
Report on the 6th International Workshop on
Quantitative Approaches to Software Quality

(QuASoQ 2018)

Horst Lichter
RWTH Aachen University

Germany

lichter@swc.rwth-aachen.de

Thanwadee Sunetnanta
Mahidol University

Thailand

thanwadee.sun@mahidol.ac.th

Toni Anwar
Universiti Teknologi

PETRONAS
Malaysia

toni.anwar@utp.edu.my

Taratip Suwannasart
Chulalongkorn University

Thailand

taratip.s@chula.ac.th

I. INTRODUCTION

Based on the feedback and experience we got from the 5th
workshop we slightly adjusted the list of topics for the workshop
and planned to invite a keynote speaker again. The topics of
interest included

• New approaches to measurement, evaluation,
comparison and improvement of software quality

• Metrics and quantitative approaches in agile projects

• Case studies and industrial experience reports on
successful or failed application of quantitative
approaches to software quality

• Tools, infrastructure and environments supporting
quantitative approaches

• Empirical studies, evaluation and comparison of
measurement techniques and models

• Quantitative approaches to test process improvement,
test strategies or testability

• Empirical evaluations or comparisons of testing
techniques in industrial settings

Overall, the workshop aimed at gathering together
researchers and practitioners to discuss experiences in the
application of state of the art approaches to measure, assess and
evaluate the quality of both software systems as well as software
development processes in general and software test processes in
particular.

As software development organizations are always forced to
develop software in the "right" quality, the quality specification
and quality assurance are crucial. Although there are lots of
approaches to deal with quantitative quality aspects, it is still
challenging to choose a suitable set of techniques that best fit to
the specific project and organizational constraints.

Even though approaches, methods, and techniques are
known for quite some time now, little effort has been spent on
the exchange on the real-world problems with quantitative
approaches. For example, only limited research has been

devoted to empirically evaluate risks, efficiency or limitations
of different testing techniques in industrial settings.

Hence, one main goal of the workshop was to exchange
experience, present new promising approaches and to discuss
how to set up, organize, and maintain quantitative approaches to
software quality.

II. WORKSHOP FORMAT
Based on our former experience we wanted the workshop to be
highly interactive. In order to have an interesting and interactive
event sharing lots of experience, we organized the workshop
presentations applying the author-discussant model.

Based on this workshop model, papers are presented by one
of the authors. After the presentation, a discussant starts the
discussion based on his or her pre-formulated questions.
Therefore, the discussant had to prepare a set of questions and
had to know the details of the presented paper. The general
structure of each talk was as follows:

• The author of a paper presented the paper (20 minutes).

• After that, the discussant of the paper opened the
discussion using his or her questions (5 minutes).

• Finally, we moderated the discussion among the whole
audience (5 minutes).

III. INVITED TALK
This year we were happy to have Prof. Hongyu Zhang as our

invited speaker. Hongyu Zhang is currently an Associate
Professor at The University of Newcastle, Australia. Previously,
he was a Lead Researcher at Microsoft Research Asia and an
Associate Professor at Tsinghua University, China. He received
his PhD degree from National University of Singapore in 2003.
His research is in the area of Software Engineering, in particular,
software analytics, testing, maintenance, and reuse. The main
theme of his research is to improve software quality and
productivity by mining software data. He has published more
than 120 research papers in international journals and
conferences, including TSE, TOSEM, ICSE, FSE, POPL,
AAAI, KDD, IJCAI, ASE, ISSTA, ICSM, ICDM, and
USENIX. He received two ACM Distinguished Paper awards.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 1

He also served as a program chair and committee member for
many software engineering conferences. He is on the Editorial
Board of Journal of Systems and Software, and is a Senior
Member of IEEE.

Prof. Hironori Washizaki presented in his talk entitled
“Intelligent Fault Diagnosis and Prediction through Data
Analytics” important insights how the analysis of big data can
support the prediction of faults in systems to support managers
taking the right decisions before releasing a software system.

IV. WORKSHOP CONTRIBUTIONS
Altogether ten papers were submitted. Finally, nine papers h
accepted by the program committee for presentation and
publication covering very different topics. We grouped the
papers into three sessions and added a final round-up slot to
present and discuss the major findings of our workshop. In the
following we want to give a short overview of the accepted
papers.

