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Abstract—Just-in-time (JIT) defect prediction, which predicts
defect-inducing code changes, can provide faster and more
precise feedback to developers than traditional module-level
defect prediction methods. We find that large-scale projects such
as Google Android and Apache Maven divide their projects into
multiple sub-projects, in which relevant source code is managed
separately in different repositories. Although sub-projects tend
to suffer from a lack of the historical data required to build
a defect prediction model, the feasibility of applying cross-sub-
project JIT defect prediction has not yet been studied. A cross-
sub-project model to predict bug-inducing commits in the target
sub-project could be built with data from all other sub-projects
within the project of the target sub-project, or data from the sub-
projects of other projects, as traditional project-level JIT defect
prediction methods. Alternatively, we can rank sub-projects and
select high-ranked sub-projects within the project to build a
filtered-within-project model. In this work, we define a sub-
project similarity measure based on the number of developers
who have contributed to both sub-projects to rank sub-projects.
We extract the commit data from 232 sub-projects across five
different projects and evaluate the cost effectiveness of various
cross-sub-project JIT defect prediction models. Based on the
results of the experiments, we conclude that 1) cross-sub-project
JIT defect prediction generally has better cost effectiveness
than within-sub-project JIT defect prediction, especially when
the sub-projects from the same project are used as training
data; 2) in filtered-within-project JIT defect-prediction models,
the developer similarity-based ranking can achieve higher cost
effectiveness than the other ranking methods; and 3) although a
developer similarity-based filtered-within-project model achieves
lower cost effectiveness than a within-project model in general,
we find that there is room for further improvement to the filtered-
within-project model that may outperform the within-project
model.

Index Terms—Just-in-time prediction, defect prediction, sub-
project

I. INTRODUCTION

The quality assurance (QA) process on large-scale soft-
ware usually requires a large amount of computing and
human resources and time, which may not be affordable
for organizations with limited testing resources. Because of
the resource limits, an organization could not investigate all
modules—files or packages—in a project but still needs to
prioritize the inspection of the modules. If they fail to prioritize
modules which have any defects inside and assign limited
testing resources to others, it will result in a higher chance
of defects in the released software. Defect prediction helps

developers identify modules that are likely to have defects
and provide a list of the modules that need to be treated
first to efficiently assign limited resources [1]. To predict
the likelihood of defects in each module, most of the defect
prediction techniques provide a prediction model that is built
based on various metrics, such as complexity [2] and change-
history measures [3].

Although a defect prediction technique is helpful for de-
velopers to narrow down the modules to inspect, module in-
spection usually requires many resources because it is difficult
for developers to locate a defect inside a suspicious module.
To overcome the drawback of the file-level defect prediction
technique, recent studies introduced just-in-time (JIT) defect
prediction models that output a prediction of whether a code
change induces defects, rather than a file. Because code change
level is more fine-grained than the file level, predicting defect-
inducing code changes is known to be effective to provide
the precise feedback to developers. Moreover, JIT defect
prediction technique can provide faster feedback as soon as
a change is made into the source code repository [4]–[6].

In general, building a defect prediction model usually
requires a large amount of historical data from a project;
therefore, it is difficult to build a model for projects that have
just started or for legacy systems in which past change history
data are not available. A cross-project defect prediction model
can be built by utilizing the history data of other projects
to predict defects in a project that lacks data. Cross-project
defect prediction techniques have been actively studied [7],
[8] and existing studies state that when building a cross-project
defect prediction model, choosing a set of training data that
are closely related to the target project is essential to ensure
the performance of defect prediction [8].

We found that many large-scale projects, such as Apache
Maven, Google Android, and Samsung Tizen, divide their
projects into multiple repositories, called sub-projects. Each
sub-project contains files that are relevant to the sub-project’s
main concerns—like the project core, independent artifacts,
and plug-ins—and those files are managed in a separate source
code repository.

Each sub-project generally has a lesser number of commits
within its repository compared to other monolithic repositories,
where all files and commits are managed within a single
repository. For instance, Google Android in 2012 had 275
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sub-projects and 183 sub-projects that contain less than 100
commits [9]. In addition, there might be changes in the design
and architecture of the project, which consequently deprecates
some sub-projects and introduces new sub-projects to the
project. In the case of Google Android, there were 275 sub-
projects in 2012 [9] and the number of sub-projects grew by
over one thousand at 20181.

