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Abstract

Cyber adversaries are engaged in a perpetual arms
race. They are continuously maneuvering to outwit
the opposing posture. Replicating and studying the dy-
namics of these engagements provides a route to proac-
tive, adversarially-hardened cyber defenses. The con-
stant struggle can be computationally formulated as
a competitive coevolutionary system which generates
many arms races that can be harvested for robust so-
lutions. We present a paradigm, techniques and tools
that recreate the coevolutionary process in the context
of network cyber security scenarios. We describe its
current use cases and how we harvest defensive solu-
tions from it.

Introduction
The greatest concern a prepared cyber defender might
raise is: “What if my assumptions are wrong?” It is
common knowledge that the only certainty is that an
intelligent adversary will always keep trying to gain an
advantage. Moreover, once forced to react, a defender
is too late. So, how can a defender use Artificial Intel-
ligence (AI) to gain an edge in an environment that is
stacked to the attacker’s advantage, where the defender
seems doomed to always be one step behind?

One approach, adversarial AI, is to deploy defensive
configurations, that consider multiple possible antici-
pated adversarial behaviors and already take into ac-
count their expected impact, goal, strategies or tactics.
Note that the precise metrics in this accounting can
vary. For example, impact can be any combination of
financial cost, disruption level or outcome risk. Or, a
defender could prioritize a worst case, average case or
a trade-off configuration.

One way that such defensive configurations can be
found is by using stochastic search methods that first
explore the simulated competitive behavior of adver-
saries and then generate ranked configurations accord-
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Figure 1: Component overview of our coevolutionary
adversarial AI framework. The coevolutionary com-
ponent performs search over the adversary controllers.
The engagement component evaluates the strategies of
the adversaries and returns the measurements of the
engagement.

ing to a variety of different objectives so a decision
maker can choose among them. In particular, the field
of coevolutionary algorithms (Popovici et al. 2012) pro-
vides search heuristics that specifically direct competi-
tive engagements. The engagements are between mem-
bers of adversarial populations with opposing objectives
that each undergo selection on the basis of performance
and variation to adapt. Coevolutionary logic results in
population-wide adversarial dynamics. Such dynamics
can expose possible adversarial behaviors that a defense
would like to anticipate. A competitive coevolutionary
algorithm can be a component of a larger system, see
for example Figure 1, in which a complementary compo-
nent sets up the environment where pairs of adversaries
engage and measures the outcome for each adversary.
These measures can be used by the coevolutionary al-
gorithm to judge an adversary’s fitness.

Herein we summarize a framework that we
have used to generate robust defensive configura-
tions (Prado Sanchez 2018; Pertierra 2018). It is com-
posed of different coevolutionary algorithms to help it
generate diverse behavior. The algorithms, for further
diversity, use different “solution concepts”, i.e. mea-
sures of adversarial success. Because engagements are
frequently computationally expensive and have to be
pairwise sampled from two populations each generation,
the framework has a number of enhancements that en-
able efficient use of a fixed budget of computation or
time.

The framework supports a number of use-cases using
simulation and emulation of varying model granular-



ity. These include: A) Defending a peer-2-peer net-
work against Distributed Denial of Service (DDOS) at-
tacks (Garcia et al. 2017) B) Defenses against spread-
ing device compromise in a segmented enterprise net-
work (Hemberg et al. 2018), and C) Deceptive de-
fense against the internal reconnaissance of an adver-
sary within a software defined network (Pertierra 2018)

The framework is linked up to a decision sup-
port module named ESTABLO (Sanchez et al. 2018;
Prado Sanchez 2018). The engagements of every run
of any of the coevolutionary algorithms are cached and,
later, ESTABLO gathers adversaries resulting from dif-
ferent algorithms for its compendium. It then competes
the adversaries of each side against those of the other
side and ranks each side’s members according to multi-
ple criteria. It also provides visualizations and compar-
isons of adversarial behaviors. This information informs
the decision process of a defensive manager.

The adversarial AI framework’s specific contributions
are:
• The use of coevolutionary algorithms to adaptively

generate adversarial dynamics supporting preemptively
investigating adversarial arms races that could occur.
• A suite of different coevolutionary algorithms that

diversify the behavior of the adversaries to broaden the
potential dynamics.
• Use cases that model a variety of adversarial threat

and defensive models.
• A decision support module that supports selection

of a superior anticipatory defensive configuration.
Background provides context on modeling and sim-

ulation and coevolutionary search algorithm. Frame-
work describes our coevolutionary method, engage-
ment component and decision support module. Use
Cases provides examples applying to cyber security
and network attacks. Conclusions summarizes and
addresses future work.

