
Sentiment Analysis of Short Texts from Social
Networks Using Sentiment Lexicons and
Blending of Machine Learning Algorithms

Anastasia Novikova1,2 � and Sergey Stupnikov1,2,3

1 Mail.Ru Group, Moscow, Russia,
2 Lomonosov Moscow State University, Moscow, Russia,

3 Institute of Informatics Problems, Federal Research Center “Computer Science and
Control”of the Russian Academy of Sciences, Moscow, Russia,

novikovaa@abc.math.msu.su sstupnikov@ipiran.ru

Abstract. This paper focuses on the field of sentiment analysis of nat-
ural language texts. To be precise, short texts extracted from social net-
works are analyzed. At present two groups of applied methods can be
distinguished in this field: machine learning methods and methods based
on sentiment lexicons. The paper reviews the principal methods in this
field and proposes an approach for short text sentiment analysis, com-
bining sentiment lexicons and blending of machine learning algorithms
for the problem of three-class text classification. Various formulas for
determining weights of the words in vector representation of texts are
considered as well. This approach is applied to a dataset that consists of
10,000 manually marked posts extracted from VKontakte social network.
Class distribution of dataset objects for the studied area often tends to
be unbalanced. Standard models show moderate quality but only due to
the fact that the majority of data points are classified as belonging to
the dominant class. In this work an approach that shows good metric
scores for all the three classes is described.

Keywords: Sentiment analysis, Sentiment lexicons, Blending, Machine
learning, TF-IDF

1 Introduction

The amount of data collected from users around the world has grown greatly
over the past decade as websites such as Twitter, Amazon and Facebook have
facilitated publication and aggregation of micro opinion pieces that allow indi-
viduals to record their sentiments towards things, people and events.

Sentiment analysis is the process of determining whether a text relates to
one of given classes. It is also known as opinion mining and aims to determine
the attitude of a writer with respect to some topic or the overall contextual po-
larity or emotional reaction to a document, or event, or some other object. The
information received after the analysis is clearly of value to researchers, organi-
zations and companies trying to understand sentiment both for individuals and



on average, as well as to identify trends [2].
At present two groups of applied methods can be distinguished in the field:

machine learning methods and methods based on sentiment lexicons. The aim
of this work is to develop a method combining the two mentioned approaches as
well as a meta ensemble of machine learning models that would cope with the
mentioned problem of strong class imbalance.

Blending of Logistic Regression, Random Forest Classifier, Gradient Boosting
Classifier, and set of features is used to combine the information received from
all the parts of the ensemble. Among added features there are metrics received
from using emojis extracted from texts, sentiment lexicons, application of Rel-
evant Frequency method [17]. Various TF-IDF formulas are examined [3] and
best variants for the given task are chosen.

The developed method exceeds quality of standard classifiers on given dataset
and shows high value of F1 metric even with a strong class imbalance.

The paper is organized as follows. In section 2 related work is overviewed,
then the proposed approach is described. In section 4 conclusion is provided.

2 Related Work

Most commonly applied methods in text classification and sentiment analysis
tasks in particular can be divided into two groups: methods that use sentiment
lexicons [6][7][8] and machine learning methods[16][10][4][9][11]. In some works
combination of these approaches is suggested[5].

Lexicon based techniques rely on an assumption that the collective polarity
of a document or sentence is the sum of polarities of the individual words or
phrases. In [6] modifying words are used together with sentiment lexicons. As
word or words written before a certain word or phrase can influence its sentiment
polarity there is an idea to change a weight of the word according to its context.
In [7] sentiment lexicon is created manually with application of Relevant Fre-
quency method. The authors of [8] use hashtags for detecting sentiment polarity
of tweets.