Therefore, applying JIT defect prediction to sub-projects
could be problematic because it is well known that building
a prediction model based on a small amount of data may
increase the risk of overfitting and make the prediction less
robust to outliers [10]. This motivated us to investigate the
feasibility of applying cross-sub-project JIT defect prediction
to multi-repo projects.

As Kamei at el. [11] studied at the project level, it might
be enough to use all available sub-projects to build a cross-
sub-project JIT defect-prediction model without selecting only
similar sub-projects to build a model. However, as the sub-
project level change history is more fine-grained than that of
the project level, we may achieve higher cost effectiveness by
filtering out irrelevant data based on fine-grained information
about the data. For instance, we find that developers of a
target sub-project usually make contributions to multiple sub-
projects rather than to a single sub-project of the target project.
This inspired us to develop a new similarity metric that
measures the similarity between two sub-projects based on
the number of authors (developers) who made commits to
both sub-projects. Because different developers usually have
different defect patterns [12], we expect that using the JIT
defect prediction model built from sub-project repositories
whose contributors are similar to those of the target project
could show better prediction performance than a prediction
model that is built from all available repositories.

In this paper, we study the ways of transferring the JIT
defect-prediction models to the models that are appropriate for
multi-repo projects in terms of cost effectiveness. We establish
two research questions (RQs) to check the effectiveness of
using the cross-sub-project JIT defect prediction method:

RQ 1 Is the cross-sub-project model trained by sub-projects
from the same project more cost effective than that
trained by sub-projects from other projects?

To build a cross-sub-project JIT defect prediction model,
training data from other sub-projects are required. As training
data are among the most important factors to improve a
model’s cost effectiveness, choosing proper sources of training
data is the first concern to build cross-sub-project models.
Before selecting sub-projects based on the similarity against
the target sub-project, we want to check the cost effectiveness
of the models built with sub-projects from the same projects
and those built with sub-projects from other projects. If the
models built with the sub-projects from the same project
perform better than the other models, an organization may not
need to spend time collecting commit data from other projects.

1https://android.googlesource.com

RQ 2 Which sub-project ranking method performs best in
filtered-within-project JIT defect prediction?

In this research question, we build a filtered-within-project
JIT defect prediction model that filters low-ranked sub-projects
within the project, which are ranked by a score calculated by a
rank scoring method. We use four different sub-project ranking
algorithms: developer similarity-based ranking by us, domain-
agnostic similarity-based ranking by Kamei et al. [11], size-
based ranking, and random ranking. We then compare the cost
effectiveness of four similarity algorithms with different the
numbers of sub-projects selected to find the best-performing
ranking algorithm for cross-sub-project JIT defect prediction.

By answering the research questions above, we conclude
that 1) a JIT defect prediction model built with the training
data from the same project is preferred over a model built with
the training data from other projects; 2) the amount of training
data is not the only factor that affects the cost effectiveness
of cross-sub-project models; 3) a developer similarity that
counts the number of developers in both sub-projects is the
most preferred way of filtering out irrelevant sub-projects
in building filtered-within-project models; and 4) although
filtered-within-project models have lower cost effectiveness
than within-project models, we notice that there is room
for further improvement of the cost effectiveness of filtered-
within-project models.

The main contributions of this paper are 1) proposing a
sub-project-level defect prediction that can achieve higher cost
effectiveness than the traditional project-level within-project
method with developer similarity-based filtered-within-project
models; and 2) evaluating the cost effectiveness of various
cross-sub-project JIT defect prediction models on 232 sub-
projects to check its feasibility.

The rest of the paper is organized as follows: Section II
describes the experiment settings and Section III presents
the design and result of experiments. Section IV provides
related works and Section V reports threats to validity. Finally,
Section VI conclude this study.

II. EXPERIMENT SETTING

A. Studied Projects and Sub-projects

We select five open-source projects that are divided into
multiple sub-projects. We try to choose projects with different
characteristics in terms of programming language, domain, and
distribution of the number of commits.

