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Abstract. We present an obstacle avoiding path planning method based
on a Voronoi diagram adjusted with tactical component in a first-person
shooter video game. We use a visibility measure to aggregate information
on cover positions in offline and online game modes. In order to incor-
porate online learning based on frag map, we introduce a path finding
algorithm minimizing the probability to walk along the path through
dangerous zones, and on the contrary, choosing the best positions to
shoot when observing a map level. Several implementations of collision
free path finding are compared under efficiency, team goal achievements,
and path length measures.
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1 Introduction

Constructing an efficient representation of obscured and navigable space of vir-
tual environments, path planning and path finding problems play an extremely
significant role in video games. For a long time, a traditional approach to these
problems has been mainly focused only on searching the shortest routes from A
to B while keeping the number of nodes in a navigation graph as low as possible.
However, this is not enough for an AI to look intelligent, especially in terms
of believable human-like behaviour [1]. Navigation agents should instead move
along the most appropriate routes, the ones that take into account tactical prop-
erties of surroundings, such as cover positions, lines of fire, kill/death statistics
around a given location, enemy presence or positions of allies.

Basically, tactical path finding can be implemented by modifying a cost of
traversing between nodes in a navigation graph as described in [2], however,
it is not actually going to work at the desired quality level without a proper
navigation graph itself. In addition, as shown in [3], tactical path finding is
often linked to a tactical decision making strongly impacting on general AI’s
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logic based on world’s representation method. Therefore, the question is, what
a structure of a navigation graph should be like?

The common practice is using grid or way-point graph with a reasonably high
density of navigation nodes [3], [4], [5], [6], however, it has a lot of disadvantages,
such as time and memory requirements, while both of them are actually very
poor at representing a navigable area itself. Finally, way-points usually (though
not necessary) require a level designer to place them over a map slowing down
a game development process and restricting usage of dynamic environments.

Another way of acquiring a navigation graph is using navigation meshes.
They are, on the contrary, very efficient at representing navigable regions while
being completely inappropriate for performing a tactical path finding without
applying certain structural constraints due to the irregular spacing [7]. A com-
mon workflow is providing a level designer an opportunity to mark up some
specific areas on a navigation mesh with extra details. Although the situation
with manual mark-up requirement is much better compared to way-point sys-
tems, in general, it has similar problems, especially with dynamic environments
support. As an example of something more intelligent, in [8], the authors de-
scribe a fully automatic algorithm to construct a navigation mesh with polygons
marked as concealed or normal ones in order to achieve stealthy path planning.

Last but not least, there are also several promising hybrid approaches, such as
[9] where a regular way-point graph is generated dynamically around navigation
agents and places of interest by sampling positions from a static navigation
mesh. After way-points are created they can be treated as a lower level of a
path finding hierarchy. The downsides of this method are potential performance
problems and duplication of navigation information.

This paper presents a special navigation mesh type, which is designed to
overcome all problems described above, called Voronoi-based navigation mesh,
first introduced in our previous publication [10]. In robotics and game program-
ming, Voronoi diagrams are often constructed based on obstacle vertices’ points
and used to create a space partition for a collision-free path finding [11], [12],
[13], [14]. Nevertheless, they have never been used in a context of a tactical path
finding yet. Since Voronoi diagram is a simple case of a k -nearest neighbour
classification rule with k = 1 , we find putting a constraint on navigation mesh
polygons to be Voronoi faces as a perfect way to aggregate tactical information of
a navigable space while using an acceptable by performance number of nodes in
a navigation graph. All the properties are calculated at Voronoi sites’ locations
and then propagated to all other points in a corresponding Voronoi face.

Although a number of tactical properties that can be taken into considera-
tion is potentially almost unlimited, building complex tactical path finding and
decision making models is not a purpose of this paper and only two of them are
covered further: visibility calculated in eight possible directions and kill/death
statistics at a given location as one for precomputed and one for online tactical
properties, respectively. In the Experiment section, we show that using these
two properties only results in about 11− 13% winning rate gain against an AI,
which does not use any tactical information.



