880:72–81, 2018.

7. Shiu W. C. Extremal hosoya index and merrifield-simmons index of hexagonal
spiders. Discrete Applied Mathematics, 156:2978–2985, 2008.

8. Stephan Wagner and Ivan Gutman. Maxima and minima of the hosoya index and
the merrifield-simmons index. Acta Applicandae Mathematicae, 112(3):323–346,
2010.

9. Guillermo De Ita Luna. Polynomial Classes of Boolean Formulas for Computing
the Degree of Belief. Springer Berlin Heidelberg, pages 430–440, 2004.

10. Evgeny Dantsin and Alexander Wolpert. An Improved Upper Bound for SAT.
Springer Berlin Heidelberg, pages 400–407, 2005.

11. Stephan Szeider. On Fixed-Parameter Tractable Parametrizations of SAT.
Springer Berlin Heidelberg, pages 188–202, 2004.

12. Bodlaender H.L. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal of Computer, 25(6):1305–1317, 1996.

13. C. Bäcström, A. Jonsson, and P. Jonsson. Automaton plans. Journal of Artificial
Intelligence Research, 51:255–291, 2014.

87