Table I shows the statistics of five projects. For each project,
we count the number of sub-projects used in the experiments
and the distribution of commit counts in each sub-project. We
excluded sub-projects with less than 50 commits because we
regard such sub-projects have not enough data to evaluate.
During the experiment, we split commits from each sub-
project into ten slices for a cross-validation. If a slice only
contains clean commits without bug-inducing commits, we
cannot evaluate the performance measure for that slice. If there
are too many discarded slices, then performance measures with
extreme value may occur due to the lack of valid evaluation
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results. If a slice has five commits, the probability that the
slice has at least one buggy commit could be calculated by
((1 − avg. defect ratio)5). Because the average defect ratio
across the five projects we collected is 0.14, this probability
is about 0.52. Thus, we can expect that near half of slices
will give valid evaluation results from sub-projects with more
than 50 commits. For Tizen and Android projects, we use the
subset of sub-project within those project because of their large
size. For the Tizen project, we use the sub-projects with the
prefix of platform/core/api. For the Android project,
sub-projects with the prefix of platform/package/apps
are used. We also calculate the ratio of commits with any
defect by using the SZZ algorithm [13], which is explained in
Section II-C, and calculate the average number of sub-projects
contributed per developer, which indicates the feasibility of
using information about the developer who contributed in mul-
tiple sub-projects within a project to calculate the developer
similarity between sub-projects.

B. Change Metric

We used 14 change metrics that are widely adapted in the
JIT defect prediction field [4], [14]. Table II shows descriptions
of these change metrics. In metric description, the term sub-
system represents directories that are directly accessible from
the root directory.

We apply some modification to those metrics because our
study is conducted on the sub-project level, not a project
level where those metrics are defined. Originally, developer
experience-related metrics are defined under the scope of the
project, but we changed this to the scope of the sub-project.

To prevent the multi-collinearity problem in prediction
models, we exclude metric values that are correlated with any
other metrics. We calculate the Pearson correlation coefficient
between each pair of 14 metrics across 344,005 commits.
Then, we regard pairs with Pearson correlation coefficient
values higher than 0.8 as being correlated and exclude one
of the metrics in the correlated pair. As a result, we excluded
ND, NF, LT, NDEV, NUC, and SEXP and eight types of metrics
are used throughout our experiments. These metrics are listed
in bold text in Table II.

C. Labeling

To build and evaluate a prediction model, buggy or clean
labels must be specified for each change. Instead of manual
labeling, which will cost a lot of time, we use the SZZ algo-
rithm [13] to label bug inducing commits automatically. SZZ
algorithm firstly finds bug-fixing changes by inspecting log
messages from each change. Then, the algorithm backtracks
bug-inducing changes from bug-fixing changes by looking
at change history of files which are modified by bug-fixing
changes.

D. Pre-processing

1) Sampling Training Data: The number of buggy changes
from a source code repository is less than that from a clean
one, as shown in the Defect Ratio column in TableI. This could

be a serious problem, because imbalanced training data could
lead to biased prediction results. To deal with this problem,
we apply an under-sampling method to the training data.
This sampling method randomly removes instances with the
majority label until the numbers of instances with the buggy
and clean labels are the same.

2) Log Transformation: When investigating the extracted
metric values, which are all non-negative, we notice that most
of them are highly skewed. To make the distribution of metric
values similar to a normal distribution, we apply a logarithm
transformation (log2 (x+ 1)) to all metric values.

E. Prediction Model

There are more than 30 classification model learners used
in cross-project defect prediction researches [7]. Because dif-
ferent model learners work better for different datasets, we
choose three popular classification model learners that were
used by other defect prediction papers. Random forest (RF)
[11], logistic regression (LR) [4] and naive Bayes (NB) [15]
are selected for our experiments.

Those model learners build a classification model with
training instances. An instance consists of the change metric
values of a commit and a label whether the commit has any
defect. When the change metric values from a new commit are
given to a classification model, the model returns a probability
that the commit has any defect, so called defect-proneness,
or a binary classification whether this commit is buggy or
clean. New commits which needs to be inspected for quality
assurance can be prioritized by their buggy probability to
make suspicious commits checked first. Since we use cost
effectiveness as our performance measure, as explained in the
next sub-section, we use cost-aware defect-prediction models
to consider the cost of investigating a commit. Whereas a
general defect-prediction model returns defect-proneness, a
cost-aware defect-prediction model returns defect-proneness
divided by the number of lines of code [16].

F. Performance Measures

Many previous cross-project defect prediction studies [7]
have adapted precision, recall, f1-score, and the area under
the receiver operating characteristic curve (AUCROC) as
performance measures, which are widely used in prediction
problems. These performance measures indicate how many
testing instances are predicted correctly by a classification
model. However, they do not consider the effort for QA testers
to inspect the instances predicted as defects, which makes the
measures less practical for QA testers [17].

