
What do we know about software security
evaluation? A preliminary study

Séverine Sentilles
School of Innovation, Design and
Engineering, Mälardalen University

Västerås, Sweden
severine.sentilles@mdh.se

Efi Papatheocharous
ICT SICS

RISE Research Institutes of Sweden
Stockholm, Sweden

efi.papatheocharous@ri.se

Federico Ciccozzi
School of Innovation, Design and

Engineering, Mälardalen University
Västerås, Sweden

federico.ciccozzi@mdh.se

Abstract—In software development, software quality is nowa-
days acknowledged to be as important as software functionality
and there exists an extensive body-of-knowledge on the topic. Yet,
software quality is still marginalized in practice: there is no con-
sensus on what software quality exactly is, how it is achieved and
evaluated. This work investigates the state-of-the-art of software
quality by focusing on the description of evaluation methods for
a subset of software qualities, namely those related to software
security. The main finding of this paper is the lack of information
regarding fundamental aspects that ought to be specified in an
evaluation method description. This work follows up the authors’
previous work on the Property Model Ontology by carrying out
a systematic investigation of the state-of-the-art on evaluation
methods for software security. Results show that only 25% of
the papers studied provide enough information on the security
evaluation methods they use in their validation processes, whereas
the rest of the papers lack important information about various
aspects of the methods (e.g., benchmarking and comparison to
other properties, parameters, applicability criteria, assumptions
and available implementations). This is a major hinder to their
further use.

Index Terms—Software security, software quality evaluation,
systematic review, property model ontology.

I. INTRODUCTION

Software quality measurement quantifies to what extent a
software complies with or conforms to a specific set of desired
requirements or specifications. Typically, these are classified
as: (i) functional requirements, pertaining to what the software
delivers, and (ii) non-functional requirements, reflecting how
well it performs according to the specifications. While there
exists a vast plethora of options for functional requirements,
non-functional requirements have been studied extensively
and classified through standards and models (i.e., ISO/IEC
9126 [1], ISO/IEC 25010 [2] and ISO/IEC 25000 [3]). They
are often referred to as extra-functional properties, non-
functional properties, quality properties, quality of service,
product quality or simply metrics.

Despite the classification and terminology accompanying
these properties, their evaluation and the extent of how well
a software system performs under specific circumstances are
both hard to quantify without substantial knowledge on the
particular context, concurring measurements and measurement
methods. In practice, quality assessment is still marginalized

– there is no consensus on what software quality exactly is,
how it is achieved and evaluated.

In our research we investigate to what extent properties and
their evaluation methods are explicitly defined in the existing
literature. We are interested in properties such as reliabil-
ity, efficiency, security, and maintainability. In our previous
work [4], we investigated which properties are most often
mentioned in literature and how they are defined in a safety-
critical context. We found that the most prominent properties
of cost, performance and reliability/safety were used, albeit not
always well-defined by the authors: divergent or non existent
definitions of the properties were commonly observed.

The target of this work is to investigate evaluation methods
related to software security, which is a critical extra-functional
property directly and significantly impacting different devel-
opment stages (i.e., requirements, design, implementation and
testing). Security is defined by McGraw [5] as “engineering
software so that it continues to function correctly under
malicious attack”. The high diversity of components and
complexity of current systems makes it almost impossible to
identify, assess and address all possible attacks and aspects of
security vulnerabilities.

More specifically, in this paper we want to answer the
following research question: “What percentage of evalua-
tion method descriptions contains pertinent information to
facilitate its use?”. For this, we identified a set of papers
representing the state-of-the-art from the literature in the field
and we assessed the degree of explicit information about
evaluation methods. The set of papers was analyzed to identify
definition and knowledge representation issues with respect to
security, and answer the following three sub-questions:

• RQ1: What proportion of properties is explicitly defined?
• RQ2: What proportion of evaluation methods provide

explicit key information to enable their use (e.g., formula,
description)?

• RQ3: What proportion of other supporting elements of
the evaluation methods is explicit (e.g., assumptions,
available implementations)?

