
Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

518 
 

COMPARISON OF PYTHON 3 SINGLE-GPU 

PARALLELIZATION TECHNOLOGIES ON THE EXAMPLE 

OF A CHARGED PARTICLES DYNAMICS SIMULATION 

PROBLEM  

A. Boytsov 
1,a

, I. Kadochnikov 
1,4,b

, M. Zuev 
1,c

, A. Bulychev 
2,d

, 

Ya. Zolotuhin 
3,e

, I. Getmanov 
3,f 

1 Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna, Moscow region, 141980, Russia 
2 Independent researcher, Moscow, Russia 

3 The First Electrotechnical University “LETI”, 5 Professora Popova, St. Petersburg, 197376 Russia  

4 Plekhanov Russian University of Economics, 36 Stremyanny per., Moscow, 117997, Russia 

E-mail: a boytsov@jinr.ru, b kadivas@jinr.ru, c zuevmax@jinr.ru, d a.a.letterbox@gmail.com, 
e yaroslav.zolotukhin@bk.ru, f igor.getmanov1@gmail.com 

Low energy ion and electron beams, produced by ion sources and electron guns, find their use in 

surface modification, nuclear medicine and injection into high-energy accelerators. Simulation of 
particle dynamics is a necessary step for optimization of beam parameters. Since such simulations 
require significant computational resources, parallelization is highly desirable to be able to accomplish 

them in a reasonable amount of time. From the implementation standpoint, dynamically typed 
interpreted languages, such as Python 3, allow high development speed that comes at cost of 
performance. It is tempting to transfer all computationally heavy tasks on a GPU to alleviate this 
drawback. Using the example of a charged particles dynamics simulation problem, various GPU-
parallelization technologies available in Python 3 are compared in terms of ease of use and 
computational speed. The reported study was funded by RFBR according to the research project № 
18-32-00239\18. Computations were in part held on the basis of the heterogeneous computing cluster 
HybriLIT (LIT, JINR) 

Keywords: Python3, GPU computation, particle dynamics, parallelization, Numba, CUDA, OpenCL. 

 

© 2018 Alexey Boytsov, Ivan Kadochnikov, Maxim Zuev, Andrey Bulychev, 

Yaroslav Zolotuhin, Igor Getmanov 



Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

519 
 

1. Introduction 

The problem of charged particle dynamics simulation has been a challenge for scientists and 
engineers in many fields, such as plasma physics, accelerator engineering, beam transport, ion sources, 
high current facilities etc. Simulation allows to predict conditions and results of experiments, 
facilitating experiment facilities design. In the case of an ion source, it is necessary to simulate an 

order of 1012 particles [1]. But simulation on this scale can take weeks of CPU time. There are many 
approaches to drastically speed up computation by parallelization onto distributed clusters or hardware 
accelerators. Using these techniques complicates development and typically there is a compromise 
between ease of implementation and computation speed. Nowadays, GPUs have become de-facto 
standard for parallel computation acceleration: most of the highest-performant supercomputers in the 
world are GPU-based [2]. Therefore it is essential to utilize GPU capabilities for charge particle 
simulation. 

A program utilizing a GPU for computing has components running on the CPU and GPU. The 

GPU component performs the compute-intensive and parallelizable operations, and the CPU 
component performs all the other tasks, such as managing the computation, configuring the GPU and 
data I/O. It is necessary to explicitly manage data transfer between the CPU and GPU components of 
the program. To manage the communication between the GPU and the program there are proprietary 
and open APIs: Nvidia CUDA[3], AMD ROCm, OpenCL, SYCL, vulcan. They can be utilized from 
many programming languages using libraries native to the language. 

We tested 3 popular libraries for GPU computing available for Python 3: Numba[4], 

PyCUDA[5], PyOpenCL[6]. Numba translates Python functions to optimized machine code at runtime 
using the industry-standard LLVM compiler library. Numba-compiled numerical algorithms in Python 
can approach the speeds of native compiled code written in C or FORTRAN. Moreover, Numba 
supports using Nvidia CUDA and AMD ROCm to translate and run python functions on the GPU. 
PyCUDA gives access to Nvidia’s CUDA parallel computation API and PyOpenCL gives access to 
OpenCL API. We want to compare all three available solutions on the example of a model problem. In 
the next section we describe the example problem and then describe the obtained results.  

2. Example Problem Description 

We chose a simple problem as our example: simulating the classical dynamics of a set of N 
identical charged particles in a 2-dimensional volume of space. Namely, each particle is represented as 
its 2 cartesian coordinates, 2 velocity components, charge and mass. Dynamics equation are 

dx = v ∙ dt, mdv = F ∙ dt 
The integration was done using the basic Euler method with a constant time step. 

xt+1 = xt + vt ∙ h, vt+1 = vt + at ∙ h 

The force acting on each particle simply as sum of Coulomb forces from the other particles. 

Fi
⃗⃗⃗⃗ = ∑

qiqjrij⃗⃗ ⃗⃗

rij
3

i≠j

  

Coulomb’s constant is 1 here, as we use arbitrary units for simulation. The particles are 
contained in a two-dimensional square volume. On reaching the boundary, a particle gets perfectly 
elastically reflected. Initially the particle positions are evenly non-randomly distributed on a spatial 
grid, while the velocity components are uniformly distributed in the interval (-Vmax, Vmax). Observing 
the coordinate and velocity distribution of the particles over time allows to debug the simulation 
implementations. 