Instead, we use the area under the cost-effectiveness curve
(AUCCE) [18] as a performance measure in this experiment.
This measure considers the effort to investigate the source
code, which enables more practical evaluation.

As developers examine the commits that are ordered by the
defect-proneness one by one, the total number of LOCs inves-
tigated and the total number of defects found will increase.
The cost-effectiveness curve, which is a monotonic function,
plots changes in the total percentage of LOCs investigated
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TABLE I
STATISTICS ABOUT SIZE OF FIVE PROJECTS

# of Avg. # of Contributed # of Commits
Project Sub-projects Defect Ratio Sub-projects per Dev. Sum Mean Std. Min. 25% 50% 75% Max.
Android 45 0.12 2.68 248860 5530.22 7751.91 53.0 568.00 3070.0 6732.00 39449.0
Appium 32 0.21 1.79 18034 563.56 1108.50 51.0 127.50 253.0 541.00 6326.0
Cordova 38 0.16 2.60 23551 619.76 808.88 52.0 197.25 330.5 618.75 3494.0
Maven 69 0.19 6.50 43703 633.38 1288.80 51.0 187.00 296.0 614.00 10344.0
Tizen 48 0.21 2.09 9857 205.35 518.24 52.0 77.25 116.0 153.00 3677.0

TABLE II
DESCRIPTIONS OF CHANGE METRICS

Name Description
NS total # of changed subsystems
ND total # of changed directories
NF total # of changed files
Entropy distribution of modified code across files
LA total # of added code lines
LD total # of deleted code lines
LT average # of code lines before the change
FIX whether containing fix related keyword in a change log
NDEV average # of developers who touched a file so far
AGE average # of days passed since the last modification
NUC total # of unique changes
EXP # of commits an author made in a sub-project
SEXP # of commits an author made in a subsystem
REXP # of commits an author made in a sub-project, weighted

by commit time

to the horizontal axis and changes in the total percentage of
defects found to the vertical axis. Thus, a higher AUCCE
value can be achieved if defect-inducing commits that changed
only small amount of source code are investigated earlier.

Although AUCCE values are always between 0 and 1,
the maximum and minimum achievable AUCCE values can
differ across model learners and sub-projects, so it is difficult
to understand the overall performance of defect prediction
models. Thus, we normalized the AUCCE value of a pre-
diction model by dividing the value by the AUCCE value of
a within-sub-project model. This percentage of AUCCE from
the within-sub-project model (%WSPAUCCE)” shows the
cost effectiveness a JIT prediction model achieves compared
to the within-sub-project model.

III. EXPERIMENTS

A. RQ1: Is the cross-sub-project model trained by sub-projects
from the same project more cost effective than that trained by
sub-projects from other projects?

1) Design: We evaluate the median %WSPAUCCE of the
two cross-sub-project models across all sub-projects. The first
model, a within-project model, is built with commits from sub-
projects that belong to the same project as a target sub-project.
The other, a cross-project model, is constructed with commits
from sub-projects from the other four projects. The goal
of both cross-sub-project models—within-project model and
cross-project model—are predicting defect-inducing commits

within the target sub-project. Fig. 1 shows which training data
are selected for two cross-sub-project models and one within-
sub-project model. A rectangle represents the commit data of
each sub-project and a rounded rectangle represents a project.
Sub-projects within a dashed line are selected as training data
for each JIT defect prediction model.

In the process of building a JIT defect prediction model,
especially when applying the under-sampling method, there is
randomness that yields non-deterministic experimental results.
Thus, we repeated the experiments 30 times to minimize
the effect of randomness. In addition, we statistically tested
whether the cost effectiveness of the two models is signifi-
cantly different. We used the Wilcoxon signed-rank test [19]
for the test as the %WSPAUCCE values are paired between
the two models and distribution of the %WSPAUCCE values
are not from a normal distribution. In addition, we calculated
effect sizes of the Wilcoxon signed-rank tests to see the
%WSPAUCCE difference in the two models.