We used a systematic mapping methodology [6], started from
63 papers and selected 24 papers, which we then analyzed
further. After thorough analysis, we excluded eight papers,
resulting in a final set of 16 papers, which we used for

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 30

synthesizing and reporting our results. The final set of papers
is listed in Table V. The main contribution of this paper is
represented by the identification of the following aspects:

• relation between evaluation methods and a generic prop-
erty definition (i.e., if it exists explicitly and how it is
described),

• which aspects of other supporting elements to improve
understandability and applicability of the method (i.e,
assumptions, applicability, output etc.) are explicitly men-
tioned, and

• the missing information regarding fundamental aspects
which ought to be specified in a property and method
description.

The remainder of the paper is structured as follows. In
Section II we introduce the related work in the topic, while
in Section III we describe our methodology. Section IV
summarizes quantitative and qualitative interpretations of the
extracted data, while Section V reports the main results.
Section VI discusses the threats to validity and Section VII
concludes the paper and delineates possible future directions.

II. RELATED WORK

An extensive body-of-knowledge already exists on software
security and many studies have already investigated security
assessment as well. For example, the U.S. National Institute
of Information Standards and Technology (NIST) in [7]
developed a performance measurement guide for information
security and in particular how an organization through the use
of metrics can identify the adequacy of controls, policies and
procedures. The approach is mostly focused on the level of
technical security controls in the organization rather than the
technical security level of specific products.

In [8], a taxonomy for information security-oriented metrics
is proposed in alignment to common business goals (e.g.,
cost-benefit analysis, business collaboration, risk analysis,
information security management and security dependability
and trust for ICT products, systems and services) covering
both organizational and product levels.

Verendel [9] analyzed quantitatively information security
from a set of articles published from 1981-2008 and concluded
that theoretical methods are difficult to apply in practice and
there is limited experimental repeatability. A recent literature
survey [10] carried out on ontologies and taxonomies of
security assessment identified among others a gap in works
addressing research issues like knowledge reuse, automatic
processes, increasing the assessment coverage, defining secu-
rity standards and measuring security.

Morrison et al. [11] carried out a systematic mapping
study on software security metrics to create a catalogue of
metrics, their subject of measurement, validation methods
and mappings based on the software development life cycle
(SDLC). Based on the vast catalogue of metrics and definitions
collected, a major problem is that they are extremely hard to
be compared, as they typically measure different aspects of
the property (something obvious from the emergent categories
proposed in the paper). Thus, there is no agreement on

their degree of assessment coverage or how to achieve their
evaluation. Moreover, in their work, the generic property of
security, including its definition, relation to a reference and
detailed explanation on how to achieve assessment, is not
addressed.

Therefore, we decided to investigate thoroughly the liter-
ature and quantify the quality of the description of security
evaluation methods. Our approach differs from the work of
Morrison et al. [11] in that we are not interested to collect
metrics and their mapping to SDLC. Instead, we examine
evidence on properties’ explicit definitions, their evaluation
methods and parameters (including their explanations on how
they are used) for assessing security. We develop a mapping
from an applicability perspective of the evaluations, which
may be used by researchers and practitioners at different
phases of security evaluations, i.e., at the low-level internal
or at the external (often called operational) phase of software
engineering.

III. METHODOLOGY

We base our work on the mapping study previously con-
ducted by Morrison et al. in [11]. The reasoning is that the
basis of the work is well aligned and applicable to answering
our RQs. The details of the methodology are explained in the
following.

A. Search and selection strategy

The data sources used in [11] are the online databases,
conference proceedings and academic journals of ACM Digital
Library, IEEE Xplore and Elsevier. The search terms include
the keywords: “software”, “security”, “measure”, “metric” and
“validation”. Considering another 31 synonyms, the following
search string was used:
“(security OR vulnerability) AND (metric
OR measure OR measurement OR indicator OR
attribute OR property)”,
in which the terms are successively replaced with the identified
synonyms.

The selection criteria of Morrison et al. include the sets of
inclusion and exclusion items listed below.

Inclusion criteria:
• Paper is primarily related to measuring software security

in the software development process and/or its artifacts.
For example software artifacts (e.g., source code files,
binaries), software process (e.g., requirements phase, de-
sign, implementation, testing), and/or software process
artifacts (e.g., design and functional specifications).

