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Strongin's multifactorial global search algorithm (MGSA) allows one to find an absolute minimum of 

a function of multiple variables on a mesh. In this contribution a parallel program is presented that 
implements the algorithm above applied to ReaxFF MD force field parameters search. In case of 
ReaxFF optimization, computation time of an objective function value significantly exceeds time of 
data exchange between parallel processes. One is able to speed up computation by obtaining not only 
one but several function values in various points simultaneously. Our software implements two levels 
of parallelism. To deal with function of multiple variables, one uses a scan for mapping a multi-

dimensional domain of definition of a function into a one-dimensional segment. To decrease the effect 
of losing information of multi-dimensional points proximity, 𝑁 scans are used. Function values in 𝑁 
different mesh points are computed in parallel. This is the first level of parallelism. To define a mesh 

point of a next iteration, MGSA finds a subinterval with the most probable location of the minimum 
and computes an objective function value in a certain point of this subinterval. Function values are 
also calculated in parallel in (𝑀 − 1) subintervals with less probability. This is the second level of 

parallelism. Thus the two levels allow one to compute 𝑀 ∙  𝑁 function values in parallel each iteration. 

In this contribution we research scalability of our MGSA implementation, namely, the dependence of 
the number of algorithm iterations and time it needs to converge on the number of CPU cores used, 
separately for each level of parallelism. 
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1. Introduction 

Strongin’s multifactorial global search algorithm (MGSA) allows one to obtain an absolute 
minimum of a function of multiple variables on a mesh. This paper investigates scalability of our 
parallel MGSA implementation, developed to search for parameters of ReaxFF molecular-dynamic 
force field. The feature of the implementation is two-level parallelism. The aim of the work is to 

justify the choice of the optimal parameters of the algorithm for a specific calculation on the available 
hardware. 

2. The Problem 

Classical molecular dynamics (MD) method is to numerically solve Newton’s equations for 

every atom in a simulated system: 
𝑑�⃗⃗�

𝑑𝑡
= −∇𝑈(𝑟), where �⃗� are impulses of atoms in the system, 𝑡 is 

time, 𝑟 are coordinates of atoms in the system, and ∇𝑈(𝑟) is a gradient of a force field. The force field 

depends on a set of parameters: 𝑈 =  𝑓(𝑝1, 𝑝2, … , 𝑝𝐷). These parameters are defined before the 

solution of Newton’s equations and do not alter during the simulation. The procedure of searching the 
force field parameters for a particular simulated system is referred to as optimization. The measure of 
optimality is the objective function (OF) that depend on the parameters: 𝑇(𝑝1, 𝑝2 , … , 𝑝𝐷). The OF is 

determined by the deviation of any characteristics of the simulated system obtained methods of MD, 
from those obtained by other, more accurate methods. The process of optimization is to search the 
force field parameters that bring the OF the minimal value: 𝑝1

∗, 𝑝2
∗ , … , 𝑝𝐷

∗ : 𝑇(𝑝1
∗, 𝑝2

∗, … , 𝑝𝐷
∗ ) = min𝑊 𝑇, 

where 𝑊 is the domain of parameters search having dimension of 𝐷. 

3. ReaxFF Force Field 

As the MD force field 𝑈(𝑟) we use ReaxFF (Reactive Force Field). It is the sum of several 
terms, each responsible for their own type of interaction, and has the general formula [1]: 

𝐸ReaxFF ({𝑟𝑖𝑗}, {𝑟𝑖𝑗𝑘}, {𝑟𝑖𝑗𝑘𝑙}, {𝑞𝑖}, {𝐵𝑂𝑖𝑗}) = 𝐸bond  + 𝐸lp  + 𝐸over  + 𝐸under  + 𝐸val  +  𝐸pen  +
+ 𝐸coa + 𝐸tors  +  𝐸conj + 𝐸hbond  + 𝐸vdWaals  + 𝐸Coulomb .                                                                        (1)  

The force field depend on the distance between atoms in each atom pair, on angles formed by each 
three atoms, on dihedral angles formed by each four atoms, on atoms’ effective charges and bond 
orders (BO) between atoms. Atoms’ charges as well as bond orders have non-integer values and 
themselves depend on mutual location of the atoms of the system. 

4. Objective Function 

As the measure of optimality we use the objective function (2). 