 



Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

520 
 

 

 Figure 1. Evolution of coordinate and velocity distributions of particles over time in the CUDA simulation 

 A  sample  evolution  of  256  particles  as  simulated  by  CUDA  time  is  shown  on  Figure  1. 
As expected,  the  velocity  x-component  fits  a  normal  distribution,  while  magnitude  fits  a  Rayleigh 
(2-degree chi) distribution. 

 For  all  the  simulations  the  parameters  are  set  as  follows:  m  =  2.0,  q  =  1.0,  Vmax =  1.0, 
h = 0.005  With  increasing  number  of  particles,  the  volume  dimensions  Lx=Ly were  increased 
accordingly to keep particle density 𝑃 = 

𝐿𝑥

𝑛

𝐿𝑦 
at 0.01 over different scales of simulation. This allowed 

to  keep  simulation  stable,  as  the  numerical  integration  requires  forces  between  particles  to  be 
sufficiently small.

3. Performance metrics 

To compare different GPU acceleration libraries for simulation a one-step function was 

implemented with each library using analogous code. Then the performance of simulation for each 
library was measured depending on the scale of simulation. At each scale the number of particles and 
volume dimensions were set, then the initial particle positions and velocities were generated. The data 
was copied to GPU memory, and one batch of simulation steps was performed and timed, each step 
corresponding to one step of numerical integration. The batch size was varied with scale, to keep the 
batch processing time at a consistent level. The batch needed to be long enough to allow measuring 
performance accurately, but short enough to measure and plot at many scales. 

For each batch, the total simulation time was measured using the standard python 
time.perf_counter() function. This was then converted into steps per second, particle updates per 
second and particle interactions per second, which are more comparable across scales. 



Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

521 
 

4. Test results 

The development and performance testing were carried out using Google Colaboratory on a Nvidia 
Tesla K80 GPU, Driver Version 396.44. Library versions are given in Table 1. 

Table 1. Versions of libraries tested 

Numba pycuda CUDA Pyopencl OpenCL Numpy 
0.40.1 2018.1.1 9.2.148 2016.1 1.2 1.14.6 

 

 Figure 2 simulation performance metrics depending on number of particles being simulated (n)

 In  this  test  both  Numba  and  OpenCL  used  CUDA  as  the  back-end  interface  to  the  GPU. 
Numpy runs on the CPU and provides the baseline performance to compare GPU speed-up. 

 The plots of performance results are shown in Figure 2. At small scales (n < 102) GPU steps 
per second are constant, while CPU stays ahead. This suggests that start-up overhead dominates per- 
particle computation. At scales of 102 < n < 104 it can be observed that particle updates per second is 
near-constant, that is to say, computation time grows as O(n). As each particle update consists of O(n) 
force computations to derive acceleration, we can conclude that at these scales all update streams run 

perfectly in parallel. As a check, one can compare the update thread count (n) to the number of threads 
the  GPU  can  execute  in  parallel.  This  can  be  derived  from  the  GPU  multiprocessor  count  and  max 
threads  per  multiprocessor.  For the  Tesla  K80,  this  is 13 × 2048 = 26624 which  agrees  with  the 

critical  point  that  can  be  seen  at  ~2 ∙ 104. At large  scales  of  𝑛 > 104 the  GPU is  fully  utilized and 
particle interactions per second tend to a constant value, signifying O(n2) performance.

 



Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

522 
 

5. Conclusion 

We compared several GPU parallelization technologies available for Python 3. All provide 
considerable (~103) speed-up compared to CPU computing using Numpy. OpenCL seems to 
outperform Numpy and CUDA. However, this test did not check all factors that may affect GPU 
performance. Among those outside of scope of this paper are: data type and shape of arrays being 

processed, thread block size and shape, using scalar or constant parameters for mass and charge, 
library version, driver version, GPU model, optimized block caching, optimizing the algorithm. 

Acknowledgements 

The reported study was funded by RFBR according to the research project № 18-32-00239\18. 
Computations were held partially on the basis of the heterogeneous computing cluster HybriLIT 
(LIT, JINR). 

References 

[1] E. D. Donets, “Review of the JINR Electron Beam Ion Sources,” IEEE Transactions on Nuclear 
Science, vol. 23, no. 2, pp. 897–903, Apr. 1976. 

[2] “June 2018 | TOP500 Supercomputer Sites.” [Online]. Available: 
https://www.top500.org/lists/2018/06/. [Accessed: 06-Nov-2018]. 

[3] “CUDA Zone,” NVIDIA Developer, 18-Jul-2017. [Online]. Available: 
https://developer.nvidia.com/cuda-zone. [Accessed: 06-Nov-2018]. 

[4] “Numba: A High Performance Python Compiler.” [Online]. Available: https://numba.pydata.org/. 
[Accessed: 06-Nov-2018]. 

[5] “PyCUDA.” [Online]. Available: https://mathema.tician.de/software/pycuda/. [Accessed: 06-Nov-

2018]. 
[6] “PyOpenCL.” [Online]. Available: https://mathema.tician.de/software/pyopencl/. [Accessed: 
06-Nov-2018]. 

 

  

https://kias.rfbr.ru/index.php