• Measurements and/or metrics are the main paper subject
• Refereed paper
• Paper published since 2000

Exclusion criteria:
• Related to sensors
• Related to identity, anonymity, privacy
• Related to forgery and/or biometrics
• Related to network security (or vehicles)

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 31

• Related to encryption
• Related to database security
• Related to imagery, audio, or video
• Specific to single programming languages
As explained above, search string, search strategy, inclusion

and exclusion criteria defined by Morrison et al. are applicable
to our work. Thus, we reuse the list of selected papers from
their mapping study as the initial set for our study. However,
as we wanted to investigate the applicability and quality
of the security evaluation methods found, we extended the
selection and data extraction methodology to isolate the subset
of selected papers that is considered most relevant. In order
to identify the subset, we performed the following actions:

• Define new exclusion criteria
• Design a new selection process
• Define a new data collection scheme
• Extract the data
• Intepret data and synthesize results

B. New exclusion criteria

We decided to exclude sources according to the following
criteria:

• Full-text is not available
• Sources are Ph.D. dissertations or books
• Sources are not industrially validated or do not use well-

known software, tool or platforms for their validations
• Sources are model predictions that do not assess any

property

C. New selection process

The selection is performed on the list of 63 selected papers
from [11] by three independent researchers by looking at
the title, abstract and by going through a quick reading of
the content. Papers independently selected by all researchers
are included. Similarly, papers which are discarded by all
researchers are excluded. For papers for which there is a
disagreement, a discussion is held between the involved re-
searchers to unanimously decide whether to include or exclude
the papers. In one case (p18), an extended version of the paper
was found and used instead (i.e. we used [12] instead of [13]).
This selection process resulted in 24 included papers and 39
rejected. Furthermore, 8 papers were later excluded during the
data extraction as they did not contain useful information or
were not of sufficient quality. Hence, our selection set is based
on the 16 papers listed in Table V.

D. Data collection scheme

As support for answering the RQs, we created a form based
on excel spreadsheets. The form consists of the questions
specified in Table I, with the list of possible values for each
question. The questions are derived from our previous work on
the Property Model Ontology (PMO), which formally specifies
which concepts should be described for properties and their
evaluation methods and how these concepts relate to one
another. For details on the PMO, the reader is directed to [4].

E. Data extraction and interpretation

The data extraction is carried out by the researchers us-
ing independent spreadsheet columns (one for each paper).
The data extraction for each paper is reviewed by another
researcher (i.e. reviewer) and discussions are carried out until
an agreement is reached. The data is then interpreted and
analyzed by all researchers together, as explained in the next
section.

IV. DATA INTERPRETATION

A. Quantitative analysis

One interesting, albeit not very surprising fact, is that most
of the descriptions contained in the papers explicitly state what
is supposed to be calculated (i.e., the property and the output)
and how (i.e., through the overall approach description, the
parameters involved in the approach, and to some extent the
advantages and disadvantages). As visible in Table II, which
shows the results of the quantitative analysis, the property is
explicitly referred to in 87,5% of the papers, the output in
75%, the approach description in 87,5%, the parameters in
81%, the advantages in 62% and the disadvantages in 69%.

No method explicitly specifies the unit to be used for the
output. This might be explained by the fact that software
security is a rather recent research field and there is currently
no widely acknowledged metric and corresponding units to be
used. As a result, most methods typically fall back on standard
data types for which units are less relevant (e.g., percentage,
probability, item counts).

Applicability criteria are rarely explicitly mentioned, only
in 19% of the papers. When they are mentioned, it is not
obvious whether the set of provided criteria is complete or
at least sufficient to ensure the applicability of the evaluation
method.

Only half of the papers clearly specify the assumptions and
hypotheses that are assumed to hold when using the method.
This is a setback as these aspects are important for correctly
applying a method.

Drivers are rarely explicitly mentioned; only in 12.5% of
the papers. Drivers can be important as they can implicitly
affect the output of a method.

Despite being often mentioned in the papers as part of the
solution being implemented, in practice, only a few imple-
mentations or programs are available to directly support the
method evaluation. We could find mentions of available tool
support in only 2 out of the 16 papers (i.e., WEKA toolkit and
Fortify Source Code Analyzer (SCA) version 5.10.0.0102 in
p43 and p47). A few additional papers (4) refer to available
tool support but no explicit link or reference is provided.