Background
The strategy of testing the security of a system by
trying to successfully attack it is somewhat analogous
to software fuzzing (Miller, Fredriksen, and So 1990).
Fuzzing tests software adaptively to search for bugs
while adaptive attacks test defenses. In contrast to
software where a bugs is fixed by humans, our ap-
proach automatically adapts a defense. This forms a
novel counter attack. Fuzzing is driven by genetic al-
gorithms (GA) whereas, to drive cyber arms races in
which both adversaries adapt, our approach uses cou-
pled GAs called competitive coevolutionary algorithms.

Coevolutionary Search Algorithms
Coevolutionary algorithms, related to evolutionary al-
gorithms (Bäck 1996), explore domains in which the
quality of a candidate solution is determined by its
ability to successfully pass some set of tests. Recip-
rocally, a test ’s quality is determined by its ability to
force errors from some set of solutions. In competi-
tive coevolution, similar to game theory, the search can

lead to an arms race between test and solution, both
evolving while pursuing opposite objectives (Popovici
et al. 2012). An example of learning in a coevolution-
ary algorithm is shown in Algorithm 1. A basic coevo-
lutionary algorithm evolves two populations with e.g.
tournament selection and for variation uses crossover
and mutation. One population comprises attacks and
the other defenses. In each generation, competitions
are formed by pairing attack and defense. The popula-
tions are evolved in alternating steps: first the attacker
population is selected, varied, updated and evaluated
against the defenders, and then the defender population
is selected, varied, updated and evaluated against the
defenders. Each attacker–defender pair is dispatched to
the engagement component to compete and the result is
used as a component of fitness for each of them. Fitness
is calculated over all an adversary’s engagements.

The representation of tests (and solutions) is cus-
tomizable in any coevolutionary algorithm (Rothlauf
2011) under the design constraint that it be amenable
to stochastic variation, e.g. “genetic crossover” or mu-
tation. It may directly express the test or it may do so
indirectly, e.g. with a grammar. In the latter case, an
intermediate interpreter works with a rule-based gram-
mar to map from a “genome” that undergoes variation
to a “phenome” that expresses an executable behavior.
Grammars (and GA representations, in general) offer
design flexibility: changing out a grammar and the en-
vironment of behavioral execution does not require any
changes to the rest of the algorithm.

Coevolutionary algorithms can encounter problem-
atic dynamics where tests are unable improve solu-
tions, or drive toward a solution that is the a priori
intended goal. There are accepted remedies to specific
coevolutionary pathologies (Bongard and Lipson 2005;
Ficici 2004; Popovici et al. 2012). They generally in-
clude maintaining population diversity so that a search
gradient is always present and using more explicit mem-
ory, e.g. a Hall of Fame or an archive, to prevent
regress (Miconi 2009). The pathologies of coevolution-
ary algorithms are similar to those encountered by gen-
erative adversarial networks (GANs) (Goodfellow et al.
2014; Arora et al. 2017)

Modeling and Simulation
A coevolutionary algorithm includes an environment
that supports executing the tests and solutions to com-
pete against each other in each engagement. We use
modeling and simulation for this purpose. Mod-sim sys-
tems range in complexity, level of abstraction and res-
olution. Modeling and simulation comprise a powerful
approach, “mod-sim”, for investigating general security
scenarios (Tambe 2012), computer security (Thomp-
son, Morris-King, and Cam 2016; Lange et al. 2017;
Winterrose and Carter 2014) and network dynamics
in particular, e.g., in CANDLES – the Coevolutionary,
Agent-based, Network Defense Lightweight Event Sys-
tem of (Rush, Tauritz, and Kent 2015), attacker and
defender strategies are coevolved in the context of a sin-



Algorithm 1 Example Coevolutionary Algorithm
Input:
T : number of iterations L: Fitness function
µ: mutation probability, λ : population size
1: A0 ← [a1,0, . . . , aλ,0] ∼ U(A) . Initialize minimizer population
2: D0 ← [d1,0, . . . ,dλ,0] ∼ U(D) . Initialize maximizer population
3: t← 0 . Initialize iteration counter
4: repeat
5: t← t+ 1 . Increase counter
6: At ← select(At−1)) . Selection
7: At ← perturb(At, µ)) . Mutation
8: . Best minimizer
9: a′∗,d