𝑇 = ∑ 𝜎𝑘|𝑈k 
QC

− 𝑈k 
ReaxFF|𝐿

𝑘=1 + ∑ 𝜎𝐿+𝑘
√∑ ∑ (𝐹kαi

QC
− 𝐹kαi

ReaxFF)
2

3
𝑖=1

𝐴𝑘

𝛼=1
𝐿
𝑘=1                           (2)  

Here 𝑈𝑘  are potential energies of models of the training-set (simple chemical compounds used 
as basis for optimization), 𝐹𝑘𝛼𝑖 are components of forces acting on every atom of the models, 𝐿 is the 

number of models in the training-set, 𝐴𝑘 is the number of atoms in the model 𝑘, and 𝜎𝑘 are the weight 

factors. Indices QC and ReaxFF mean that the corresponding characteristics are obtained with 

quantum chemistry methods and MD methods, respectively. 𝑈k 
ReaxFF and 𝐹kαi

ReaxFF depend on the 

parameters 𝑝1, 𝑝2, … , 𝑝𝐷  of ReaxFF force field. In our multifactorial algorithm in addition to the main 

objective function (2) we take into account several more functions-restrictions on the individual 
groups of terms in (2). This allows one to set all weights 𝜎𝑘 equal to unity and not to solve the task of 

their optimal choice. 
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5. Strongin Global Search Algorithm 

To optimize the objective function we use Strongin global search algorithm [2] (GSA). It 
allows one to find an absolute minimum of a function on a segment and is bases on probability 
approach. Initially GSA is formulated for functions of one variable defined on a segment. The OF 
𝑇(𝑥) must satisfy the generalized Lipschitz condition on the entire search domain: |𝑇(𝑥1) − 𝑇(𝑥2)|  ≤
𝐾𝜌(𝑥1, 𝑥2), where 𝑥1 и 𝑥2 are any numbers from the search interval, 𝐾 is a constant, and 𝜌 is a metric 

in the space 𝐿1, 𝜌(𝑥1, 𝑥2)  =  𝑓(|𝑥1 − 𝑥2|), and the function 𝑓 has its own inverse 𝑓−1. Initial step of 
GSA is to compute values of the OF at the boundaries of the search domain and, if necessary, in 𝑀 

different arbitrary points inside it. 
The general scheme of a single iteration is below. 

1. Sort the points of 𝑘 previous iterations in ascending order of their coordinates:  
𝑎 = 𝑥0 < ⋯ < 𝑥𝑖 < ⋯ < 𝑥𝑘 = 𝑏. 

2. Compute for every interval (𝑥𝑖−1, 𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑘 the characteristic 𝑅(𝑖) that defines probability of 

finding the minimum on the given interval. 
3. Sort 𝑅(𝑖) in descending order: 𝑅(𝑖1) > ⋯ > 𝑅(𝑖𝑘). 
4. For all the intervals having numbers 𝑖1, … , 𝑖𝑀, 𝑀 < 𝑘, compute OF in points 𝑥𝑘+𝑗  =  𝜉(𝑖𝑗) ∈

 (𝑥𝑖𝑗−1, 𝑥𝑖𝑗
), 𝑗 =  1, 𝑀̅̅̅̅ ̅̅ . Computations are done in parallel. Here 𝜉(𝑖𝑗) is the position of the 

mathematical expectation of a minimum. 
5. Check the stop condition: |𝑥𝑖1

−  𝑥𝑖1−1| < 𝜀. 

The presented scheme allows one to execute GSA in parallel using 𝑀 processes. In the 

multivariate version of the algorithm a multivariable function is reduced to a function of one variable 
by means of scans of the Peano curve type. From here one can obtain another level of parallelism, 
applying the method rotating scans [3]. Each parallel process works with its own scan rotated relative 

to the main one by the angles ±
𝜋

2
 in some pair of dimensions. In total one is able to do 𝐷 · (𝐷 − 1) of 

such rotations for 𝐷-dimensional domain of definition of a function. Thus, the maximal number of 

processes at this level of parallelism is 𝑁max = 𝐷 · (𝐷 − 1) + 1. Each of them executed GSA and at 

every iteration communicates its result to all the rest of the processes. Working with several scans 
simultaneously compensates consequences of information loss about points proximity when a 
multidimensional domain is mapped to a segment. 