Out of the 16 analyzed papers, only 1 (i.e., p60) performed
some kind of benchmarking or comparison to similar proper-
ties or evaluation methods. This corresponds to only 6% of all
the papers.

To a large extent, the information provided in the papers is
insufficient to directly apply the method, especially by non-
experts (in 12 papers, 75%).

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 32

TABLE I: Data collection form

Data to collect Possible Values
q1 PaperId Px, with x a number
q2 Method name Free text
q3 Does the evaluation method provide an explicit reference to a property or a metric Yes | no
q4 If yes on q3, how? Name + def. + ref. | name + def. | name + ref. | other
q5 If other on q4, how? Free text
q6 If yes on q3, which one? Give the example Free text
q7 If yes on q3, does the reference match what is needed for the evaluation method? Yes | no | I don’t know
q8 Does the evaluation method explicitly state the output of the method Yes | no
q9 If yes on q8, how? With data format and unit | With data only | other
q10 If other on q9, how? Free text
q11 If yes on q8, which one? Give the example Free text
q14 Does the evaluation method explicitly state applicability criteria? Yes | no
q15 If yes, which ones? Free text
q16 Does the evaluation method explicitly state how the property is evaluated? Yes | no | I don’t know
q17 If yes on q16, how? Free text
q18 Does the evaluation method explicitly explain the parameters involved in the evaluation? Yes | no
q19 If yes on q19, which parameters (with their explanations)? Free text
q25 Does the evaluation method explicitly describe additional drivers that might affect the

evaluation?
Yes | no

q26 If yes on q25, which ones? Free text
q27 Does the evaluation method explicitly state the assumptions, hypotheses which the

method is based on?
Yes | no

q28 If yes on q27, which ones? Free text
q29 Does the evaluation method explicitly mentioned advantages for the method? Yes | no
q30 If yes on q30, which ones? Free text
q31 Does the evaluation method explicitly mentioned disadvantages for the method Yes | no
q32 If yes on q31, which ones? Free text
q33 Does the evaluation method explicitly reference an implementation or a program that

can be used?
Yes | no

q34 If yes on q33, which ones? Free text
q35 If yes on q33, is the implementation or program accessible Yes | no
q36 Is there any comparison to other properties (e.g., benchmark, validation) Yes | no
q37 If yes on q36, how? Free text
q38 Additional comments Free text
q39 Is the information provided in the paper sufficient to understand the method and directly

use it?
Yes | no

q40 Extractor’s name Séverine | Efi | Federico
q41 Reviewer’s name Séverine | Efi | Federico

B. Qualitative analysis

From analyzing the answers to the questions in Table II,
papers can be categorized into three groups based on their
main purpose. The first group focuses on defining a new
property or metric to assess some specific software security
aspects (p1, p18, p27, p47, p63). The papers belonging to the
second group (p15, p25, p37, p51, p60) base their work on
already defined properties. Their main objective is to either
find ways to combine existing metrics to evaluate a given
security aspect, define a new evaluation method for existing
properties or validate previously specified methods in applying
them on a specific system. The last group aims at finding
correlation between already defined properties or performing
predictions to evaluate the accuracy of previously defined
models (p38, p43, p53, p55, p59). There are papers that do
not belong to these groups as they are not explicitly referring
to any property, method or metric (p22, p50). This is shown
in the answers to questions on whether the paper explicitly
refers to a property and, if yes, how (i.e., q3 and q4). Papers
belonging to the first group use “definition without reference”,
papers from the second group use “definition plus reference”
and papers from the last group use “other”.

From the data extracted, 34 definitions and references on
security are collected from the papers, as listed in Table IV.
We categorized the collected properties in two different levels,
depending on their level of specificity (less coarse-grained).
A few papers shared some definitions (e.g., p25, p59, p63)
whereas most papers defined their own security aspect to
evaluate. The security aspect expressed (even if in some cases
is explained with many details) is only able to capture some
facets of the property, thus it is hard to know if the property
definitions together with their evaluations are enough to asses
security in a rational way.