For machine learning methods texts are usually preprocessed by removing
stop words and irrelevant information[11][5][10]. Lemmatization or stemming,
spell correction for words is applied in some cases [11][5]. Vector space model
is often used for representation of texts [5][9][4]. Classifiers are then applied
over vector representations of texts to make predictions after being fit on train
dataset [11][5][9]. In [5] the authors suggest methods for extracting key words
from texts using Relevant Frequency method for classification, and a combina-
tion of this method with SVM classifier. Relevant Frequency method is also
used for adding words to lexicons in this paper. In some works the information
about parts of speech of words is used for text classification [10][11]. However
there is still conflict whether Parts-of-Speech are a useful feature for sentiment
classification or not. Some researchers argue in favour of good POS features [13]
while others do not recommend to use them for this purpose [14]. In [11] and
[12] an ensemble of algorithms is used for classification and rule based classifiers



are applied. The authors in [6] use D-gramms together with sentiment lexicons
for text classification. They suggest adding words to dictionaries using Relevant
Frequency method and to use modifier words to change words weighs.

Neural networks are often applied to text classification tasks and for senti-
ment analysis in particular. CNN or RNN are used very often. In [16] authors
conduct comparison of neural networks architectures used in tasks related to
sentiment analysis for Russian texts. The use of neural networks is not applica-
ble for our dataset in straight-forward way because these methods require much
larger amount of labeled data for training.

Sentiment analysis is a growing area of research. There have been a lot of
related papers at conferences of different levels for some years and new works
still appear very often.

3 The Proposed Approach

3.1 Dataset

The dataset for three-class sentiment classification was provided by Mail.Ru
Group. It was retrieved from VKontakte social network in July, 2017 and consists
of about 10,000 manually marked posts. Four people took part in the marking
process and each post was assessed by one person. The quality of the classifica-
tion was evaluated by leading assessor.

Posts from social networks have several specific features. They are usually
short, contain mistakes and slang expressions, as well as emojis, useful for polar-
ity identification. Additionally, their content is dynamic and often dependent on
current events. So, the vocabulary is very rich and training a classifier on embed-
ded texts is rather difficult because of certain inconsistency due to the mixture
of domains in the dataset. Most posts in the dataset are written in Russian,
although there is a large amount of posts in English and some posts in other
languages which were kept as they didn’t significantly influence the quality of
the model. The average length of texts is 29 words. The distribution of classes in
the dataset is very unbalanced. There are 6380, 2700 and 600 posts of neutral,
positive and negative classes respectively.

3.2 Data Preprocessing

Raw data usually needs to be preprocessed before being passed to any machine
learning algorithm as there are typically a lot of symbols which are meaningless
for a given task and keeping them can reduce the quality of the model. The
preprocessing of text means cleaning of noise such as cleaning of stop words,
punctuation, terms which doesnt carry much weightage in context to the text.

When dealing with vector space models stemming or lemmatization is usu-
ally applied to the text to reduce the size of the dictionary and to give a classifier
an ability to learn information from the words not running after words forms.

In this paper the following preprocessing is conducted. Stop words are re-
moved using Python nltk library. The standard set of Russian stop words is



Table 1. F1 score for Logistic Regression over different stemmers

Stemmer Positive Neutral Negative General Pos-Neg
class class class score score

MyStem 0.47 0.82 0.06 0.68 0.40
SnowballStemmer 0.46 0.82 0.03 0.67 0.38
MorphAnalyzer 0.41 0.82 0.0 0.66 0.34

extended. HTML tags are removed using regular expressions.
Yandex stemmer Mystem1, Snowball Stemmer2 and Morph Analyzer3 are

applied for stemming. After stemming TfIdf Vectorizer from sklearn Python li-
brary with default parameters is used for vector representation of the texts. The
LogisticRegression from sklearn with default parameters is then applied for clas-
sification. The results are shown in table 1. F1 metric score for each of the three
classes is provided as well as an aggregated F1 score. F1 metric is calculated
as weighted average of the F1 scores for all classes. In this section and in all
further sections General score represents F1 metric calculated for all the three
classes and Pos-Neg score represents F1 metric calculated as weighted average
for positive and negative classes.