′
∗ ← argmina∈At argmaxd∈Dt−1

L(a,d)
10: . Replace worst minimizer
11: if L(a′∗,d

′
∗) < L(aλ,t−1,dλ,t−1) then

12: aλ,t−1 ← a′∗ . Update population
13: end if
14: At ← At−1 . Copy population
15: t← t+ 1 . Increase counter before alternating to maximizer
16: Dt ← select(Dt−1)) . Selection
17: Dt ← perturb(Dt, µ)) . Mutation
18: . Best maximizer
19: a′0,d

′
0 ← argmina∈At argmaxd∈Dt L(a,d)

20: . Replace worst maximizer
21: if L(a′0,d

′
0) > L(aλ,t,dλ,t−1) then

22: dλ,t−1 ← d′0 . Update population
23: end if
24: Dt ← Dt−1 . Copy population
25: until t ≥ T
26: a∗,d∗ ← argmina∈AT argmaxd∈DT L(a,d) . Best minimizer
27: return a∗,d∗

gle, custom, abstract computer network defense simu-
lation.

Framework Components
Coevolutionary Algorithms
The framework supports diverse behavior by executing
algorithms that vary in synchronization of the two pop-
ulations and solution concepts. (Prado Sanchez 2018;
Pertierra 2018). Working within a fixed time or fitness
evaluation budget, the framework also

1. Caches engagements to avoid repeating them;

2. Uses Gaussian process estimation to identify and
evaluate the most uncertain engagement (Pertierra
2018);

3. Uses a recommender technique to approximate some
adversary’s fitnesses (Pertierra 2018); and

4. Uses a spatial grid to reduce complete pair-
wise engagements to a Moore neighborhood quan-
tity (Mitchell 2006; Williams and Mitchell 2005).

Engagement Environment
The engagement component is flexible and can support
a problem-specific network testbed, simulator or model.
The abstraction level of the use case determines the
choice of a simple to more detailed mod-sim or even
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Figure 2: A BNF grammar and search parameters are
used as input. The grammar rewrites the integer input
to a sentence. Fitness is calculated by interpreting the
sentence and then evaluate it. The search component,
a coevolutionary algorithm, modifies the solutions us-
ing two central mechanisms: fitness based selection and
random variation.

the actual engagement environment. Mod-sim is ap-
propriate when testbeds incur long experimental cycle
times or do not abstract away irrelevant detail.

Adversary Representation

The framework uses grammars to express open ended
behavioral action sequences for attack and defense
strategies (a.k.a controllers). See Figure 2 and (O’Neill
and Ryan 2003) for more details. While the frame-
work’s grammars currently are strategic in nature, we
foresee incorporating higher level behavior related to
plans and goals.

A grammar is introduced in Backus Naur Form
(BNF) and describes a language in the problem do-
main. The BNF description is parsed to a context
free grammar representation. Its (rewrite) rules express
how a sentence, i.e. test or solution, can be composed
by rewriting a start symbol. The adversaries are fixed
length integer vectors that are use to control the rewrit-
ing. To interpret them, in sequence each of the vector’s
integers is referenced. This resulting sentence is the
strategy that is executed. For solving different prob-
lems, it is only necessary to change the BNF gram-
mar, engagement environment and fitness function of
the adversaries. This modularity, and reusability of the
parser and rewriter are efficient software engineering
and problem solving advantages. The grammar addi-
tionally helps communicate the framework’s function-
ality to stakeholders by enabling conversations and val-
idation at the domain level. This contributes to stake-
holder confidence in solutions and the framework.

Decision Support

Competitive coevolution has the following chal-
lenges (Sanchez et al. 2018; Prado Sanchez 2018):



1. Solutions and tests are not on comparable on a “level
playing field” because fitness is based solely on the
context of engagements.

2. Blind spots, unvisited by the algorithms may exist.
3. From multiple runs, with one or more algorithms, it

is unclear how to automatically select a “best” solu-
tion.
The framework’s decision support module, ESTABLO,

see Figure 3, addresses these challenges. ESTABLO:
A) runs competitive coevolutionary search algorithms
with different solution concepts; B) combines the best
solutions and tests at the end of each run into a com-
pendium; C) competes each solution against different
test sets, including the compendium and a set of unseen
tests, to measure its performance according to different
solution concepts; D) selects the “best” solutions from
the compendium using a ranking and filtering process;
and E) visualizes the best solutions to support a trans-
parent and auditable decision.