Related to the descriptions of the properties and evaluations
extracted, we captured the level of applicability between them,
as they were described in the papers: most commonly the
deployment and operation phase (post-release), the implemen-
tation (development or code level, including testing) and the
design phase as shown in Table III. The level at which security
evaluation is carried out varies among the papers. 7 of them
(44%) apply the evaluation method at the implementation
(code-level) phase, 1 paper at the testing phase, 6 papers
(37,5%) at the operational phase, 1 paper during maintenance
and 4 papers (25%) at the design level.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 33

TABLE II: Quantitative results

Question Count of
‘Yes’ (%)

Count of
‘No’ (%)

q3: Explicit property 14 2
(87,5%) (12,5%)

q8: Explicit method output 12 4
(75%) (25%)

q14: Explicit applicability criteria 3 13
(19%) (81%)

q16: Explicit description 14 2
(87,5%) (12,5%)

q18: Explicit method parameters 13 3
(81%) (19%)

q25: Explicit drivers 2 14
(12,5%) (87,5%)

q27: Explicit assumptions 8 8
(50%) (50%)

q29: Explicit advantages 10 6
(62,5%) (37,5%)

q31: Explicit disadvantages 11 5
(69%) (31%)

q33: Explicit tool reference 6 10
(37,5%) (62,5%)

q35: Tool accessibility 2 4
(12,5%) (25%)

q36: Benchmark 1 15
(6%) (94%)

q39: Information is sufficient 4 12
(25%) (75%)

TABLE III: Security level applicability

pID Applicability level Analysis level*
p1 system architecture - design - implementation internal
p15 implementation internal
p18 operational external
p22 operational - system architecture - design int. & ext.
p25 operational int. & ext.
p27 operational external
p37 implementation internal
p38 design internal
p43 design - implementation internal
p47 operational external
p50 operational external
p51 implementation internal
p53 maintenance external
p59 testing external
p60 detailed design - implementation internal
p63 implementation internal

*Based on the definitions from [1] on internal and external metrics for product quality.

As mentioned above, no units are explicitly specified. How-
ever, the output of the evaluation methods falls back onto
implicit scales of measurements: nominal (p60), ordinal (p1,
p18, p37, p47, p50, p60, p63), interval (p53) and ratio (p18,
p25, p43, p60).

Regarding advantages of the methods, the most commonly
reported are: reliability of the method (p1, p15, p25), sim-
plicity of the method (p1, p18, p25), accuracy of the method
(p18, p43) and objectivity of the results (p47, p60). The
disadvantages mostly refer to the accuracy of the results being
dependent on the quality of the available data (p18, p25, p37,
p43) and subjectivity involved in the method (p22, p37, p63).

V. RESULTS AND DISCUSSIONS

As an answer to our initial research question “What per-
centage of evaluation methods description contains pertinent

information to facilitate its use?”, only 25% of the papers that
we investigated were judged to provide enough information
to enable a direct application of the method. Overall, the
papers were good at explicitly stating the property under study,
describing how the property is evaluated and which parameters
are involved. On the other hand, in several cases the papers
lacked information regarding the unit representing the value of
the property, the applicability criteria for the method as well
as its assumptions, possible advantages and disadvantages,
eventual openly available tool support, and comparison to
other properties.

Security being a relatively new area in software engineering
can be a major contributing factor to these results. For exam-
ple, advantages, disadvantages, and applicability criteria are
difficult to identify initially. They require time and perspective
on the topic as well as the methods having been used over
time in a wide range of applications and scenarios. Given that
many of the papers which were included in our set focused on
defining new properties for security, it is not so surprising that
so few papers mentioned those aspects. Furthermore, following
the same reasoning, even if those criteria were explicitly stated
in the papers, it is not certain that the proposed lists of
advantages, disadvantages and applicability is exhaustive, or at
least sufficient to guarantee the proper usage of the evaluation
method that they introduce.