For our task MyStem showed better results in comparison and it was chosen
for future investigations. In [5] it is mentioned that MyStem performed better.

3.3 Applied Classifiers

Among models that are commonly used for text classification are Logistic Re-
gression, SVM , Multinomial Naive Bayes, Random Forest Classifier, neural net-
works.

The dataset is divided into train and test parts and cross validation method
is used. The following classifiers over TF-IDF feature vectors with preprocessing
described in the previous section are applied: Logistic Regression, Random Forest
Classifier, SVM, Gradient Boosting Classifier, KNeighbors Classifier, Multino-
mial Naive Bayes. The results are shown in table 2.

SVM, Logistic Regression, Random Forest Classifier and Gradient Boosting
Classifier demonstrated better results and are chosen for future consideration.
The use of neural networks is not applicable in straight-forward way because it
requires a large amount of labeled data for training. The SVM classifier over stan-
dard TF-IDF model form sklearn from this section is used as a baseline model,
and the Logistic Regression classifier over standard TF-IDF model is shown as
simple Logistic Regression for comparison with other Logistic Regression models
in the next sections.

1 https://tech.yandex.ru/mystem/
2 http://www.nltk.org/api/nltk.stem.html
3 http://pymorphy2.readthedocs.io/



Table 2. F1 score for different classifiers

Classifier Positive Neutral Negative General Pos-Neg
class class class score score

SVM 0.54 0.81 0.23 0.70 0.48
Logistic Regression 0.47 0.82 0.06 0.68 0.40

Random Forest Classifier 0.52 0.76 0.14 0.66 0.45
Gradient Boosting Classifier 0.40 0.82 0.11 0.66 0.35

KNeighbors Classifier 0.22 0.80 0.10 0.59 0.20
Multinomial Naive Bayes 0.25 0.81 0.0 0.61 0.20

3.4 Extracting Additional Data for Feature Engineering

It is rather difficult to achieve good quality just using standard classifiers. So
the task was to add features that would help the model to learn information
about the objects of all the classes. As there are a few examples of positive and
negative classes the specified problem is hard to be solved using only available
dataset. That is why it was decided to get unlabelled objects from VKontakte
social network and to build a classifier that would extract more examples for
negative and positive classes.

The following approach is used for this task. The LogisticRegression classifier
is fitted on labelled data to predict probability for each of the three classes.
The data is preprocessed as it is described in the previous section. The idea
is that if the trained classifier is very sure that the object should be related
to a certain class the probability of being mistaken when adding this object
to the dataset with corresponding label is low. The thresholds for probabilities
returned by trained model for positive an negative classes were chosen manually
to supplement the positive and negative classes. About 3000 of new examples
were extracted. These objects were used to calculate some statistics. The more
detailed description is provided in the next sections.

3.5 Use of Emoticons as Features

There are many emoticons in the social network posts and they are very useful
when identifying the sentiment polarity of the text. Smiley symbols received
from the text are used in some ways. First they are added as features to TF-IDF
model together with lemmatized words.

The probability distribution for each smile symbol to belong to each of three
classes is calculated using both data from the original dataset and objects from
extracted dataset which is described in the previous section.

Pi,k =
Ni,k

Nk
, k ∈ {−1, 0, 1}

Where Ni,k is the number of posts in which smiley symbol i is found and its
label is equal to k in the united dataset, and Nk is the number of posts in which
smiley symbol i is found in the united dataset.



Table 3. F1 score for Logistic Regression with emoticons and without emoticons

Model Positive Neutral Negative General score Pos-Neg
class class class General score score

Model with emoticons 0.54 0.83 0.06 0.70 0.45
Baseline model 0.54 0.81 0.23 0.70 0.48

Simple Logistic Regression 0.47 0.82 0.06 0.68 0.40

The following features are added to the classifier. The average probability
distribution for the three classes for all the smiley symbols in each post is calcu-
lated and these three numbers are used as features for the classifier. The number
of smiley symbols in each post is also added as a feature to the model. The smiley
label is calculated for each post as the class with the highest probability consid-
ering all the smiley symbols: Cj = argmaxk Pj,k, where Pj,k is the probability of
class k for document j considering all the smiley labels in the document j.