While a visibility measure is a relatively simple idea to discover cover posi-
tions, the math behind a frag map generation process used as the second tactical
property is more complex. Our approach is based on a graph diffusion model,
which is applied as a mechanism to restore a density of the winning rate distribu-
tion over a map in case of holding a specific location. Graph diffusion models are
widely used in network analysis, recommendation systems and signal processing
applications. As an example, in [15] the authors introduce a method of diffusion
filtering to smooth signals defined on the nodes of a graph. They show that it
can be used to improve the performance of recommendation systems. In [16] the
authors present a novel difference metric based on the Laplacian exponential
diffusion kernel for measuring a distance between two weighted graphs with the
same number of vertices thus capturing similarity between several graph-based
models of navigation mesh.

Coming back to a frag map, a kill/death statistics of a virtual environment
is usually unknown to an AI at a game’s start. It means that a graph diffusion
model together with the use of a Voronoi-based navigation mesh and penalties for
a poor kill/death statistics at specific locations during a path finding is actually
an algorithm of online navigation learning.

2 Voronoi-based Navigation Mesh

2.1 Definition

A navigable surface S is defined as a connected closed surface with no self-
intersections when projected onto the horizontal plane omitting the intersections
with the obstacles. Holes in such a surface are possible. Let P = {p0, p1, ..., pn}
be a set of points uniformly distributed over a navigable surface S with a number
of calculated tactical properties for each of them. Then let

V D(pi) = {x : ‖pi − x‖2 ≤ ‖pj − x‖2,∀j 6= i, x ∈ S ⊂ R3} (1)

be polygons of a surface. A union of these polygons constructed in all surfaces
and navigation links connecting them is called a Voronoi-based navigation mesh.
Examples of virtual environment representations using this type of navigation
mesh are illustrated on Figure 1 and Figure 2.

2.2 Navigation Mesh Storage

As soon as a map is decomposed into a set of non-intersecting navigable surfaces,
each of them is stored independently. There are several things to hold in a surface:
borders, vertices, edges and faces of a Voronoi diagram and a quad tree used for
solution of a point location problem in a real time. Voronoi diagrams themselves
are stored in a way similar to DCEL format that guarantees Θ (n) memory
footprint, because the number of vertices and edges of Voronoi diagrams are
not greater than 2n and 3n respectively. For simplicity of maintenance, border
edges are orientated in a way that a navigable area is always on their right side.



Fig. 1. VD-based Navigation Mesh

Fig. 2. Navigation Links

2.3 Navigation Mesh Construction

The first stage of constructing navigation mesh is a voxelization of the virtual
environment geometry. Stored in an octree, the level geometry can be quickly di-
vided into several groups, each of which is processed independently to construct a
height field representing an obstructed and navigable space based on geometry’s
triangles. The passability of height field’s cells is determined by corresponding
triangle’s normal, height available to a navigation agent and navigation agent’s



radius. Once constructed, height fields of each group are merged. In the end of
this stage, a grid graph representing a navigable area is obtained.

The second stage is splitting a grid graph into navigable surfaces as they are
defined above. Every cell of a grid graph is pushed into a heap ordering elements
by ascending order with respect to z-coordinate. Next, cells are picked from the
heap one by one. The breadth first search (BFS) with a priority by z-coordinate
starts from each of the cells and marks them as belonging to the next surface.
An important thing is that during each BFS pass, a cell is considered as visited
even if any other cell with the same xy-coordinates was visited during that pass.
When such a “visited” cell is encountered, another BFS with a limited depth
should be performed from it, in order to discard cells from the current surface
being constructed. This strategy is used to produce a better surface split and
eliminate float precision problems when simplifying surface’s borders. It is also
recommended to limit initial BFS depth in order not to end up with too large
surfaces as it results in drawbacks in performance. However, it should be taken
into consideration that splitting a map into too small surfaces should be avoided
as well as it can lead to degenerating of Voronoi structure to a grid. Once the
splitting stage is done, several surfaces may be discarded if their area appears
to be too small. Eventually, surface’s borders are collected and then simplified.
This stage takes O (nlog(n)) in time, where n stands for a number of cells.