When comparing to the results in [11], we found fewer
metrics and definitions. This is due to the fact that our
purpose was to identify the main property (or properties) of
the paper and their corresponding evaluation methods. Some
of the metrics identified in [11] are classified in our results
as parameters. Others have been ignored as they were used
for comparison purposes and therefore not as relevant for our
work. However, the conclusions by Morrison et al. still hold
and are further supported by our results. Security properties are
not mature, most of them have been proposed and evaluated
solely by their authors, and few comparisons between already
defined properties exist. “Despite the abundance of metrics
found in the literature, those available give us an incomplete,
disjointed, hazy view of software security.”

These results are to be put in perspective, since none of
the authors of this paper is an expert in software security
and due to the small number of papers that were studied in
this work. However, we are confident that the observations
resulting from this study are good indications of the issues
occurring with property and evaluation methods descriptions
in software security.

A bi-product of our analysis is the following interesting
aspect. Especially for the works assessing software vulnera-
bility, evaluation methods exploit well-established prediction
models that leverage a discernible set of software metrics
(related to the code itself, developers activity, versioning data,
etc.). A (what seems to be) common step to the definition of
security-related evaluation methods, especially when dealing
with vulnerability, is the comparison of existing prediction
models, or the comparison of a newly defined prediction model
with a set of existing ones, in order to identify the “best” model

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 34

TABLE IV: Collection of properties or coarse-grained metrics explicitly defined in the papers1

pID Generic/coarse-grained definition Less generic definition
p1 Security to mean control over data confidentiality [...] and data integrity [...]1 Total Security Index (TSI) as the sum of the security design principle metrics
p15 Vulnerability as a weakness in a software system that allows an attacker to

use the system for a malicious purpose
p18 End-user software vulnerability exposure as a combination of lifespans and

vulnerability announcement rates
Median Active Vulnerabilities (MAV): the median number of software vulnerabilities
which are known to the vendor of a particular piece of software but for which no
patch has been publicly released by the vendor

Vulnerability Free Days (VFD): captures the probability that a given day has exactly
zero active vulnerabilities

p25 Vulnerability (defined in [14])
p27 Operational security as representation of as accurately as possible the

security of the system in operation, i.e., its ability to resist possible attacks
or, equivalently, the difficulty for an attacker to exploit the vulnerabilities
present in the system and defeat the security objectives

Mean Effort To security Failure (METF): Mean effort for a potential attacker to reach
the specified target

p37 Security through an attack surface metric Attack surface metric a measure of a systems attack surface along three dimensions by
estimating the total contribution of the methods, the total contribution of the channels,
and the total contribution of the data items to the systems attack surface [...]1

p38 Security as through the number of violations of the least privilege principle
and surface metrics

Maintainability as coupling between components and components instability

LP principle metric (defined in [15])
Attack surface metric (defined in [16])
Coupling between components (CBM) (defined in [17])
Components instability (CI) (defined in [18])

p43 Vulnerability through dependency graphs (*)
p47 Vulnerability through static analysis (*) Static-analysis vulnerability density (SAVD): number of vulnerabilities a static-analysis

tool finds per thousand LOC
Density of post-release reported vulnerability (NVD) (*)
Application vulnerability rank (SAVI) (*)

p50 Vulnerability as flaws or weakness in a systems design, implementation, or
operation and management that could be exploited to violate the systems
security policy. Any flaw or weakness in an information system could
be exploited to gain unauthorized access to, damage or compromise the
information system.

p51 Application security (defined in [5])
Software security (defined in [5])
Security at program level (defined in [19])

Stall Ratio (SR): a measure of how much a programs progress is impeded by frivolous
activities.
Coupling Corruption Propagation (CCP): Number of child methods invoked with the
parameter(s) based on the parameter(s) of the original invocation
Critical Element Ratio (CER) (*)

p53 Security through vulnerability density (*) Static analysis vulnerability density (SAVD) (see p47)

Security Resources Indicator (SRI): the sum of four indicator items, ranging from 0
to 4. The items are: the documentation of the security implications of configuring and
installing the application, a dedicated e-mail alias to report security problems, a list or
database of security vulnerabilities specific to the application, and the documentation
of secure development practices, such as coding standards or techniques to avoid
common secure programming errors.

