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In this paper we consider pseudo-random uniformly distributed number generators, such as 

xorshift and KISS. We also provide C++ implementation source code snippets of these algorithms 

and the results of tests made with dieharder utility. We also mention the possibility of parallelization 

and briefly discuss the idea of neural networks usage for pseudo-random numbers generation. 
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1. Introduction 

In this paper, we consider algorithms for generating uniformly distributed pseudo-random 

numbers by using bitwise operations. Two classes of such algorithms: xorshift [1,2] and 

kiss [3] are particularly simple, but give a high quality sequence of pseudo-random numbers. To 

verify the quality of the numbers sequence, we use test suite dieharder [4]. Also in the conclusion 

we discuss the idea of using neural networks to generate a sequence of pseudo-random numbers. 
The second volume of Donald Knuth book [5] gives an overview of generators of uniformly 

distributed pseudo-random numbers and criteria for assessing their quality. The author puts forward 
the idea, that the complexity of the generation algorithm is not related to the quality of the resulting 
sequence. The algorithms we consider in this paper clearly illustrates this idea.  

2. The Kiss Generator 

A family of generators, which gives high-quality sequence of pseudo-random numbers [3] got 

KISS acronym (Keep It Simple Stupid) because of the small number of steps and simpleness of 

operations. The KISS algorithm is used in therandom_number() procedure of the Frotran 

language (gfortran compiler [6]) 

The following C++ source code implements two versions of this generator: KISS and jKISS 

unsigned long long int kiss(std::vector<unsigned long long int>& seed) { 

unsigned long long int t; 

const unsigned long long int a = 698769069llu;  

seed[0] = 69069 * seed[0] + 123456; 

seed[1] = seed[1] ^ (seed[1] << 13); 

seed[1] = seed[1] ^ (seed[1] >> 17);  

seed[1] = seed[1] ^ (seed[1] << 5);  

t = a * seed[2] + seed[3]; 

seed[3] = (t >> 32); seed[2] = t; 

return  seed[0] + seed[1] + seed[2]; 

} 

unsigned long long int jkiss(std::vector<unsigned long long int>& seed) { 

unsigned long long int t; 

seed[0] = 314527869 * seed[0] + 1234567; 

seed[1] = seed[1] ^ (seed[1] << 5); 

seed[1] = seed[1] ^ (seed[1] >> 7);  

seed[1] = seed[1] ^ (seed[1] << 22); 

t = 4294584393llu * seed[2] + seed[3]; seed[3] = t >> 32; 

seed[2] = t; 

return  seed[0] + seed[1] + seed[2]; 

} 
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3. The xorshift Generator 

The family of xorshift generators were developed in 2003 by John. Marsala 

(G. Marsaglia) [1, 2]. These generators are named after two bitwise operations: exclusive or (xor) and 
left and right bitwise logical shift. In addition to these two operations only usual arithmetic operations, 
such as of addition and multiplication, are used. 

The following C++ source code implements the three variants of the xorshift algorithm. 

unsigned long long int xorshift64star(unsigned long long int seed) { 

unsigned  long  long  int  x; x = seed; 

x = x ^ (x >> 12);  

x = x ^ (x << 25);  

x = x ^ (x >> 27); 

return x * 2685821657736338717ull; 

} 

unsigned long long int xorshift128plus(std::vector<unsigned long long int>& seed){ 

unsigned  long  long  int  x = seed[0]; 

const  unsigned  long  long  int  y = seed[1];  

seed[0] = y; 

x = x ^ (x << 23); 

seed[1] =  x ^ y ^ (x >> 17) ^ (y >> 26); 

return seed[1] + y; 

} 

unsigned long long int xorshift(std::vector<unsigned long long int>& seed) { 

unsigned long long int t; t = seed[0]; 

t = t ^ (t << 11); t = t ^ (t >> 8);  

seed[0] = seed[1]; 

seed[1] = seed[2]; 

seed[2] = seed[3]; 

seed[3] = seed[3] ^ (seed[3] >> 19);  

seed[3] = seed[3] ^ t; 

return seed[3]; 

} 

4. The xorshift Generator 

The quality of the generated sequence of pseudo-random uniformly distributed numbers is as 
higher, as this discrete sequence properties correspond to the properties of the theoretical uniform 
continuous distribution. The summary criteria which we can use to assess the degree of compliance 
can be found in the book [5] and in article [7]. 