2) Result: With 41,760 experimental results (3 model
learners × 2 cross-sub-project models × 232 sub-projects ×
30 repetitions), Table III shows the median %WSPAUCCE

value of two models on different projects and model learn-
ers. The Diff. row represents the differences in the median
%WSPAUCCE between the two models and the number in
the parenthesis represents the effect size between models. Stars
next to the effect size represent that there is a statistically
significant difference between the performance measures of
the two models. Three stars to one star represent a statistical
significance at 99% (α = 0.01), 95% (α = 0.05) and 90%
(α = 0.1) confidence intervals, respectively.

As shown in Table III, the within-project model out-
performed the cross-project model in terms of the median
%WSPAUCCE value, except in cases when logistic regression
and naive Bayes learners are used in the Android project and
logistic regression is used in the Cordova project. Although
the cross-project models are built with more training data
than the within-project models, their cost effectiveness is
generally lower than that of the within-project models. It
shows an evidence that more training data does not mean
better performance. These results show that when applying
cross-sub-project JIT defect prediction, an organization may
not need to collect change data from other projects because
prediction models built with those data may not perform
better than those built with change data from sub-projects
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Fig. 1. Training data of within- and cross-project models

within the project. It is possible that filtering training data
may increase the cost effectiveness of the cross-sub-project
JIT prediction model. In this paper, however, we will focus
on the feasibility of using within-project sub-project data and
further data utilization would be handled in future work.

Another finding from the results is that the within-project
models seem to have higher cost effectiveness than the within-
sub-project models. Across all projects, except Android and
all three model learners, the within-project models achieved
a median %WSPAUCCE value higher than 1.0, meaning that
more than half of the within-project models achieved higher
AUCCE than the within-sub-project models. This result is
different from the result of Kamei et al. [11] because, in their
work, which was conducted at the project level, there was
almost no cross-project JIT prediction models that achieved
higher AUCROC than the within-project model. We may
explain a possible reason for the difference with the number
of commits per sub-project. Table I shows that, except in the
Android project, where the mean number of commits per sub-
project is up to 27 times higher than in other projects, median
commit counts (50% column) of the sub-project per project
are near 500, which is much smaller than the number of
commits per project (Sum column). We conducted additional
experiments to confirm whether cross-sub-projects can be
beneficial to sub-projects with a small number of commits,
as explained in section I. The Spearman correlation coefficient
between the number of commits in a target sub-project and the
%WSPAUCCE value of its within-project model is -0.379,
indicating that there is a negative linear relationship. This
means that the fewer commits a sub-project has, the greater
the improvement in AUCCE that its cross-sub-project models
can achieve.

B. RQ2: Which sub-project ranking method performs best in
filtered-within-project JIT defect prediction?

1) Design: We see from Section III-A2 that a small amount
of training data could lead to better prediction performance.
Thus, instead of using all the sub-project data within a project
to build a cross-sub-project JIT defect-prediction model, we
can filter out sub-projects that are less helpful in defect
prediction to improve cost effectiveness of the JIT defect-
prediction model. Fig. 2 shows how the training data of such
models are selected. First, we calculate a score for each
sub-project by using a ranking method. Then, we rank sub-

TABLE III
MEDIAN %WSPAUCCE VALUE OF WITHIN- AND CROSS-PROJECT

MODELS ACROSS FIVE PROJECTS AND THREE MODEL LEARNERS

Model Learner
Project Model LR NB RF
Android Cross 1.00 1.14 0.94

Within 0.99 1.00 1.01
Diff. -0.01(-0.17**) -0.14(-1.00**) +0.06(+0.54**)

Appium Cross 1.02 0.95 1.01
Within 1.05 1.03 1.02
Diff +0.02(+0.77**) +0.09(+0.89**) +0.01(+0.08*)

Cordova Cross 1.07 0.88 1.02
Within 1.06 1.02 1.06
Diff -0.01(+0.02) +0.15(+0.99**) +0.04(+0.5***)

Maven Cross 1.00 0.77 0.96
Within 1.11 1.05 1.11
Diff +0.11(+0.98**) +0.27(+1.00**) +0.14(+0.96**)

Tizen Cross 0.80 0.77 0.88
Within 1.10 1.03 1.08
Diff +0.30(+0.99**) +0.26(+0.98**) +0.20(+0.96**)