Use Cases of the Framework
In this section we demonstrate use cases of the Ad-
versarial AI framework. Broadly their goal is to iden-
tify defensive configurations that are effective against a
range of potential adversaries.

DOS Attacks on Peer-to-Peer Networks
A peer-to-peer (P2P) network is a robust and resilient
means of securing mission reliability in the face of ex-
treme distributed denial of service (DDOS) attacks.
The project named RIVALS (Garcia et al. 2017) assists
in developing P2P network defense strategies against
DDOS attacks. It models adversarial DDOS attack and
defense dynamics to help identify robust network de-
sign and deployment configurations that support mis-
sion completion despite an ongoing attack.

RIVALS models DDOS attack strategies using a va-
riety of behavioral languages ranging from simple to
complex. A simple language e.g. allows a strategy to
select one or more network servers to disable for some
duration. Defenders can choose one of three different
network routing protocols: shortest path, flooding and
a peer-to-peer ring overlay to try to maintain their per-
formance. A more complex one allows a varying number
of steps over which the attack is modulated in duration,
strength and targets and can even include online adap-
tation based on observed impact. Defenders can adapt
based on local or global network conditions. Attack
completion and resource cost minimization serve as at-
tacker objectives. Mission completion and resource cost
minimization are the reciprocal defender objectives. RI-
VALS has a suite of coevolutionary algorithms that use
archiving to maintain progressive exploration and that
support different solution concepts as fitness metrics.

An example of attackers from ESTABLO on a mobile
resource allocation defense used in RIVALS (Sanchez
et al. 2018) is shown in Figure 4. The mobile asset

placement defense challenge is to optimize the strategic
placement of assets in the network. While under the
threat of node-level DDOS attack, the defense must en-
able a set of tasks. It does this by fielding feasible paths
between the nodes that host the assets which support
the tasks. A mobile asset is, for example, mobile per-
sonnel or a software application that can be served by
any number of nodes. A task is, for example, the con-
nection that allows personnel to use a software applica-
tion.

Availability Attacks on Segmented
Networks
Attackers also often introduce malware into networks.
Once an attacker has compromised a device on a net-
work, they can move to connected devices, akin to
contagion. This use case considers network segmen-
tation, a widely recommended defensive strategy, de-
ployed against the threat of serial network security at-
tacks that delay the mission of the network’s opera-
tor (Hemberg et al. 2018) in the context of malware
spread.

Network segmentation divides the network topologi-
cally into enclaves that serve as isolation units to deter
inter-enclave contagion. How much network segmenta-
tion is helpful is a tradeoff. On the one hand, a more
segmented network provides less mission efficiency be-
cause of increased overhead in inter-enclave communica-
tion. On the other hand, smaller enclaves contain com-
promise by limiting the spread rate, and their cleansing
incurs fewer mission delays. Adding complexity, given
some segmentation, a network operator can further use
threat monitoring and network cleansing policies to de-
tect and dislodge attackers but they come with a trade-
off of cost versus efficacy.

The use case assumes a network supports an enter-
prise in carrying out its business or mission, and that an
adversary employs availability attacks against the net-
work to disrupt this mission. Specifically, the attacker
starts by using an exploit to compromise a vulnerable
device on the network. This inflicts a mission delay
when a mission critical device is infected. Then, the
attacker moves laterally to compromise additional de-
vices and maximally delay the mission. The network
and its segments are pre-determined but the placement
of critical devices within an enclave and the deployment
of defensive threat monitoring device are open to opti-
mization.

The use case employs a simulation model as its en-
gagement environment. Malware contagion of a specific
spread rate is assumed. The defender decides placement
of mission devices and tap sensitivities in the enclaves.
The attacker decides the strength, duration and num-
ber of attacks in an attack plan targeting all enclaves.
For a network with a set of four enclave topologies, the
framework is able to generate strong availability attack
patterns that were not identified a priori. It also identi-
fies effective configurations that minimize mission delay
when facing these attacks.
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Figure2: Compendium population in ESTABLO.

generality, in thispaper ESTABLOonly storesthe�nal population
and archive of each run in its compendium. ESTABLOconducts

all possibletests.�en it removesall that arealready in thecom-
pendium. It thencalculatesthesmallest symmetricdi�erencebe-
tweeneachremainingtestandall testsinthecompendiumanduses
thisinformationtoconstructafrequencydistributionsamplebased
on di�erence. It then randomly drawsfromthisdistribution witha
biasthat favorstestsof small andlargedi�erences, i.e. very or not
similar to thecompendium.�eresultsof thesedrawsbecomesits
unseen test set. ESTABLOthen calculatesthe�tnessmeasurements
of solutionsover theset.

