
Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

119

DEVELOPMENT TOOLS OF COMPLEX TECHNOLOGICAL

OBJECTS COMPUTER-AIDED SIMULATION

ENVIRONMENTS

M. Yu. Orekhov
1,a

, D. V. Kalinin
2,b

, A. V. Matrosov
3,c

1 Alexandrov Research Institute of Technology, Russia

2 Alexandrov Research Institute of Technology, Russia

3 St. Petersburg State University, Russia

E-mail: a genazvale2005@yandex.ru, b kdv2112@mail.ru, c avmatrosov@mail.ru

This article examines instrumental support issues of complex technological objects simulation on the
level of specialized container and string libraries – tools, aimed for elaboration of real-time
visualization systems. Such system, destined for the purposes of computation’s visualization and

control, displays vector object-oriented 2D open-text formatted schemes with large number of
simulated object’s equipment pieces. Numerous modifications made throughout design of complex
technological object suggest treating scheme graphical objects and their dynamic behaviour as entities
with flexible structure – associative string-indexed containers. This approach simplifies visualization
system development and maintenance under simulated sub-objects’ types and dynamic behaviour
patterns indeterminacy condition. The paper emphasizes the significance of rapid string comparison
and container’s item lookup by given string-key for application’s performance. Present article also

stresses the importance of string and container libraries reliability as a vital condition of visualization
system sustainability.

Keywords: flexible structures, vector graphics, dynamic displaying, associative containers, index
table, string class, parsing

© 2018 Mikhail Yu. Orekhov, Dmitrii V. Kalinin, Alexander V. Matrosov

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

120

1. Introduction

Design of complex technological objects, such as Nuclear Power Plant Unit, requires
verification by virtue of simulation. This requirement [1], [2] states the problem of modeling and
training complexes elaboration taking place within simulated object design process. Specific tools of
solving this problem, including real-time visualization system, have to meet certain conditions:

 support of models (vector object-oriented 2D open-text formatted schemes), that
represent the complexity of simulated object with large number of interacting equipment
pieces;

 support of indefiniteness in types and attributes of simulated sub-objects, caused by
numerous models modifications made throughout design.

As a way to fulfill the first condition visualization system must ensure using significant
number of graphical objects’ types, editing of saturated schemes and operating in large namespaces of
simulated parameters. Accordance to the second condition implies support of user-defined graphical
objects’ types with volatile set of attributes and control parameters.

Considering mentioned conditions suggests handling vector graphical objects as flexible

structures with mutable set of attributes and rules of dynamic behaviour. “Flexible structure” here is a
synonym to associative container of diverse-typed items. Comparing to use of fixed-structured
graphical objects this approach simplifies elaboration of visualization system, eases its maintenance,
reduces time and pecuniary expense.

In order to perform simulated object's parameters monitoring and its systems control
interactively visualization environment must comply with requirements of high sustainability and
efficiency. Environment's development tools have to meet the same demands. Hence, speed of parsing

and string-key search becomes critically significant for efficient use of flexible structures, serializeable
as a sequence of pairs “name=value”. Safety of using flexible structures is ensured by protection of
memory releasing errors, errors of using iterators and dataset indexing. These circumstances determine
the relevance of specialized string and container libraries design.

2. Approach advantages

Let us enumerate major aspects of visualization environment functionality, provided by
application of reliable and efficient flexible structures:

 dynamic visualization of graphical objects with high renewal frequency;

 small time of parsing and generating graphical objects’ text definitions, quick performing
of schemes reading and writing inter alia;

 implementation of various scheme editing operations;

 library storing of created schemes, objects and groups of their attributes.

At the same time, usage of flexible structures simplifies visualization system elaboration and
maintenance, allowing to:

 modify graphical object's structure by adding, deleting and changing user-defined
attributes;

 minimize the impact of graphical platform or its current version shift by encapsulating the
interaction of abstract flexible-structured container with its platform-dependent graphical
fixed-structured representation within methods of graphical object's driver;

 refuse from graphical object's attributes cashing, reckoning with high speed of obtaining
desired value by its string key from the container;

 abstract dynamic exchange mechanism, that projects modeling parameter value onto
value of graphical attribute, from distinctions in graphical objects’ and primitives’ types;

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

121

 create efficient items of graphical user interface without considering peculiarities of
graphical objects’ types.

3. Specialized string and container libraries

Speed of graphical objects’ text definitions parsing and generating together with duration of

graphical attribute’s value lookup by its name appear to be key-parameters of flexible structures
efficiency. Elimination of memory freeing errors along with errors of container items indexing and
using iterators on them guarantees secure employment of flexible structures.

3.1. Stating problem

This section shortly describes major drawbacks of STL and Qt string and container systems.

These drawbacks hinder those systems from being used in implementation of flexible structures.
In STL and Qt string systems “String”-type serves as general argument and return value type

for their functions [3]. Passing literals and fragments of strings as function’s argument leads to
allocating memory block for temporary “String”-object’s shared buffer. Furthermore, buffer
construction includes copying of characters. These costs of string-types conversion significantly
decrease efficiency of string processing.

Sequential and associative containers of STL and Qt libraries do not own their items. If

container stores pointers, its destructor deletes only container’s nodes, not the data pointers point at.
This approach permits memory leaks and multiple freeing of memory blocks. With possibility of
direct deletion container’s items, i.e. without using container’s methods, index tables and indexed
dataset can be easily misaligned. Moreover, inserting one item requires allocating two memory blocks
of different size: one for created item, another – for container’s node. This technique fragments heap
and decreases efficiency as a result.

