
Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

104

TRIGGER INFORMATION DATA FLOW FOR THE ATLAS

EVENTINDEX

Mikhail Mineev
1, a

, Fedor Prokoshin
2, b

, Alexander Yakovlev
1

(on behalf of the ATLAS Collaboration)

1 Joint Institute for Nuclear Research, Dubna, Russia

2 Centro Científico Tecnológico de Valparaíso-CCTVal,
Universidad Técnica Federico Santa María, Valparaiso, Chile

E-mail: a mineev@jinr.ru, b fedor.prokoshin@cern.ch

Trigger information is an important part of the ATLAS event data. In the EventIndex trigger

information is collected for various use cases, including event selection and overlap counting.
Decoding trigger information from the event records, stored as a bit mask, requires additional input
from the condition database and the Monte Carlo trigger database, as trigger configurations evolve
with time. Trigger information decoding depends on the run number for the recorded data and from

the settings for Monte Carlo simulation. This article describes trigger information handling in the
EventIndex and the interfaces used to access it.

Keywords: trigger information, ATLAS detector, EventIndex, HBase, EITrigDB library

© 2018 Mikhail Mineev, Fedor Prokoshin, Alexander Yakovlev

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

105

1. Introduction

The ATLAS experiment [1] at the Large Hadron Collider (LHC) records large amounts of
experimental data, analysis of which requires equally large amounts of Monte Carlo simulated data.
The EventIndex [2] is a global catalogue of all ATLAS events in all processing stages. ATLAS events
are stored in files grouped into datasets. They are identified by GUIDs (Globally Unique IDentifiers).

Event searching in the EventIndex can be done by various parameters:
• event identifiers (run/event numbers, trigger stream, luminosity block),
• trigger information (level 1 trigger (L1) and high level trigger (HLT)),
• references (pointers) to the events at each processing step in all permanent files on storage.
The Trigger Database library (EITrigDB) is used for trigger information importing, decoding

and access in the EventIndex. It retrieves the data from different trigger databases and stores in the
HBase [3]. Apache HBase is an open-source, distributed, versioned, non-relational database. HBase
provides Bigtable-like capabilities on top of Hadoop and HDFS. This library is written in Java. The

EITrigDB core class is used by the ATLAS EventIndex core package (Atlas-Event-Index-Core) [4].
This article describes the trigger information and its handling with EITrigDB library.

2. The trigger information dataflow

The ATLAS trigger system had three selection levels during Run 1: Level-1 (implemented in
specialized hardware), Level-2 (software-based analysis of information within the “regions of interest”
(RoI) marked by Level-1) and the Event Filter (software-based analysis of the full event). For Run 2
the software-based triggers have been merged into a single unit: the High-Level Trigger (see Figure 1).

Figure 1. The Trigger-DAQ System (Thilo Pauli, CERN)

Trigger decisions are stored in data files as trigger masks encoded using the B64 algorithm. If
a bit of the mask is set, this means that one of the sets of trigger conditions (trigger chains) has been
passed in this event. The position of this bit in mask (chain counter) indicates which chain has been

passed. Depending on the trigger configuration, the same chain counter may correspond to a different
chain name. The relation is uniquely defined by the trigger table corresponding to the trigger key (or
Super Master Key - SMK). Trigger masks from event record are decoded, and chain counters are
converted to chain names. The list of trigger chain names obtained after decoding are then stored in

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

106

updated event records. The COMA (COnditions MetadatA) [5] database in Oracle contains all trigger
information for recorded data. The EventIndex uses trigger tables replicated from COMA to HBase by
EITrigDB library for the trigger decision decoding. The trigger tables use SMK as key and
ChainName:ChainCounter pairs as columns. If the SMK is absent in the event record it is possible to
obtain it from the run number that is a part of the event ID. For this purpose Run:SMK table is

replicated in the HBase from COMA. The trigger decoding data flow is presented in Figure 2.

Figure 2. Trigger information decoding

The dataset trigger overlaps show how many events satisfy the different trigger conditions
(more than one trigger chains are passed). The trigger overlaps on the Hadoop Data Browser Web
page [6] is an example how the trigger information is used for the trigger menu efficiency
investigation. The information can be presented as a table or in form of a graph.