A. Yeongjun Cho, Jung-Hyun Kwon, In-Young Ko: Cross-
Sub-Project Just-in-Time Defect Prediction on Multi-Repo
Projects

Just-in-time (JIT) defect prediction, which predicts defect-
inducing code changes, can provide faster and more precise
feedback to developers than traditional module-level defect
prediction methods. We find that large-scale projects such as
Google Android and Apache Maven divide their projects into
multiple sub-projects, in which relevant source code is managed
separately in different repositories. Although sub-projects tend
to suffer from a lack of the historical data required to build a
defect prediction model, the feasibility of applying cross-
subproject JIT defect prediction has not yet been studied. A
cross-sub- project model to predict bug-inducing commits in the
target sub-project could be built with data from all other sub-
projects within the project of the target sub-project, or data from
the subprojects of other projects, as traditional project-level JIT
defect prediction methods. Alternatively, we can rank sub-
projects and select high-ranked sub-projects within the project
to build a filtered-within-project model. In this work, we define
a subproject similarity measure based on the number of
developers who have contributed to both sub-projects to rank
sub-projects. We extract the commit data from 232 sub-projects
across five different projects and evaluate the cost effectiveness
of various cross-sub-project JIT defect prediction models. Based
on the results of the experiments, we conclude that 1) cross-sub-
project JIT defect prediction generally has better cost
effectiveness than within-sub-project JIT defect prediction,
especially when the sub-projects from the same project are used
as training data; 2) in filtered-within-project JIT defect-
prediction models, the developer similarity-based ranking can
achieve higher cost effectiveness than the other ranking
methods; and 3) although a developer similarity-based filtered-
within-project model achieves lower cost effectiveness than a
within-project model in general, we find that there is room for
further improvement to the filtered-within-project model that
may outperform the within-project model..

B. Chao Zhang, Weiliang Yin and Zhiqiang Lin: Boost
Symbolic Execution Using Dynamic State Merging and
Forking

Symbolic execution has achieved wide application in software
testing and analysis. However, path explosion remains the
bottleneck limiting scalability of most symbolic execution
engines in practice. One of the promising solutions to address
this issue is to merge explored states and decrease number of
paths. Nevertheless, state merging leads to increase in
complexity of path predicates at the same time, especially in the
situation where variables with concrete values are turned
symbolic and chances of concretely executing some statements
are dissipated. As a result, calculating expressions and
constraints becomes much more time consuming and thus, the
performance of symbolic execution is weakened in contrast. To
resolve the problem, we propose a merge-fork framework
enabling states under exploration to switch automatically
between merging mode and forking mode. First, active state
forking is introduced to enable forking a state into multiple ones
as if a certain merging action taken before were eliminated.
Second, we perform dynamic merge fork analysis to cut source
code into pieces and continuously evaluate efficiency of
different merging strategies for each piece. Our approach
dynamically combines paths under exploration to maximize
opportunities for concrete execution and ease the burden on
underlying solvers. We implement the framework on the
foundation of the symbolic execution engine KLEE, and
conduct experiments on GNU Core utils code using our
prototype to present the effect of our proposition. Experiments
show up to 30% speedup and 80% decrease in queries compared
to existing works.

C. Konrad Fögen and Horst Lichter: A Case Study on
Robustness Fault Characteristics for Combinatorial
Testing - Results and Challenges

Combinatorial testing is a well-known black-box testing
approach. Empirical studies suggest the effectiveness of
combinatorial coverage criteria. So far, the research focuses on
positive test scenarios. But, robustness is an important
characteristic of software systems and testing negative scenarios
is crucial. Combinatorial strategies are extended to generate
invalid test inputs but the effectiveness of negative test scenarios
is yet unclear. Therefore, we conduct a case study and analyze
434 failures reported as bugs of an financial enterprise
application. As a result, 51 robustness failures are identified
including failures triggered by invalid value combinations and
failures triggered by interactions of valid and invalid values.
Based on the findings, four challenges for combinatorial
robustness testing are derived.