One of the most complete software implementations of the various tests for assessing the 

quality of the obtained pseudo-random sequences is the set of tests dieharder [4], which is 
implemented as a command-line utility. This utility is well supported and regularly updated. 
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We tested the generators by storing the generated sequence in a text file as a single column of 
pseudo-random numbers. The dieharder utility imposes requirements on the text file format. Each 
number must be on a new line, and the first lines of the file must contain the following data: the type 

of numbers (d — double-precision integers), the quantity of numbers in the file, and the bit width of 

the numbers (32 or 64 bits). Here is the example of the beginning of such a file: 
type: d  

count:  5 

numbit: 64 

1343742658553450546 

16329942027498366702 

................. 

When such a file is created, one can pass it to dieharder for testing purposes:  

dieharder -a -g 202 -f file.in > file.out 

where the -a flag turns on all built-in tests and the -f flag specifies the file to analyze. The test 

results will be saved to file.out. For a complete test, you need to generate about 109  numbers (the 

exact number varies from test to test). In the case of fewer numbers, the test results may be worse than 
the theoretical capabilities of the algorithm. 

5. Test Results and Conclusions 

All generators described in the first part were implemented in C++ language and tested with 
the help of dieharder utility. The test results are summarized in the table 1. 

Table 1. Results of DieHarder’s tests 

Generator Failed Weak Passed 

KISS 0 3 110 

jKISS 0 4 109 

XorShift 0 4 109 

XorShift+ 0 2 111 

XorShift* 0 2 111 

MT (Mersenne twister) 0 2 111 

dev/urandom 0 2 111 

In addition to the algorithms KISS and xorshift we tested a well-known algorithm called 

Mersenne twister [8] and the pseudo-device urandom which is available in the operating systems of 
the Unix family. 

The results show that the algorithms xorshift*, xorshift+ and Mersenne twister, as 

well as the pseudo-device urandom, give the same qualitative sequence. The xorshift* and 

xorshift+ algorithms, however, are much more simple than Mersenne twister and are independent 

of the [9] operating system unlike urandom device. 

6. Notes to the Parallel Version 

The considered generators can be efficiently parallelized to almost any number of threads or 
processes. If one wants to store all the generated numbers in RAM, one may run out of memory. 
Otherwise, the memory consumption will be minimal and it will be required to save only constants 
and from 1 or 4 last generated random numbers as seeds for next iteration. 

It is also necessary to provide different seeds for each thread or process, otherwise they will all 
generate the same sequence of pseudo-random numbers. 
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7. Neural Networks Usage for Random Numbers Generation 

In conclusion, we discuss the idea of using neural networks to generate random numbers. In 
the introduction the idea, expressed by D. Knuth, was pointed out that the quality of the generator does 
not depend on the complexity of the algorithm. After we have considered a number of modern 
algorithms and conducted comparative tests, this idea can be empirically supported by an example of 

the xorshift generator, which despite its simplicity showed results at the level of a much more complex 
Mersenne twister. 

The xorshift algorithms use only low-level operations and do not require any high-level 

abstract data structures for their operation. The implementation we have given in C++ can be further 
simplified if we use arrays in the C-style instead of the vector container class. 

This low level allows to achieve high performance and minimum memory consumption. Any 
implementation of the pseudo-random number generator using neural networks will be a priori less 
productive, as it will require significantly more resources to initialize the structure of neurons, as well 
as time for training. Even if the generator on neural networks will give a better sequence (which is 
difficult to achieve, since these algorithms perform weak only in 2 or 4 from more than a hundred 
tests), this advantage is likely to be completely neglected by a large consumption of computing  

resources. 

8. Conclusion 

The generators considered by us can be effectively implemented in compiled programming 
languages. They also scale efficiently to any number of threads or processes, allowing them to be used 
in conjunction with the Monte Carlo method. We also made some skeptical arguments about the idea 
of using neural networks to generate pseudo-random numbers. 
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