The third stage is a construction of Voronoi diagram in each of the gener-
ated surfaces. Voronoi sites are placed at random points on the surface and at
each vertex of surface’s borders. The latter condition is very important for elim-
inating float precision problems in the further steps of the algorithm and some
degenerate cases, such as a border completely lying inside of a Voronoi face. In
addition, a geometry information such as a height above a Voronoi face is copied
to Voronoi sites from corresponding grid cells and is then used by a naviga-
tion agent to determine whether it is possible to crouch or jump in a particular
Voronoi face. Voronoi diagrams themselves are constructed using Fortune’s algo-
rithm presented in [17] running in O (nlog(n)) time. Once the diagram is built,
Voronoi faces turned out to be outside of a surface are discarded. The faces with
border intersection are cut off and then are split into convex polygons. Location
of a Voronoi site for these polygons is fictive due to the fact they are no longer
Voronoi faces and is set to their center. For each constructed diagram a quad
tree is built, ending the third stage.

The fourth stage consists of adding additional navigation links between faces
lying in different surfaces. Building them between faces adjacent to the same
border line can be done in linear time, however the interesting part is the explo-
ration of jump-points on a navigation mesh. This step requires O(n2) ray casts
in the worst case. In practice, this number can be greatly reduced to O (n) on
real maps with bounded gravitation field. For each of the polygons lying near
the surface border, a set of polygons lying within a range d , that is derived from
gravity field, is found, which can be done using a quad tree built on the previ-
ous stage. In what follows, a link candidate is eliminated if a segment connecting
polygons’ sites intersects a non-border edge. Finally, each link candidate is evalu-



ated by one of two possible variants: falling from a ledge or jumping. The process
of jumping can be checked using ray casts and physics calculations. Walking off
a ledge requires minimizing undesired jumping by comparing of ground heights
between nearby polygons.

From this point, a navigation mesh is actually ready to use. Table 1 shows
time values required to construct a Voronoi-based navigation mesh on a sample
map (without tactical properties computation) depending on a site density (sites
placed at vertices of surface’s borders are not affected by this parameter).

Table 1. VD-based Navigation Mesh Construction Time

Site Density, n/m2 0.1 0.2 0.3 0.4 0.5

Time, ms. 248 260 274 292 305

The path-finding based on this step requires specifying several parameters
of Voronoi diagram affecting particular smoothness and precision of obstacle
avoiding path, seen at Figure 3.

The last stage is a calculating static tactical properties. In this paper, only
visibility calculation process is described. We define visibility as a value from 0
to 1 indicating the amount of area visible from a specific polygon within a given
range. It is calculated in eight possible directions with a maximum of 0.125 for a
single direction. Figures 4 and 5 show examples of an aggregated and directional
visibility tactical property respectively.

3 Kill/Death Statistics

3.1 Definition

We define Ki and Di as numbers standing for the amount of kill and death
events occurred in the i -th Voronoi face, respectively. Each new event is pro-
cessed using a softmax blurring around the exact event’s location L :

Ei ← Ei +
σ(−C · ‖Si − Li‖2)∑
j

σ(−C · ‖Si − Lj‖2)
, σ(x) =

1

1 + exp(−x)
(2)

where Si is a location of a Voronoi site corresponding to the i -th Voronoi face,
C is a constant indicating the preferred scatter and Ei denotes either Ki or
Di depending on the type of the event. Collected Ki and Di statistics are then
combined into a single number indicating a probability of being killed instead of
killing an enemy while occupying a given location using the following formula:

Pi =
Di +B

Di +Ki + 2B
(3)

where B > 0 is the algorithm’s sensitivity to new events.



Fig. 3. VD-based Path Finding

3.2 Graph Diffusion

It can take a considerable amount of time before probabilities Pi defined above
converge for every Voronoi face of a navigation mesh. In addition, there is a need
to somehow discard the statistics an AI gets in the initial stage of the algorithm.
To overcome these problems we use the graph diffusion model, as it have been
stated in the Introduction section. The following formula is applied:

Ei(t+ δt)← Ei(t) +Q
∑
j∈Ni

‖Sj − Si‖2 · (Ej(t)− Ei(t))δt (4)

where Q is the diffusion coefficient. In fact, double buffering of kill/death statis-
tics should be used for this formula to work correctly.