All Cross 0.99 0.90 0.96
Within 1.06 1.02 1.05
Diff +0.07(+0.65**) +0.13(+0.65**) +0.09(+0.76**)

projects by their scores and choose the top N sub-projects
as training data for the filtered-within-project model. We use
two different sub-project similarity-based ranking methods and
two baseline ranking methods for this research question. The
first is the developer similarity, which is our proposed method.
The developer similarity is calculated with the number of
developers who made any commit in both sub-projects. Sub-
projects with more contributing developers in the target sub-
project achieve higher similarity. As it can be seen in the
average number of contributed sub-projects per developer in
Table I, people tend to contribute to various sub-project within
the project. The second is domain-agnostic similarity, used in
the work by Kamei et al. [11]. Domain-agnostic similarity
measure between the target sub-project and another sub-
project is calculated in this order: 1) calculate the Spearman
correlation between label values, which is 1 if a commit
introduced any defect or 0 otherwise, and the values of each
metric from the other sub-project; 2) select three metrics that
achieved the highest Spearman correlation values; 3) calculate
the Spearman correlation between each unordered pair of
selected metrics for each sub-project. This generates a three-
dimensional vector (

(
3
2

)
) for each sub-project; 4) Calculate the

domain-agnostic similarity by the Euclidean distance between
the two vectors. A smaller distance represents greater similar-
ity.

Two baseline ranking methods we used are random and
size rank. Random rank ranks the sub-projects randomly as a
dummy baseline, and size rank ranks the sub-projects by the
number of commits. The more commits a sub-project has, the
higher the rank it achieves. Size ranking is comparable with
our proposed ranking method because our method is correlated
with the size of the sub-project.

We build cross-sub-project JIT defect prediction models for
a target sub-project with commits from 1, 3, 5, 10, and 20
highest ranked sub-projects for each ranking method. Similar

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 10



to RQ1, we evaluate the median %WSPAUCCE values from
each cross-sub-project JIT defect prediction model, repeat
the experiments 30 times. P-values and effect sizes using
the Wilcoxon signed-rank test are also calculated to compare
performance of developer similarity based ranking method and
other ranking methods.

2) Result: As Table IV shows, when only one sub-project is
selected to build a filtered-within-project JIT defect prediction
model, the developer similarity ranking method outperforms
the domain-agnostic similarity and random ranking in all three
learners and outperforms the size ranking in two learners. This
result shows that a similarity measure designed for sub-project-
level JIT defect prediction can be preferred over a similarity
measure that is originally designed for cross-project JIT defect
prediction when picking a sub-project to build a cross-sub-
project JIT defect-prediction model.

As a prediction model is built with more sub-projects,
median cost effectiveness generally increases and the differ-
ences of median %WSPAUCCE value between four ranking
methods become smaller. When we conduct experiments with
more than 20 sub-projects selected for each model, the cost
effectiveness of the various models becomes almost the same,
so we do not include them in the table. This may be because
as more number sub-projects are selected to build the filtered-
within-project JIT defect prediction models, the models are
trained with a more similar set of training data.

When we additionally refined our developer similarity
ranking methods by not considering developers who barely
contributed to the sub-project or by normalizing its value with
the total number of developers who contributed in the other
sub-project. Table V shows the comparison of performance
measures normalization by the number of developers in the
other sub-project is applied or not. Since filtering developer
does not success in selecting similar sub-projects to get
improved performance measures, we do not insert the table
for that. However, in case of the normalization, it improved
performance measures greatly when Naive Bayes learner is
used and 3 to 5 sub-projects are selected. The improved per-
formance measures even exceed the median %WSPAUCCE

value of within-project models which can be found in the “all”
row at Table III.

In this research question, we see that the developer
similarity-based cross-sub-project JIT defect prediction model
is preferable to the other ranking methods. However, we notice
that the median values of the performance measure achieved
with filtered-within-project models (Table IV) are smaller than
those achieved with within-project models (Table III). Still,
we find the evidence that there is still room for improving the
cost effectiveness of filtered-within-project models over that of
within-project models with conducting additional experiments.

IV. RELATED WORK

A. JIT Defect Prediction

Most studies on defect prediction have focused on predicting
the defectiveness of software modules—files, packages, or
functions—by utilizing project history data [20]. Recently,

Fig. 2. Training data of filtered-within-project models

some research has been performed on just-in-time defect
prediction, which predicts software changes that may introduce
defects.