Smiles were also added as features to TF-IDF model and this raised the value
of F1 metric. The results can be viewed in table below. The LogisticRegression
classifier over TF-IDF that is described in section 2 is chosen for consideration.

3.6 Application of Sentiment Lexicons

The marked sentiment lexicons from [17] are used to add new features to the
classifier for it to be more precise. The vocabulary size is 7545 words and
there are 5 possible classes in the dictionary. Each word can be given the mark
−2, −1, 0, 1, 2 if it is considered to be very negative, negative, neutral, positive,
very positive respectively. For each post the mark is calculated as the sum of
sentiment labels for all the words in the post that are found in sentiment lexicon
and this mark is added as a feature to the model.

Sentj =
∑Nj

n=1 sentn

Where Nj is the number of words in the text j found in sentiment lexicon, and
sentn is the sentiment mark for word n from sentiment lexicon.

3.7 Application of Relevant Frequency Method

Relevant Frequency [5] helps to determine some kind of probability for each word
to belong to each of the three classes according to the number of times it is found
in the objects of a certain class compared to the number of times it is met in
the objects of other classes.

The value is calculated as RF c
i = log2( a

max(1,b) ). Where a is the number

documents containing word i that belong to class c in the training dataset and
b is the number documents containing word i that not belong to class c in the
training dataset.

For each word from train dataset the value of Relevant Frequency is calculated
using the above formula using train dataset and additional dataset which is



described in section 3.4.
The metric is calculated for each post as the sum of differences of the relevant

frequency for the positive class and the relevant frequency for the negative class
for each word in the training set, and this figure is added as a feature for the
classifier.

RFsentence =
∑

words(RF+
word −RF−

word)

Where RF+
word is the Relevant Frequency for a given word for positive class and

RF−
word is the Relevant Frequency for a given word for negative class.

3.8 Vector Space Model

The vector space model is used very often in machine learning tasks related to
texts. In this approach individual documents are represented as vectors in term
space. Bag of words, TF-IDF, word2vec are three most commonly used vector
space models. Bag of words model was tried but it showed lower metric score
in comparison. FastText [18] which provide word2vec space model was used for
classification but it showed a little worse result in comparison to TF-IDF model
which is chosen for term weighting.

In TF-IDF vector space model the term weight is given by product of Li,j ,
Gi, Nj where Li,j is a local weight for term i in the document j, Gi is a global
weight for term iand Nj is the normalization factor for document j [3].

Local weights are functions of how many times each term appears in the
document, global weights are functions of how many times each term appears in
the entire collection, and the normalization factor compensates for discrepancies
in the length of the documents.

The following weighting formulas are applied. For local weight, binary (BNRY ),
within-document frequency (FREQ), log (LOGA), normalized log (LOGN),
augmented normalized term frequency (ATF1) and the one that is used in
sklearn. For global weights: inverse document frequency (IDFB), probabilis-
tic inverse (IDFP ), entropy(ENPY ), global frequency idf (IGFF ), Idf from
sklearn, no global weight (None). For normalization factor: cosine normalization
(COSN), pivoted unique normalization (PUQN), no normalization (None).

For this task of classification the following TF-IDF models were chosen:
〈 ATF1, None, COSN 〉 and 〈 LOGN, ENPY, PUQN 〉.

The local weights from chosen models are calculated as follows:

ATF1 =

0.5 + 0.5
fi,j
xj

, if fi,j > 0

0, if fi,j = 0

Where fi,j is the frequency of term i in document j and xj is the maximum
frequency of any term in document j.