D. Séverine Sentilles, Efi Papatheocharous and Federico
Ciccozzi: What do we know about software security
evaluation? A preliminary study

In software development, software quality is nowadays
acknowledged to be as important as software functionality and
there exists an extensive body-of-knowledge on the topic. Yet,
software quality is still marginalized in practice: there is no
consensus on what software quality exactly is, how it is achieved
and evaluated. This work investigates the state-of-the-art of
software quality by focusing on the description of evaluation

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 2

methods for a subset of software qualities, namely those related
to software security. The main finding of this paper is the lack
of information regarding fundamental aspects that ought to be
specified in an evaluation method description. This work
follows up the authors’ previous work on the Property Model
Ontology by carrying out a systematic investigation of the state-
of-the-art on evaluation methods for software security. Results
show that only 25% of the papers studied provide enough
information on the security evaluation methods they use in their
validation processes, whereas the rest of the papers lack
important information about various aspects of the methods
(e.g., benchmarking and comparison to other properties,
parameters, applicability criteria, assumptions and available
implementations). This is a major hinder to their further use.

E. Maohua Gan, Kentaro Sasaki, Akito Monden and Zeynep
Yucel: Generation of Mimic Software Project Data Setsfor
Software Engineering Research

To conduct empirical research on industry software
development, it is necessary to obtain data of real software
projects from industry. However, only few such industry data
sets are publicly available; and unfortunately, most of them are
very old. In addition, most of today’s software companies cannot
make their data open, because software development involves
many stakeholders, and thus, its data confidentiality must be
strongly preserved. This paper proposes a method to artificially
generate a “mimic” software project data set whose
characteristics (such as average, standard deviation and
correlation coefficients) are very similar to a given confidential
data set. The proposed method uses the Box–Muller method for
generating normally distributed random numbers, then,
exponential transformation and number reordering are used for
data mimicry. Instead of using the original (confidential) data
set, researchers are expected to use the mimic data set to produce
similar results as the original data set. To evaluate the usefulness
of the proposed method, effort estimation models were built
from an industry data set and its mimic data set. We confirmed
that two models are very similar to each other, which suggests
the usefulness of our proposal.

F. Nayla Nasir and Nasir Mehmood Minhas: Implementing
Value Stream Mapping in a Scrum-based project - An
Experience Report

The value stream mapping is one of the lean practices, that helps
to visualize the whole process and identifies any bottlenecks
affecting the flow. Proper management of the value stream can
significantly contribute towards waste elimination by
categorizing process activities to be either value adding or non
value-adding. Lean development focuses on the value through
the elimination of waste. Adding value through embracing
change and customer satisfaction are also the benefits of Scrum.
This study reports our experience regarding the implementation
of VSM with Scrum. We followed the action research method,
with an objective to see if VSM can contribute to the
identification and reduction of wastes in a Scrum-based project.
We identified a noticeable amount of waste even with strict
compliance to the Scrum practices. On the basis of identified
waste, their root causes, and possible mitigation strategy we
have proposed a future state map, that could help improve the
productivity of the process. The results of our study are

encouraging, and we suggest that adoption of VSM with Scrum
could add more value to the Scrum-based projects.

G. Ankush Dadwal, Hironori Washizaki, Yoshiaki Fukazawa,
Takahiro Iida, Masashi Mizoguchi and Kentaro
Yoshimura: Prioritization in Automotive Software Testing:
Systematic Literature Review

Automotive Software Testing is a vital part of the automotive
systems development process. Not identifying the critical safety
issues and failures of such systems can have serious or even fatal
consequences. As the number of embedded systems and
technologies increases, testing all components becomes more
challenging. Although testing is expensive, it is important to
reduce bugs in an early stage to maintain safety and to avoid
recalls. Hence, the testing time should be reduced without
impacting the reliability. Several studies and surveys have
prioritized Automotive Software Testing to increase its
effectiveness. The main goals of this study are to identify: (i) the
publication trends of prioritization in Automotive Software
Testing, (ii) which methods are used to prioritize Automotive
Software Testing, (iii) the distribution of studies based on the
quality evaluation, and (iv) how existing research on
prioritization helps optimize Automotive Software Testing.

H. Reishi Yokomori, Norihiro Yoshida, Masami Noro and
Katsuro Inoue: Use-Relationship Based Classification for
Software Components

In recent years, the maintenance period of the software system
is increasing. The size of the software system has grown, and the
number of classes and the relationship between classes are also
increasingly complicated. If we can categorize software
components based on information such as functions and roles,
we believe that these classified components can be understood
together, and are useful for understanding the system. In this
paper, we proposed a classification method for software
components based on similarity of use relation. For each
component, a set of components used by the component was
analyzed. And then, for each pair of components, the distance
was calculated from the coincidence of the two sets. A distance
matrix was created and components were classified by
hierarchical cluster analysis. We applied this method to jlGui
consisting of 70 components. 8 clusters of 36 components were
extracted from the 70 components. Characteristics of the
extracted clusters were evaluated, and the content of each cluster
was introduced as a case study. In 7 clusters out of the 8 clusters,
components of the cluster were strongly similar with each other
from the viewpoint of their functions. Through these
experiments, we confirmed that our method is effective for
classifying components of the target software, and is useful for
understanding them.