Duration of associative data structure’s item lookup depends both on its theoretical efficiency

and on efficiency of software (possibility of storing the found key) and hardware (expense of nodes
visiting) cashing [4]. Thereby, choice of compactly allocated data structure for implementation of
container’s index table would lessen lookup time in comparison with the results of balanced trees and
skip-lists, used in STL and Qt maps. We do not consider hash-maps due to impossibility of presenting
keys sorted and complexity of creating reliable hash-function for composite key.

Data structures of either container systems support employment of STL-style iterators. Such
iterator stores a pointer to data structure’s node. Implicit deletion of data structure’s item makes
iterator usage unpredictable and leads to application crash.

3.2. Specialized string library

Application of program class “SubString” as general argument and return value of string
functions as well as implementation of to-“SubString” methods conversion for every string type – C-
string, string and its fragments – radically lower mentioned costs of string-types conversion.
“SubString”-object stores string position pointer and number of characters [3]. That ensures dramatic

diminution of requests to dynamic memory in parsing procedures: processing of substring extraction
and passing it to comparison operator needs no heap using. “SubString” construction comprises
nothing but characters array’s address (not characters) copying and counting of characters number (if
it was not passed as an argument). Shared buffer of “SString”-type object (abbreviation for “Swift
String” – name of the specialized library string class) inherits “SubString” (Figure 1). Thus,
conversion of “SString”-object to “SubString” consists of buffer’s reference passing, which terms in
single assembler instruction.

Figure 1. UML-class diagram of string shared buffer ancestry

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

122

Figure 2 illustrates the results of test, measuring string comparison duration. Test performed
for low-level comparison standard library function (memcmp), specialized string library string-class
(SString) and its analogues from STL and Qt libraries on gcc 4.9.2 compiler. StackAlloc-curve
represents the result of STL-sring, equipped with LIFO-allocator.

Figure 2. Measurement of string comparison duration

3.3. Specialized container library

Container class comprises bidirectional linked list, owning its items, and set of index tables.
Establishing a container item ancestor – base class, encapsulating list node’s functionality, permits to
avoid usage of auxiliary list-node-type objects. Concept of items ownership secures against memory
leaks and multiple memory freeing: list deletes its items in destructor; two containers cannot have

common items. Passing items to container-receiver implies their removal from source-container [4].
Index tables form a circular list with bidirectional container list as a head item. This

arrangement guarantees accordance between tables and list of data: list modifications incur sequential
update of tables. Implementation of index table uses continuous array of sorted pointers to container’s
list. This data structure choice ensures high efficiency of map lookup through cashing of found item
index along with localized allocation of array and list items within memory pages.

As a way to eliminate errors of using iterators container blocks its modifications for a constant

iterator lifetime and automatically registers non-constant iterators in a circular list in order to correct
their positions in case of container size would change.

Figure 3 represents the results of string-key lookup test, performed for developed container
(AttrTab) and corresponding combinations of bidirectional lists with treelike data structures from STL
and Qt libraries on gcc 4.4.0 compiler.

Figure 3. Measurement of container lookup duration

Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018

123

4. Applications

Specialized string and container libraries were designed within ”Virtual Power Unit of Nuclear
Power Plant with Pressurized Water Reactor” (VPU) project under ”Supercomputers and Grid-
Technologies Advancement” government program. One of its objectives – ”Visualization of Control
Room Soft Panels” implied that soft panels (Figure 4) of projecting automated control system for

technological process of LNPP-2 (Leningrad Nuclear Power Plant 2) power unit would operate under
control of mathematical models within VPU simulation suite [1]. Libraries employment ensured
elaboration of Multifunctional Graphical Editor (MGE – visualization environment) by a specified
date. Editor’s rich functionality, high efficiency and sustainability guaranteed soft panels real-time
dynamic displaying in SVG-quality with renewal frequency more than 50 FPS. MGE is an integral
part of VPU that has a number of applications. Inter alia, VPU was used in development of a complete
design package for Hanhikivi NPP-1 [5].

Figure 4. Fragment of imported LNPP-2 ACS soft panel

5. Conclusion

This article illustrates the issues of complex technological objects computer-aided simulation
support in terms of visualization system (integral part of innovative design technology) development.
It suggests application of flexible structures – string-indexed associative containers – for the purposes

of simulated sub-objects graphical presentation. Paper outlines major peculiarities of specialized string
and container libraries, vital for flexible structures efficiency and reliability. This approach allows to
widen functionality, increase performance, reduce pecuniary and time expense of development.

References

[1] Bezlepkin V.V., Kukhtevich V.O., Obraztsov Ev.P. et al. ”Virtual Power Unit of Nuclear Power
Plant with Pressurized Water Reactor” Instrumental Complex Employment for Verifying Design
Solutions. Available at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2013/documents/
mntk2013-168.pdf. (accessed 21.09.2018)

[2] Semukhin M.V., Novizkiy V.V., Bezlepkin V.V., Obraztsov Ev.P. et al. Optimization Perspectives
of Start-and-Adjustment Operations with Application of ”Virtual Power Unit of NPP” Simulation
Suite. Available at: http://mntk.rosenergoatom.ru/mediafiles/u/files/2016/Book_TEZISY.pdf.
(accessed 15.09.2018)

[3] Orekhov M.Yu., Substring Employment in C++ Quick-operating String System Implementation //
Vestnik St. Petersburg University. Ser. 10., 2, 2015, pp. 134-149.

[4] Kalinin D.V., Orekhov M.Yu., Specialized Container Library for Purposes of Vector Graphics
Dynamic Displaying // Vestnik St. Petersburg University. Ser. 10., 2, 2016, pp. 45-61.

[5] Obraztsov Ev.P. Innovative Technologies in Nuclear Modeling and Designing.
http://globalforum.items-int.com/gf/gf-content/uploads/2017/03/GF-2015_Proceedings_01012016.pdf.
(accessed 29.09.2018)