LOGN =


1 + log fi,j
1 + log aj

, if fi,j > 0

0, if fi,j = 0



Where aj is the average frequency of the terms that appear in document j.
The global weight ENPY is calculated as follows:

ENPY = 1 +
∑N

j=1

fi,j
Fi

log
fi,j
Fi

logN

Where Fi is the frequency of term i throughout the entire collection and N
is the number of documents in the collection.

The normalization factors from chosen models are calculated as follows:

COSN = 1√∑m
i=1(Gi Li,j)2

Where Li,j is local weight of term i in the document j, Gi is global weight
of term i, m is the number of terms in document j.

PUQN = 1
(1 − slope) pivot + slope lj

Where lj is the number of distinct terms in the document j, slope is set to
0.2, pivot is set to the average number of distinct terms per document in entire
collection.

The application of these formulas to the model is described in the next sec-
tions. The other formulas and description for them can be found in [3].

3.9 Blending Strategy for Meta Ensemble

Ensemble methods, such as blending and stacking, are designed to boost predic-
tive accuracy by combining the predictions of multiple machine learning models.
Recent work has shown that the use of meta-features, additional inputs describ-
ing each example in a dataset, can boost the performance of ensemble methods
[12] [11]. Classifiers over TF-IDF themselves showed moderate quality for the
classification task. However, this was due to the fact that the classifiers consid-
ered most of the objects to belong to the neutral class. The blending model is
chosen to consider the classifier output together with all the calculated features.

The two chosen TF-IDF models which are described in the previous section
could perform better if to combine their predictions. The model with 〈 ATF1,
None, COSN 〉 weights performs better general metric score in comparison to
other models while 〈 LOGN, ENPY, PUQN 〉 model show higher metric quality
for negative class.

The following approach is used. Two Logistic Regression classifiers are ap-
plied over vector representations received from each of the two chosen TF-IDF
models. If the classifier over 〈 LOGN, ENPY, PUQN 〉 is very sure that the ob-
ject should be related to the negative class and the probability for this object to
belong to negative class predicted by the classifier over 〈 ATF1, None, COSN 〉
model is not low then the prediction of the first classifier is chosen. Otherwise the
result of the second classifier is taken. These two thresholds were chosen using
cross-validation method. The comparison of performance of these two models
and their combination is shown in table 4. The pseudocode for described rule is
as follows.



if clf1.result > thr.clf1 and clf2.result > thr.clf2 then
obj.class = clf1.result

else
obj.class = clf2.result

end if

The following designators are used in pseudocode:

– clf1.result is the probability for negative class predicted by classifier over
〈 LOGN, ENPY, PUQN 〉 TF-IDF model;

– clf2.result is the probability for negative class predicted by classifier over
〈 ATF1, None, COSN 〉 TF-IDF model;

– obj.class is the resulting label for the object;

– thr.clf1 and thr.clf2 are the lowest probability of negative class for the first
and the second classifiers respectively for the object to be related to negative
class;

Table 4. F1 score for two Logistic Regressions and their combination

Model Positive Neutral Negative General Pos-Neg
class class class score score

ATF1, None, COSN 0.56 0.83 0.08 0.71 0.47
LOGN, ENPY, PUQN 0.58 0.79 0.22 0.70 0.52

Combined 0.56 0.83 0.23 0.72 0.50
Baseline model 0.54 0.81 0.23 0.70 0.48

Simple Logistic Regression 0.47 0.82 0.06 0.68 0.40

The applied blending strategy is as follows.The training subset of the dataset
is divided into two parts. The Logistic Regression, SVM, Random Forest Clas-
sifier, Gradient Boosting Classifier fitted on the TF-IDF vector representations
of the texts from the first part are applied to get the predictions on the second
part of the train dataset and on test dataset. For Logistic Regression the output
from one of the two classifiers is chosen as it is described in the previous para-
graph. For the other two models 〈 ATF1, None, COSN 〉 variant of TF-IDF is
used. For Logistic Regression the probability distribution of classes is taken and
for the other classifiers the predicted class label is used. The predictions of the
classifiers are used as features for another classifier together with the other cal-
culated features described in the previous sections. The feature that corresponds
to SVM is excluded from the dataset because without this feature the metric
score is higher. At this final step of blending the Logistic Regression is fitted on
these features on the whole training data and predictions for the test data are
received.