3. The EITrigDB library update

The previous version of the EITrigDB had no simulated Monte Carlo (MC) data support. Our
task was to make the EITrigDB work with the MC data. The main goals in the update were:

 add trigger information support for the MC data,

 keep the library structure the same as in the previous version.

The COMA database does not contain trigger information for the MC data. This information is
stored in the Monte Carlo Trigger DB (TRIGGERDBMC). ATLAS Offline Release [7] contains a
package TrigConfigSvc reading the trigger chain table. It has two versions, in C++ and in Python. The
MC Trigger DB parameters (SQL query and connection parameters) are used in the EITrigDB Java
code.

As in the case of recorded data, sometimes the SMK can be absent in the event record. But in

this case it is not possible to use the run number (this parameter is called MC channel number in the
MC datasets) because the SMK does not depend on this parameter. The trigger information appears in
the MC data at the reconstruction level. That is why the SMK number can be restored using the
reconstruction tag (r-tag). The r-tags are a part of the event ID, like a run number.

ATLAS Metadata Interface (AMI) [7] contains the r-tags and the information about SMK.
AMI has a Web interface which can be used to browse the r-tags [8]. The Python AMI client is used to
retrieve the table r-tag – SMK from AMI. This client is a part of the pyAMI package. EITrigDB calls

the Python methods from Java. The r-tags corresponding to the reconstruction production step
(production step = "recon") contain SMKs (see Table 1).

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

107

Table 1: R-tags and SMK

r-tag productionStep SMK SMK stored in HBase

r10517 recon 2203 2203

r10210 merge absent -1

All SMKs are stored in the HBase. If a r-tag has no SMK than the DB returns -1 instead of
positive-only SMK.

New classes were added in the EITrigDB library for MC data. They have suffix MC:
EITrigDB -> EITrigDBMC (storing and retrieving the data in/from HBase)

 EITrigDBig -> EITrigDBigMC (obtaining the data from MC TriggerDB, AMI)
The added classes inherit large part of methods form the classes for the recorded data. To save the
same library structure, the methods which read the data from the databases are rewritten retaining the
same names. R-tags are stored in the HBase without prefix “r” (the number only). This makes it
possible to work with them like with run numbers in case of the recorded data. Some new methods

were added in the EITrigDBigMC class. They retrieve the SMK for a given event ID from AMI and
from HBase.

4. Conclusion

The new realization of the EITrigDB library has the simulated Monte Carlo data support. It
has practically the same API as in the first version. As a next step it is possible to use Java AMI client
instead of the external pyAMI package.

 5. Acknowledgements

We would like to thank our colleagues: Joerg Stelzer and William Panduro Vazquez for their
assistance and help in this work.

References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3
S08003 doi:10.1088/1748-0221/3/08/S08003, 2008.

[2] Barberis D et al, The ATLAS EventIndex: architecture, design choices, deployment and first

operation experience, J. Phys.: Conf. Ser. 664 042003, doi:10.1088/1742-235 6596/664/4/042003,
2015.

[3] HBase home page: https://hbase.apache.org

[4] D.Barberis et al., The ATLAS Event Index: The Architecture of the Core Engine, 18th
International Workshop on Advanced Computing and Analysis Techniques in Physics Research,
Seattle, WA, USA, 21 - 25 Aug 2017, https://cds.cern.ch/record/2291669/

[5] E.J.Gallas et al., Conditions and configuration metadata for the ATLAS experiment, J. Phys. Conf.
Ser., 396 052033 doi:10.1088/1742-6596/396/5/052033, 2012.

[6] F. Prokoshin et al., ATLAS EventIndex a catalog of physics data // EventIndex Workshop, 4-5
June 2018, Milan, p. 13-20, https://indico.cern.ch/event/708832/sessions/277733/

[7] Albrand S. et al., The ATLAS metadata interface, J. Phys. Conf. Ser. 219 042030,

doi:10.1088/1742-6596/219/4/042030, 2010.

[8] J Fulachier et al, ATLAS Metadata Interface (AMI), a generic metadata framework, 2017, J. Phys.:
Conf. Ser. 898 062001, http://inspirehep.net/record/1638497

