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Synchronization aspects in the method of large-scale simulation, known as parallel discrete event 
simulation (PDES), analyzed using the models of the time profile evolutions. Time profile is formed 
with the local virtual times of the processes. Time profile evolution in the simplest cases reminds the 

growth of the surface in the models of statistical physics. This simplest case considers only local 
dependences, the message exchange with the nearest neighbors. In the real simulations, the exchange 
can be with any of the processes, and we can consider the communication network of messages forms 
the small-world network. We found the enhancement of synchronization with the growing average 
shortest path of the small-world network. At the same time, the utilization drops down, although on 
the moderate level. We present the preliminary results of our study. The work is supported by grant 
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1. Introduction 

The computational platforms for simulations have undergone dramatic changes in recent 
years. A number of cores in modern supercomputers has grown up to millions, and computers have 
become rather heterogeneous as they consist of a number of CPUs, GPGPUs, and numerical 
accelerators [1]. Simulation now faces new computational challenges, concerning the complexity of 

computing platforms [2]. One of the methods which may be efficiently used in large-scale simulation 
in parallel discrete event simulation (PDES) [3].  

Parallel discrete event simulation method can be viewed as an interacting set of sequential 
simulations of parts of the simulated system, without changing the original dynamics of the simulated 
system [4]. Each sequential simulator is called logical process (LP) and may be executed by a single 
thread, core, CPU, or node. Changes in the system state occur at discrete, typically irregular, points in 
simulation time. These changes are therefore called discrete events. The LPs interact by exchanging 
timestamped messages, which represent events, scheduled by one LP to another. The timestamp 

represents a point is simulation time at which the state change occurs.  
The synchronization protocols [5] are based on the concept of virtual time [6]. Each LP has its 

local virtual time (LVT), which changes when LP handles an event or sends a message. The collection 
of LVT of all LP constitutes LVT profile. The LVT profile is growing during the execution of the 
simulation program. Understanding the dynamics of LVT profile helps in studying of properties of 
synchronization algorithms. An average speed of the LVT profile characterizes the average utilization 
of the processing elements. The average width of the profile (standard deviation) can be considered as 

desynchronization between LPs. Moreover, simulation of LVT profile evolution for systems of 
different sizes allows studying the scalability properties of the algorithms [7]. 

Model of the conservative algorithm was studied in references [7, 8]. The goal of the paper is 
to study the properties of the conservative and optimistic PDES algorithms on small-world (SW) 
networks [9]. SW networks are characterized by the small length of the average shortest path and by 
the large value of the clustering coefficient. In [10] we found that the behavior of the LVT profile 
mostly depends on the average shortest path in the network, and clustering coefficient does not play a 

big role. For the simplest SW model, the long-range links are added above the 1-dimensional ring 
(Figure 1).  

2. The models  

Consider a system of N logical processes. The communication between LPs is arranged in 
small-world topology, schematically shown in Figure 1. We create the SW topology as follows. We 
build a ring of 𝑁 LPs (i.e. each LP has exactly two neighbors), and then randomly add 𝑝𝑁 links 

between different LPs above the regular lattice. The parameter 𝑝 is responsible for the fraction of 

long-range connections. The so build communication graph can be described by adjutancy matrix 𝐷, 

such that 𝐷(𝑖, 𝑗) = 1, if LPi and LPj depend on each other’s state, and 𝐷(𝑖, 𝑗) = 0, if LPi and LPj are 
independent.  

Evolution of LVT profile {𝜏𝑖}, 𝑖 = 1. . 𝑁 is simulated in this communication topology. We start 
from a flat profile: {𝜏𝑖(0) = 0}, 𝑖 = 1. . 𝑁, and update it each computational step. After each update we 

calculate observables. We average our results over 1000 independent realizations. In our simulation 
program, we use library RNGAVXLIB [11] for the random number generation.  
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Figure 1. An example of the small-world communication network with the number of LPs 𝑁 = 10 and fraction 

of long-range links 𝑝 = 0.3 

2.1. The model for conservative algorithm 

Conservative synchronization algorithm is based on the idea of preserving all “insecure” 
actions of LPs, i.e. the actions, which potentially may violate the causality of computation. It is usually 
implemented with using “block-resume” constructions. The simplest conservative scheme is to let LP 
processing events, only if its local virtual time is less or equal to the LVT of its neighbors. If the 
condition is satisfied, this LP is called active, otherwise, the LP is idle. Assuming, that events are 

Poisson arrivals, one may describe the evolution of LVT profile by the following rule. 
 

 
𝜏𝑖(𝑡 + 1) =  {

𝜏𝑖(𝑡) + 𝜂𝑖  , 𝑖𝑓 𝜏𝑖 ≤  {𝜏𝑗(𝑡)}𝐷(𝑖,𝑗)=1 ,

𝜏𝑖(𝑡), otherwise ,
 

(1) 

 

where 𝜂𝑖 is a random variable drawn from the Poisson distribution. At each update step 𝑡 we calculate 

the following observables: 
1) Average speed: 

 
𝑢(𝑡) = 〈

1

𝑁
∑ [𝜏𝑖(𝑡) − 𝜏𝑖(𝑡 − 1)]

𝑁

𝑖=1
〉 

(2) 

 
2) Average width: 

 𝑤2(𝑡) =
1

𝑁
〈∑ (𝜏𝑖(𝑡) − �̅�(𝑡))2𝑁

𝑖=1 〉, (3) 

 

where �̅� is the average value of LVT: �̅�(𝑡) =  ∑ 𝜏𝑖(𝑡).𝑁
𝑖=1  The triangular brackets here and further in 

the paper mean the average over independent copies of the simulation programs. 