Kamei et al. conducted experiments applying just-in-
time defect prediction to six large open-source projects
and five large commercial projects [4]. To build the de-
fect prediction models, they used 14 change metrics in five
different dimensions—diffusion, size, purpose, history, and
experience—and used the logistic regression learner. These
change metrics are widely used in other just-in-time defect
prediction studies [21], [22]. Kim et al. proposed a change
level defect prediction method and tested it on 12 open-source
software projects [5]. They used a set of text-based metrics that
were extracted from the source code, log messages, and file
names. In addition, they used metadata such as the change
author and commit time. They also considered changes in the
complexity of source code caused by commits. There are many
other just-in-time defect prediction studies, such as applying
deep learning [21] or unsupervised models [22] for JIT defect
prediction. However, applying just-in-time defect prediction
on projects that consist of sub-projects is not discussed yet.

B. Cross-Project Defect Prediction

Zimmermann et al. defined 30 project characteristics and
showed the influence of the similarity of each characteristic
between target and predictor projects on a module-level cross-
project defect prediction [23]. They considered the project
domain, programming language, company, quality assurance
tools, and other aspects as project characteristics and con-
cluded that the characteristics of a project that transfers a
defect prediction model can influence precision, recall, and
accuracy in cross-project defect prediction. However, we no-
tice that this finding is barely applicable in cross-sub-project
defect prediction, as sub-projects within the project share many
common characteristics. For instance, sub-projects within the
same project usually are developed by the same company using
the same programming language and development tools. He
et al. [8] investigated the feasibility of cross-project defect
prediction at the module-level on 10 open-source projects.
They concluded that a model trained with data from other
projects can achieve higher accuracy than one trained with data
from the target project in the best cases. In addition, they said
that selecting the training dataset considering the distributional
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TABLE IV
MEDIAN %WSPAUCCE VALUE OF VARIOUS FILTERED-WITHIN-PROJECT MODELS ACROSS FIVE PROJECTS AND THREE MODEL LEARNERS

Model Ranking # of Sub-projects Selected
Learner Method 1 3 5 10
LR Developer 1.02 1.04 1.05 1.06

Domain-agnostic 1.01(-0.02, -0.26**) 1.04(-0.01, -0.13**) 1.05(-0.00, -0.05**) 1.05(-0.01, -0.05**)
Random 0.99(-0.04, -0.38**) 1.03(-0.02, -0.30**) 1.04(-0.01, -0.22**) 1.05(-0.01, -0.18**)
Size 1.04(+0.02, +0.30**) 1.05(+0.01, -0.13**) 1.05(+0.00, -0.15**) 1.06(-0.00, -0.20**)

NB Developer 1.03 1.03 1.03 1.03
Domain-agnostic 1.01(-0.02, -0.25**) 1.04(+0.01, +0.19**) 1.04(+0.01, +0.24**) 1.04(+0.01, +0.24**)
Random 1.01(-0.02, -0.26**) 1.03(+0.00, -0.01) 1.03(+0.00, +0.04**) 1.03(+0.00, +0.13**)
Size 1.00(-0.03, -0.33**) 1.01(-0.02, -0.47**) 1.01(-0.02, -0.46**) 1.01(-0.02, -0.30**)

RF Developer 0.98 1.01 1.02 1.03
Domain-agnostic 0.96(-0.02, -0.14**) 1.01(-0.00, -0.09**) 1.02(-0.00, -0.09**) 1.03(+0.00, -0.01)
Random 0.94(-0.04, -0.29**) 0.99(-0.02, -0.30**) 1.01(-0.02, -0.29**) 1.02(-0.01, -0.20**)
Size 0.96(-0.02, -0.18**) 0.98(-0.03, -0.44**) 0.99(-0.03, -0.45**) 1.02(-0.02, -0.32**)

TABLE V
MEDIAN %WSPAUCCE VALUE OF NORMALIZED DEVELOPER SIMILARITY-BASED FILTERED-WITHIN-PROJECT MODELS ACROSS FIVE PROJECTS AND

THREE MODEL LEARNERS

Model Developer # of Sub-projects Selected
Learner Similarity 1 3 5 10
LR Not Normalized 1.02 1.04 1.05 1.06

Normalized 0.95(-0.08, -0.62**) 1.02(-0.03, -0.46**) 1.03(-0.02, -0.38**) 1.05(-0.01, -0.32**)
NB Not Normalized 1.03 1.03 1.03 1.03