V. SUMMARY OF THE DISCUSSIONS
About 30 researchers attended the workshop and participated in
the discussions. The author-discussant model was well received
by the participants and led to intensive discussions among them.

For instance, the discussion of paper D (Séverine Sentilles et al)
focused on issues regarding the categorization of existing
literatures on their evaluation methods related to software
security into three groups based on their main purpose. The first
group focuses on defining a new property or metric. The second

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 3

group bases their work on already defined properties. Finally,
the last group of the literatures are not explicitly referring to any
property, method or metric.

Another example, the discussion on paper G (Ankush Dadwal et
al.) focused on issues why automotive software testing was
chosen rather than software testing on other applications. The
testing methods presented were so debatable among the
discussants and the attendants.

The last discussion of the workshop was about classification
methods for software components based on similarity of use
relation (Reishi Yokomori et al.). The attendants had some
issues on similarity of use relation. The similarity of software
components can be calculated using silhouette coefficient.
However, this led to interesting discussions how similar
software components are clustered.

To conclude, in the course of this workshop the participants
proposed and discussed different approaches to quantify
relevant aspects of software development. Especially the
discussions led to new ideas, insights, and take-aways for all
participants.

VI. ACKNOWLEDGMENTS
Many people contributed to the success of this workshop. First,
we want to give thanks to our invited speaker and the authors
and presenters of the accepted papers. Furthermore, we want to
express our gratitude to the APSEC 2018 organizers; they did a
perfect job. Finally, we are glad that these people served on the
program committee (some of them for many years) and

supported the workshop by soliciting papers and by writing peer
reviews:

• Matthias Vianden, Aspera GmbH, Aachen, Germany

• Wan M.N. Wan Kadir, UTM Johor Bahru, Malaysia

• Maria Spichkova, RMIT University, Melbourne,
Australia

• Tachanun Kangwantrakool, ISEM, Thailand

• Jinhua Li, Qingdao University, China

• Apinporn Methawachananont, NECTEC, Thailand

• Nasir Mehmood Minhas, BTH Karlskrona, Sweden

• Chayakorn Piyabunditkul, NSTDA, Thailand

• Sansiri Tanachutiwat, Thai German Graduate School of
Engineering, TGGS, Thailand

• Hironori Washizaki, Waseda University, Japan

• Hongyu Zhang, University of Newcastle, Australia

• Minxue Pan, Nanjing University, China

Finally, the QuASoQ organizers would like to express their
deepest gratitude to our colleague Ashish Sureka, who passed
away early this year, for his continuous support and valuable
contributions.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 4

	I. Introduction
	II. Workshop Format
	III. Invited Talk
	IV. Workshop Contributions
	A. Yeongjun Cho, Jung-Hyun Kwon, In-Young Ko: Cross-Sub-Project Just-in-Time Defect Prediction on Multi-Repo Projects
	B. Chao Zhang, Weiliang Yin and Zhiqiang Lin: Boost Symbolic Execution Using Dynamic State Merging and Forking
	C. Konrad Fögen and Horst Lichter: A Case Study on Robustness Fault Characteristics for Combinatorial Testing - Results and Challenges
	D. Séverine Sentilles, Efi Papatheocharous and Federico Ciccozzi: What do we know about software security evaluation? A preliminary study
	E. Maohua Gan, Kentaro Sasaki, Akito Monden and Zeynep Yucel: Generation of Mimic Software Project Data Setsfor Software Engineering Research
	F. Nayla Nasir and Nasir Mehmood Minhas: Implementing Value Stream Mapping in a Scrum-based project - An Experience Report
	G. Ankush Dadwal, Hironori Washizaki, Yoshiaki Fukazawa, Takahiro Iida, Masashi Mizoguchi and Kentaro Yoshimura: Prioritization in Automotive Software Testing: Systematic Literature Review
	H. Reishi Yokomori, Norihiro Yoshida, Masami Noro and Katsuro Inoue: Use-Relationship Based Classification for Software Components

	V. Summary of the Discussions
	VI. Acknowledgments