3.10 Rules Over the Classifier

Table 4 shows that the applied ensemble method increases the value of F1 met-
ric. However there are still mistakes in the predictions while the value of some
features corresponded to true label. For example, the classifier relates the text to
neutral class but the values of sentiment score and relevant frequency score
are very low, and the true label is negative. The thresholds were chosen using
cross validation according to which the decision is made despite the resulting
label of the classifier. The pseudocode of the rules over the classifier for a single
object is as follows.

if clf.result ! = 0 then
obj.class = clf.result

else if obj.rf < rf.thr and obj.sent < sent.thr
and obj.neg > neg.thr and obj.pred− > pred−.thr then
obj.class = -1

else if obj.rf > rf.thr and obj.sent > sent.thr
and obj.pos > pos.thr and obj.pred+ > pred+.thr then
obj.class = 1

else
obj.class = clf.result

end if

The following designators are used in pseudocode:

– clf.result is the label predicted for the object by the classifier;
– obj.class is the resulting label for the object;
– obj.rf is the value of Relevant Frequency metric described in the 2 section;
– obj.sent is the value of Sentiment metric described in the 2 section;
– rf.thr , sent.thr, neg.thr, pos.thr , pred−.thr, pred+.thr are chosen thresh-

olds for Relevant Frequency, Sentiment Value, number of negative and posi-
tive words from the sentiment lexicon, the probability returned by the clas-
sifier for negative and positive class respectively;

The described method helps to improve the quality of the model. The results
of this step in comparison to previous step are shown in table 5.

3.11 Summary of Results

In this section an overview of experiments and evaluated components is pro-
vided.

Three variants of stemmers were applied for preprocessing: My Stem, Snow-
ballStemmer and MorphAnalyzer. My Stem demonstrated better results in com-
parison both for the first steps of the applied model and for the whole pipeline.
Stop words were removed using NLTK Python library. All meaningless symbols
were also removed with help of regular expressions.



Table 5. F1 score for Blending Model compared to previous steps

Model Positive Neutral Negative General Pos-Neg
class class class score score

Model with rules 0.62 0.83 0.25 0.74 0.55
Blending model 0.59 0.83 0.20 0.73 0.52

Model with emoticons 0.56 0.83 0.23 0.72 0.50
Baseline model 0.54 0.81 0.23 0.70 0.48

Simple Logistic Regression 0.47 0.82 0.06 0.68 0.40

Different classifiers were applied over vector representations of posts from
dataset. Logistic Regression, Random Forest Classifier, SVM, Gradient Boosting
Classifier, KNeighbors Classifier, Multinomial Naive Bayes were tested over dif-
ferent TF-IDF formulas for local, global weights and normalization.

Different TF-IDF formulas were considered. About 500 models were tested
altogether and the best variants were chosen. It was noticed that many mod-
els with None for global weights and normalization performed better. This can
point to the fact that local global weights and normalization dont play significant
role in the task of sentiment analysis classification. It was also noticed that using
PUQN normalization leads to better results in F1 score for negative class.

Logistic Regression, RandomForestClassifier, GradientBoostingClassifier as
well as 〈 ATF1, None, COSN 〉 and 〈 LOGN, ENPY, PUQN 〉 variants for
TF-IDF were chosen according to their better performance for being parts of
blending model together with the generated features received from using Rele-
vant Frequency method, sentiment lexicons and emoticons extracted from posts.
Rules were applied over the predictions of the classifier to correct its mistakes.