3.3 Penalty in Path Finding

We utilize the A* algorithm for path finding on a Voronoi-based navigation mesh.
The additional penalty for traversing between i -th and j -th polygons in order



Fig. 4. Aggregated Visibility

to incorporate tactical component is defined as follows:

Penalty(i, j) = V · ‖Si − Sj‖2 · (Pi + Pj) (5)

where V ≥ 0 is an importance of the tactical property. A penalty value for
directional visibility is calculated in a similar way. In fact, the only difference
is considering a direction to an enemy to choose one of precomputed visibility
values if his position is known and using aggregated visibility otherwise.

4 Experiment

In this section, three tactical path finding algorithms are compared: the one
using only position estimation by the kill/death statistics, the one using only the
directional visibility and the one using both of them. The first AI utilizing these



Fig. 5. Directional Visibility

algorithms plays against an AI ignoring any aggregated tactical information in
1000 consequent 1 vs 1 matches. The map used for the experiment is symmetric
and the AI’s inventory is limited to a single weapon.

A cumulative win rate of the first AI during the experiment is shown on
Figure 6. As it can be seen, adding a directional visibility tactical property to
the model does not result in a significant change, which can be explained by
the fact that it is a rather weak position estimator compared to the frag map.
Nevertheless, it gives about 2− 3% of a win rate gain.

In order to prove the efficiency of the developed tactical path finding model
a statistical test is performed. A null hypothesis stating that a win rate of the
first AI equals 0.62 is tested against a one-sided alternative using the binomial
criteria and the last hundred of observations (when a frag map is more or less



Fig. 6. Cumulative Win Rate

calculated) on 0.05 significance level:{
H0 : p = 0.62,

H1 : p > 0.62
T (X) ≈ 0.038 < 0.05 (6)

As expected, the null hypothesis is declined in favor of the alternative which
means that the use of Voronoi-based navigation mesh with visibility and frag
map tactical properties results in more than 12% win rate gain against the
basic AI not using any tactical information.

5 Conclusion

We have developed a new navigation mesh type capable of collecting both tacti-
cal and geometry information that can be later used as features in complex path
finding [18]. The main importance of our feature generation for VD-based navi-
gation mesh representation is that it can be used in dynamic graph path finding,
applying presented in [18] incremental anytime algorithms for fast search to an
enemy and incorporating heuristics of kill/death ratio and visibility component.

The proposed approach significantly outperforms our previous decision mak-
ing model [19], which takes into account only information on the current enemy
visibility and based on this information adapts aiming and shooting models.
Now, we are able to change BOT behavior based on previous information on en-
emy encounter and allow it to choose between straight-on attack by the shortest
path or choosing backward path in order to outflank the enemy previously seen
in a certain location.

Our tactical navigation mesh was also aimed to be used for incorporation
in reinforcement learning based on deep video input, already tested in [20] for



respective task. Using our cell penalties and rewards we can train our model
to use more peculiar algorithms of navigation and shooting while choosing the
safest method based on incoming reward computes in terms of the current player
health, enemy visibility and location.

In this work, we have only tested and proved its efficiency with a directional
visibility property and a new approach to a map position estimation based on
kill/death statistics and the graph diffusion model. We have used this approach
to incorporate online navigation learning in a first-person shooter video game
[21]. This game prototype was presented at demo section of ACM MultiMedia
international conference and showed state-of-the-art performance for first-person
shooter adjusted for believable BOT behavior in VR video game. The path find-
ing algorithm in this scenario plays important role affecting human perception
of the AI in the game. We showed that our method work better than standard
path finding algorithms based on either shortest distance for predetermined of-
fline heuristics or manually written rule-based models. We aim to further study
the effect of path planning algorithms on FPS players in VR environments while
improving the quality of the suggested pipeline of BOT path finding.
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