Step 4. Solution Selection
ESTABLOnext anticipatesthat thedecisionmaker isworkingwith
only apriori information toguideit in selectingatopsolution. For
thi it d k ith 4di� t l ti ki

6

15

5

13
12

14

11
10

8

0

2

3

4

9

7

1

Figure6: Topsolutionsfor attackers(Figure6aand6b)anddefenders(Figure6c)alongwith therankingschemethat produced
them. Figure6d is theworst caseattack (red) for the top defender (green), note that even though therestill exists a physical
path from nodes2and 4, theChord overlay network hasbeen compromised and wasnot ableto�nd apath.

a�ackersis5.16withavarianceof3.29whilethissolutiondisplayed
an averagephenotypedistanceof 14.83.�eother topsolution has

betweensolutionsproducedby thedi�erent algorithmsweused.
For thisexperiment,wewereabletopick uponafew trends. For

Attacker	1

At
ta
ck
er
	2

Figure 3: Overview of the ESTABLO framework for decision support through selection and visualization by using a
compendium of solutions from coevolutionary algorithms.

Figure 4: The x axis shows a sorted subsample of at-
tackers (note, the top 10 are shown and then every
tenth) and the y axis shows the ranking score. The
ranking is done on the scores from the compendium.
The values for the same run and unseen test sets are
shown on separate lines. The algorithm used to evolve
the attacker is shown by the marker and the color. The
attacker in the box with the solid line is the top ranked
solution from the Combined Score ranking schemes.
The solution in the dashed box is the top ranked so-
lution from the Minimum Fitness ranking scheme.

Internal Reconnaissance in Software
Defined Networks
Once an adversary has compromised a network end-
point, they can perform network reconnaissance (Sood
and Enbody 2013). After reconnaissance provides a
view of the network and an understanding of where
vulnerable nodes are located, they are able to execute
a plan of attack. One way to protect against recon-
naissance is by obfuscating the network to delay the at-
tacker. This approach is well suited to software defined
networks (SDN) such as those being used in many cloud
server settings because it requires programmability that
they support (Kirkpatrick 2013). The SDN controller
knows which machines are actually on the network and
can superficially alter (without function loss) the net-
work view of each node, as well as place decoys (hon-
eypots) on the network to mislead, trap and slow down
reconnaissance.

One such multi-component deceptive defense system
(Achleitner, Laporta, and McDaniel 2016) foils scan-
ning by generating “camouflaged” versions of the actual
network and providing them to hosts when they renew
their DHCP leases. We use this deception system and
mininet (Team 2018) within the framework as an en-

gagement environment. This allows us to explore the
dynamics between attacker and defender on a network
where the deception and reconnaissance strategies can
be adapted in response to each other (Pertierra 2018).
A deception strategy is executed through a modified
POX SDN controller. A reconnaissance strategy is exe-
cuted by a NMAP scan(Lyon 2018). The attacker strat-
egy includes choices of: which IP addresses to scan, how
many IP addresses to scan, which subnets to scan, the
percent of the subnets to scan, the scanning speed, and
the type of scan. The defender strategy includes choices
of: the number of subnets to setup, the number of hon-
eypots, the distribution of the real hosts throughout
the subnets, and the number of real hosts that exist
on the network. Fitness is comprised of four compo-
nents: how fast the defender detects that there is a
scan taking place, the total time it takes to run the
scan, the number of times that the defender detects the
scanner, and the number of real hosts that the scan-
ner discovers. Through experimentation and analysis,
the framework is able to discover certain configurations
that the defender can use to significantly increase its
ability to detect scans. Similarly, there are specific re-
connaissance configurations that have a better chance
of being undetected.

Conclusion

We have described an AI framework that recreates, in
an abstract way, the adversarial, competitive coevolu-
tionary process that occurs in security scenarios. We
presented its current use cases and how we harvest de-
fensive solutions from it. Future work includes extend-
ing it to support more cyber security applications, con-
sidering other use cases and developing more efficient
or true to reality algorithms.
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