In the current work we use the non-injective Peano type curve [2] when every point of a 

search domain of dimension 𝐷 may have up to 2𝐷 prototypes on a segment. In this variant GSA the 

minimum is being searched on a mesh. The number of mesh points on a segment is 2𝐷(𝑚+1) − 2𝐷𝑚. 
Here m is the scan parameter that defines its complexity and the number of points of multidimensional 
mesh for a single dimension (2𝑚 + 1). More about the MGSA in the problem of ReaxFF optimization 

see in [4]. 

6. Implementation 

The program is written in C++ with use of MPI and has two levels of parallelism: the first one 
is parallel work with 𝑁 scans when mapping the search domain to a segment; the second one is 

parallel calculation of the OF value for 𝑀 greatest probability characteristics 𝑅(𝑖) (see GSA general 

scheme). Thus, the program operates with a rectangular matrix of processes of size 𝑁 · 𝑀. 

Let us note that in case of ReaxFF optimization the computation time of the OF value 
significantly exceeds both the data exchange time and the time of all the rest procedures inside a single 
MGSA iteration. 

On the first level of parallelism (Figure  1) each block corresponds to a single scan. All 𝑁 

blocks are equivalent and perform the same sequence of routines, exchanging data between each other 
three times every iteration. 
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On the second level of parallelism (Figure  

2) we have one "scan-master" and 𝑀 −  1 "scan-

slave" processes. All 𝑀 2nd-level processes 

compute the OF value, the "scan-master" in 
addition participates in the 1st-level data exchange 
and does MGSA. 

The blue blocks in Figure  2 mean MPI-
exchange between 1st-level parallel processes 
(correspond to blue arrows in Figure  1), the red 
ones mean exchange between 2nd-level processes 

inside a 1st-level block. 
Notations: 𝑌𝑖 — search domain points 

(type double[D]); 𝑍𝑖 — objective function values 

(type double); 𝑉𝑖 — MGSA indices values (type 

int); 𝑋𝑖 — mesh points in segment [0, 1], to which 

the serach domain is mapped (type double). 

The triplets {𝑋𝑖 , 𝑉𝑖 , 𝑍𝑖} are stored in a 

special structure which simultaneously is a linked 
list for all 𝑋𝑖, common red-black tree for 𝑋𝑖, and 

separate red-black trees for 𝑋𝑖 with the same 𝑉𝑖. 
This structure significantly reduces the time of a 

single iteration of the algorithm. 

7. Scalability 

Hardware is provided by Resource Center Computer Center of St. Petersburg State University. 
The cluster: OS: CentOS Linux 7 (Core); MPICH2 v1.4.1p1. 
14 nodes: 2 × 4 core CPU Intel® Xeon® E5335 2.00 GHz, 16 GB RAM; 
2 nodes: 2 × 4 core CPU Intel® Xeon® E5-2603 v2 1.80 GHz, 16 GB RAM. 

7.1. Average iteration time depending on the number of cores 

The first level of parallelism has 
limited maximal number of processes. The 
cases 𝐷 = 11 and 𝐷 = 4 with averaging over 

100 iterations were investigated. In Figure  3 
the plots of average time of a single MGSA 
iteration dependencies on the number of used 
cores 𝑃 = 𝑁 · 𝑀 are shown for 7 different 

cases. 𝑁 is the number of cores on the 1st level 

of parallelism, and 𝑀 — on the 2nd. The 

number of OF values calculated in a single 
iteration is equal to 𝑃. So although the time 

of a single iteration increases with 𝑃, the 

Figure  2. MGSA flowchart. 1
st
 level of 

parallelism 

Figure  3. Avg. time of an iteration of core number 
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computation of an OF value accelerates. An OF value is computed for several dozens of molecules 
with the help of LAMMPS [5] MD simulation library. It takes from 10 to 13 seconds. Each process 
consumes less than 100 MB of RAM. 

The chart shows two stages of growth. In the first stage, when 1 ≤ 𝑃 ≤ 4 (within 1 CPU), the 

increase of the duration of a single iteration is due to an increase in the calculation time of the value of 
the OF. This is a feature of the hardware and LAMMPS library. In the second stage, when 𝑃 > 4, the 

increase of duration is caused by overhead costs for data exchange between processes and interaction 
with the file system. Let us note that the duration increase does not depend on the distribution of cores 
by the levels of parallelism. For 𝐷 < 11 the charts’ slopes are smaller, since overheads are declining 

with 𝐷. 