2.2. The model for optimistic algorithm 

The fundamental synchronization primitive in the optimistic algorithm is a rollback, instead of 
blocking constructions [12]. In the optimistic algorithm, any LP may send messages to other LPs at 

any time, without preservation of the causality. If the LP receives a message “from the past”, the 
algorithm detects an error and recovers the events which were processed prematurely.  

The recovery is usually implemented by passing anti-messages. Message and anti-message 
carry the same information and differ only by the sign. If both, message and anti-message, meet in the 
same queue, they annihilate. For example, if an error has occurred at LPi, but it has already sent 
erroneous messages to LP2, after detecting an error, the LPi sends anti-message to LP2, and rolls back 
its LVT. But LP2, in its turn, may have already processed the erroneous message and sent the events 

to others LPs. This causes the avalanche of rollbacks.  
  



Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

73 
 

Simulation of the behavior of the optimistic algorithm consists of two parts: simulation of 
forwarding evolution of the LVT profile, and simulation of rollbacks. During the forward evolution, 
each LPi updates its LVT 𝜏𝑖, increasing it by value 𝜂𝑖, taken from the Poisson distribution with unit 

mean: 
𝜏𝑖(𝑡 + 1) = 𝜏𝑖 + 𝜂𝑖 ,   𝑓𝑜𝑟 ∀ 𝑖 = 1. . 𝑁. (4) 

  
To simulate rollbacks, we make each PEs decrease its LVT to the value of LVT of one of its 

neighbor, chosen with equal probability. We assume that the avalanche length (i.e. number of 
rollbacks) follows the Poisson distribution with mean 𝑏. The algorithm of simulation rollbacks is 

presented by the following pseudocode: 
𝑘 = Poisson(𝑏) 

For 𝑗 = 1 to 𝑘𝑁 do: 

Choose random LPi 
Choose random neighbor of LPi  LPr 
If 𝜏𝑖(𝑡) >  𝜏𝑟(𝑡), then 𝜏𝑖(𝑡): =  𝜏𝑟(𝑡), 

At each update step 𝑡, consisting of forwarding evolution and rollbacks, we calculate the 

average speed (2) and the average time profile (3). The parameter of the model is 𝑞 = 1/(1 + 𝑏), the 

ratio of the forward sub-steps to the total number of sub-steps, constituting the one step in 𝑡. 

3. Simulation results 

We show how adding a small fraction of long-range links affects properties of the algorithm.  

3.1. Results of simulation for conservative algorithm 

The speed 𝑢 of the profile for a conservative algorithm in case of regular topology (𝑝 = 0) is 

approximately equal to ¼ [5]. It means that only one-fourth of the LPs are working at one moment of 
time, and other ¾ are waiting. Such low efficiency is a cost for safety of computations: LPs work only 
when they are insured that the causality will not be violated. This is achieved by checking the 
dependencies between LP before every portion of computation. Therefore, when we add more 

communication links (𝑝 > 0), the speed of the profile reduces (Figure 2, left). We found that for the 

infinitely large system (𝑁 → ∞),  𝑢 = 𝑢0 − 𝑝0.306(4). 

The width of the profile grows with time and saturates at value 〈𝑤∞
2 〉. In case of regular 

topology (𝑝 = 0) this saturation value 〈𝑤∞
2 〉 increases with the number of LPs as 𝑁2𝛼, with 𝛼 = 1/2. 

Adding even very small amount of long-range communication links between LPs suppress the 

desynchronization: 〈𝑤∞
2 〉 does not increase any more with the number of LPs (Figure 2, right).  

So, the conservative algorithm on SW networks becomes fully scalable. 

 

Figure 2. (Left) average speed 𝑢 as a function of parameter 𝑝 for the system of 106 LPs; (right) average steady-

state width 〈𝑤∞
2 〉 as a function of the number of LPs for different value of parameter 𝑝 
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3.2. Results of simulation for optimistic algorithm 

We found the average speed of the profile increases as power of q:  

 u(q) = u0(q − qc)v (6) 

The critical value qc and the exponent ν does depend on the parameter of SW network p. For 

the regular lattice (p = 0) qc = 0.143(1) and ν = 1.66(1), and they increase with the number of 

long-range connections. There is no qualitative difference in the behavior of the width profile (Figure  
3, left). 

The behavior of the average width also does not change qualitatively with changing the 

communicational topology. The desynchronization increases with time and saturates at value 〈w∞
2 〉. 

The saturation value 〈w∞
2 〉 growth with the parameter q (Figure 3, right), that means that the higher 

the progress rate, the less the LPs are synchronized.  

 

Figure 3. Average speed 𝑢 (left) and average steady-state width 〈𝑤∞
2 〉 (right) as a function of parameter 𝑞 for the 

system of 104 LPs and for values of parameter 𝑝 

 

4. Conclusion  

The main results of the simulation of LVT profile for conservative algorithms on SW 
networks are: 1) the speed of the profile is positive and reduces slowly with 𝑝; 2) the profile width is 

finite in the limit of infinite number of LP, i.e. the LPs are well synchronized.  
The main results of the simulation of LVT profile for optimistic algorithms on SW networks 

are: 1) the behavior of the speed and the width of the LVT profile qualitatively does not change with 

introducing of the long-range communicational links; 2) the average speed of the profile increases as 
the power of the parameter q; 3) there is a critical value qc, below which the progress of simulation 

fluctuates around zero; 4) the desynchronization degree grows with the progress rate q. 
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