Final model shows much better quality then standard classifiers. The main
achievement of the proposed model is the increase of F1 score for positive and
negative classes.

4 Conclusion

In this paper an approach for the problem of sentiment analysis that combines
machine learning methods and sentiment lexicons is demonstrated. Different
classifiers and different variants of formulas for computing TF-IDF values for
vector representation of texts are evaluated and the best of them for a given
task are chosen.

Final model shows better quality according to F1 score in comparison to
standard classifiers. The main achievement of the proposed approach is that it
helps to increase F1 score for positive and negative classes as standard classifiers
show moderate quality on test dataset but only due to the fact that the majority
of data points are classified as belonging to the dominant class because of strong
class imbalance.



References

1. Liu, B.: Sentiment Analysis and Opinion Mining Morgan&Claypool Publishers
(2012).

2. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis Foundations and Trends
in Information Retrieval (2008).

3. Chistolm, E., Kolda, T.: New term weighting formulas for the vector space method
in information retrieval. Technical Report Number ORNL-TM-13756, Oak Ridge
National Laboratory, Oak Ridge, TN (1999).

4. Psomakelis, E., Tserpes, K., Anagnostopoulos, D., Varvarigou, T.,: Comparing
Methods for Twitter Sentiment Analysis KDIR 2014, 225-232 (2014).

5. Kotelnikov, E., Klekovkina, M.: Sentiment analysis of texts based on machine learn-
ing methods. International conference on Computational Linguistics and Intellectual
Technologies “Dialogue”, 27-36 (2012).

6. Kotelnikov, E., Klekovkina, M.: The Automatic Sentiment Text Classification
Method based on Emotional Vocabulary. RCDL, 81-86 (2012).

7. Kotelnikov, E., Bushmeleva, N., Razova, E., Peskisheva, T., Pletneva, M.: Manu-
ally created sentiment lexicons: development and research International conference
on Computational Linguistics and Intellectual Technologies “Dialogue”, 318-332
(2015).

8. Kaushik, C., Mishra, A.: A Scalable, Lexicon Based Technique for Sentiment Anal-
ysis. CoRR abs/1410.2265 (2014).

9. Loukachevitch, N., Rubtsova, Y.: Tweet sentiment analysis International conference
on Computational Linguistics and Intellectual Technologies “Dialogue”, 416-426
(2015).

10. Pazelskaya, A., Soloviev, A.: Method of emotions detection in Russian texts. In-
ternational conference on Computational Linguistics and Intellectual Technologies
“Dialogue”, 510-521 (2011).

11. Baqapuri, A.: Twitter Sentiment Analysis. CoRR abs/1509.04219 (2015).
12. Sill, J., Takacs, G., Mackey, L., Lin, D.: Feature-Weighted Linear Stacking CoRR

abs/0911.0460 (2009).
13. Kouloumpis, E., Wilson, W., Moore, J.: Twitter Sentiment Analysis: The Good

the Bad and the OMG! International AAAI Conference on Web and Social Media
(ICWSM) (2011).

14. Barbosa, L., Feng, J.: Robust Sentiment Detection on Twitter from Biased and
Noisy Data. International Conference on Computational Linguistics (COLING),
36-44 (2010).

15. Ustalov, D.: Terms extraction from Russian texts using graph models. Graph the-
ory and applications, 62-69 (2012).

16. Arkhipenko, K., Kozlov, I., Trofmovich, J., Skorniakov. K., Gomzin. A., Turdakov,
D.: Comparison of neural network archItectures for sentiment anaLysis of Russian
tweets. International conference on Computational Linguistics and Intellectual Tech-
nologies “Dialogue”, 50-58 (2015).

17. Koltcov, S., Koltsova, O., Alexeeva, S.: LINIS Crowd SENT - a sentiment dictio-
nary and a collection of texts with sentiment markup.
http://linis-crowd.org/

18. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of Tricks for Efficient Text
Classification. arXiv preprint arXiv:1607.01759. (2016).