7.2. Defining optimal dimension of the search domain 

Let us plot the dependencies of 
MGSA acceleration by the number of its 
iterations needed for convergence on the 
number of parallel processes 𝑀 of the 2nd 

level and the number of scans 𝑁 =  1 for 

1 ≤  𝐷 ≤  5. The acceleration 𝐴𝐼(𝑀)  =

 
𝐼(8)

𝐼(𝑀)
, where 𝐼(𝑀) is the number of MGSA 

iterations needed for convergence. The 
number of points of the segment is chosen so 
that for different 𝐷 it is of the same order — 

106, and the algorithm converged in less than 
an hour when all the 128 cores are used. In this approach, a pure algorithm is studied without taking 
into account exchange and other overhead costs. 

In Figure  4 it is seen that the dependencies for 3 ≤ 𝐷 ≤ 5 are close to linear. At the same 

time, when 1 ≤ 𝐷 ≤ 2, the acceleration grows much slower, since complexity of the problem is not 

enough to effectively use all the cores we have. When the dimension of the search domain is 3 and 
higher, the algorithm is well scalable for 128 cores. The optimal dimension of the search domain is 
𝐷 = 4, since for larger 𝐷 and the number of mesh nodes of the order of 106 the mesh on 

multidimensional domain will be coarse. 

7.3. Scalability of the 2
nd

-level parallelism when D = 4 

For the case of 𝐷 = 4 and three fixed 
numbers of scans 𝑁 = 1, 7, 13 let us compare 

the dependency of MGSA acceleration by the 
number of iterations 𝐴𝐼 and time 𝐴𝑡 on the 

number of cores 𝑀 on the 2nd level (Figure  

5). 𝐴𝐼(𝑁, 𝑀) =
𝐼(1,1)

𝐼(𝑁,𝑀)
, 𝐴𝑇(𝑁, 𝑀) =

𝑡(1,1)

𝑡(𝑁,𝑀)
, 

where 𝐼(𝑁, 𝑀) and 𝑡(𝑁, 𝑀) are, respectively, 

the number of MGSA iterations and its 
operation time until convergence. In Figure  5 
the blue lines indicate the dependencies by 

iterations (𝐴𝐼(𝑃)), the red lines — by time 

(𝐴𝑇(𝑃)). Linear approximation using least 

square method tells us of the constant scalability 
efficiency (∆𝐴𝑇/∆𝑃) no matter how many cores 

are used. By the difference between the plots of 
𝐴𝑡 and 𝐴𝑡 one can see the decrease in efficiency due to overhead costs. Using of a single scan (𝑁 = 1) 

is the most efficient. 

Table 1. Scalability efficiency 

𝑁 1 7 13 

∆𝐴𝑇/∆𝑃, % 71±1.9 46±1.3 35±1.0 
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7.4. Scalability dependence on the objective 

function 

Analytical formulas of individual 
terms of ReaxFF (2) differ a lot, therefore 
when optimizing groups of parameters from 
different terms, we will have the OF of a very 
different type. In Figure  6 one can see the 

dependencies of MGSA acceleration by 
iterations and by time on the number of cores 
for 𝐷 =  4, 𝑁 =  1 when optimizing 4 

parameters form the terms 𝐸Coulomb and 
𝐸bond, and 4 — from the term 𝐸vdWaals . The 

red lines indicate the acceleration by convergence time, the blue ones — by iterations number. 
Scalability efficiencies for the first and the second group of parameters, obtained by LSA, are equal to, 

respectively, (71.6 ± 1.6) % and (70.2 ± 2.0) %. The values match with accuracy to errors, hence the 
effectiveness of this realization is independent of the OF type. 

8. Conclusion 

It is shown that the implementation of the multifactorial global search algorithm (MGSA) with 
meshes more than 106 nodes and executed on a cluster of 128 cores is scalable with constant efficiency 
up to 71 % when the number of optimized parameters 𝐷 >  2. 

For the given hardware it is optimal to operate with groups of 4 ReaxFF force field 
parameters, since MGSA converges in less than an hour. 

It is more efficient to distribute resources to the 2nd level of parallelism with only one scan. 
The introduction of the 2nd level of parallelism (by probability characteristics of MGSA) and 

the increase in the number of cores to 128 reduces the calculation time by 30 – 50 times (compared to 
the previously used single-level MGSA implementation [6]). 
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