Normalized 0.99(-0.04, -0.30**) 1.06(+0.03, +0.22**) 1.06(+0.03, +0.24**) 1.04(+0.02, +0.25**)
RF Not Normalized 0.98 1.01 1.02 1.03

Normalized 0.92(-0.06, -0.43**) 0.98(-0.03, -0.35**) 1.00(-0.03, -0.34**) 1.02(-0.01, -0.22**)

characteristics of datasets could lead to better cross-project
results. However, this characteristic could not be extracted
in projects where no historical data exist, which hinders the
application of distributional characteristics in cross-project
defect prediction. In addition, neither Zimmermann et al.
nor He et al. considered JIT defect prediction and the cost
effectiveness of the defect-prediction model.

Kamei et al. [11] conducted cross-project defect prediction
experiments in a change-level manner. They observed that
predicting defects for changes in a target project with a model
built with another project’s data has lower accuracy than that
of a within-project model. However, when the prediction is
done with a model built with a larger pool of training data from
multiple projects or combining the prediction results from mul-
tiple cross-project models, its performance is indistinguishable
from that of a within-project model. They also applied domain-
aware or domain-agnostic similarity measures between two
projects to select a similar project. For the domain-agnostic
type, they calculated the Spearman correlation between the
metric values within a dataset and used the correlation values
to find a similar project. For the domain-aware type, they used
a subset of project characteristics proposed by Zimmermann
et al. [23] and calculated the Euclidean distance to find a
similar project. When these similarity measures are used to
pick one project to transfer its JIT defect-prediction model
to predict defects in the target project, they concluded that
both measures successfully contributed to pick a better-than-
average cross-project model. However, when they built a cross-

project JIT defect prediction model with training data from
multiple similar projects, it barely improved accuracy over
a model trained with data from all other projects without
filtering irrelevant projects. This work showed that cross-
project defect prediction is feasible on JIT defect prediction,
but there were no discussions on the sub-project-level JIT
defect prediction. Moreover, the cost was not considered of
investigating commits to find defects in the evaluation.

V. THREAD TO VALIDITY

A. Construct Validity

For our experiments, we implemented Python scripts to ex-
tract the change metric data from the source code repositories
to build and test JIT defect prediction models. However, the
scripts might have defects that affect the experiments and
results. To reduce this threat, we used open-source frameworks
and libraries that are commonly used in other studies, such
as scikit-learn [24]. In addition, we also double-checked
our source code and manually inspected extracted change
measures for validation.

B. Dataset Quality

We used CodeRepoAnalyzer by Rosen et al. [25] to extract
change metrics from git repositories. While using this tool, we
noticed that it has some bugs. For instance, some extracted
metric values were marked as negative, which is incorrect by
definition. Although we handled the bugs found in this tool,
there could be other bugs that were not found and that could
have affected the extracted values.
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Although the SZZ algorithm is widely used in JIT defect
prediction research [4], [12], it is known that the accuracy of
keyword-based labelling methods for bug-inducing commits
are limited [26]. We may improve the accuracy of automatic
labeling by utilizing bug-repository data [13].

VI. CONCLUSION

In this paper, we investigated the feasibility of transferring
JIT defect prediction models built with data from other sub-
projects to predict bug-inducing commits in a target sub-
project. We conducted experiments with five projects, which
comprise 232 sub-projects in total, and three different model
learners. With two research questions, we conclude that 1)
a cross-sub-project model has better cost effectiveness than
within-sub-project models in general; 2) a cross-sub-project
JIT defect prediction model built with data from sub-projects
within the targets project has higher cost effectiveness than
a JIT defect prediction model built with data from all avail-
able sub-projects; 3) the developer similarity-based ranking
method is preferable for filtering sub-projects that are irrel-
evant to the target sub-project; and 4) although a developer
similarity-based filtered-within-project model has lower cost
effectiveness than a within-project model in general, we further
improved the performance of the filtered-within-project model
to outperform the within-project model in the best cases. Our
contributions include 1) proposing defect prediction at the
sub-project level that potentially has better cost effectiveness
than traditional within-project models by using new developer-
similarity-based filtered-within-project models and 2) initially
evaluating the cost effectiveness of various sub-project-level
JIT defect prediction models across 232 sub-projects. In future
work, We plan to investigate a more polished way to apply
filtered-within-project models, such as filtering developers by
considering their contributions over various project resources
[27] before calculating the developer similarity.
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