p59 Vulnerability (defined in [14])
p60 Software vulnerability (defined in [19]) Structural severity: uses software attributes to evaluate the risk of an attacker reaching

a vulnerability location from attack surface entry points [...]1

Attack Surface Entry Points (defined in [20])
Reachability Analysis (*)

p63 Software vulnerability (defined in [14]) Vulnerability-Contributing Commits (VCCs): original coding mistakes or commits in
the version control repository that contributed to the introduction of a post-release
vulnerability

1The definitions have been shorten to comply with the page limitation. Readers are referred to the original paper for the complete definition.
(*) No explicit definition is found.

to use as basis for evaluation purposes. Another interesting
aspect is represented by the fact that, in several papers, authors
exercise their reasoning and methods on well-known code-
bases (e.g., Windows Vista, Mozilla); this shows an inter-
esting strong inclination towards assessing the applicability
of research (theoretical) results to practical cases, which is
too seldom seen in other research branches within software
engineering.

VI. THREATS TO VALIDITY

Construct validity relates to what extent the phenomenon
under study represents what the researchers wanted to in-
vestigate and what is specified by the research questions.
We explicitly defined the context of the work and discussed
related terms and concepts. Also, the research questions were

formulated based on these clarified notions and the research
followed a methodological procedure known as systematic
mapping.

The selection of papers was based on the work of Morrison
et al. [11], thus we inherit the work’s limitations. Therefore,
papers not listed in the sources used, i.e., ACM, IEEE and
Elsevier, have been missed. In addition, we excluded Ph.D.
dissertations and books since we limited our selection to peer-
reviewed conference and scholar journal publications only.

The way the involved researchers individually interpreted
the methods described in the papers reflects their own biases
and views. However, we worked hard to reduce the bias
by discussing the content of the papers in pairs to dissolve
uncertainties. In several cases, where the decision to include or
not a paper, a third research was involved to reach a consensus.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 35

Morrison at al. [11] excluded sources dealing with networks,
sensors, database and vehicle security and this limited the
set of papers analyzed in our study. This opens however up
for opportunities of further research targeting these particular
types of systems.

External validity is about to what extent the findings are
generalizable. Due to the focus on the security aspect and
the small selection of papers, one should avoid generalizing
the results over other properties such as reliability and safety.
However, despite the limitations of our study (i.e., low number
of papers, one method per paper, no snowballing to find com-
plementary information), our conclusions are representative
of the current issues in software security. Furthermore, other
works in the state-of-the-art on software quality share similar
conclusions as Morrison et. al. in [11], which points towards
the applicability of our results to other properties.

VII. CONCLUSIONS

Despite the low number of papers this work is based on,
we believe it is, to some extent, representative of the current
issues in the state-of-the-art on software quality in general and
security in particular: a number of useful properties and meth-
ods to evaluate them do exist today. However, it is difficult to
know about them and understand whether they are applicable
in a given context and if they are, how to use them. This can be
attributed to the lack of information in the descriptions of their
evaluation methods. This hampers the activities towards better
quality assurance in software engineering and it limits at the
same time the application of these activities or newly specified
methods in industrial settings. For example, knowing when to
apply a method (e.g., applicability at design time, at run-time,
etc.) restricts which methods can be used in a given context.
Knowing the advantages and disadvantages allows to trade-
off available methods and limits selection bias. Older, more
established or traditional, software quality fields provide more
reference properties and methods to systematically compare to;
however the level of detail and quality of given information is
still relatively low.

As future work, we plan to expand the selection of papers
to include those from the references in the analyzed papers so
to investigate if our conclusions still hold. Similarly, we will
explore the quality of assessments of other quality properties
in literature such as reliability, safety and maintainability. The
results of these studies will be included in PROMOpedia [21],
an online encyclopedia of software properties and their eval-
uation methods. Lastly, we plan to propose an improved and
validated ontology to express several critical and time sensitive
properties towards a more systematic (in terms of consistent)
and formal (in terms of codified) way and approach a better
trade-off support between the properties.

Part of the work is also supported by the Electronic Com-
ponent Systems for European Leadership Joint Undertaking

ACKNOWLEDGMENTS

The work is supported by a research grant for the ORION
project (reference number 20140218) from The Knowledge
Foundation in Sweden.

under grant agreement No 737422. This Joint Undertaking
receives support from the European Unions Horizon 2020 re-
search and innovation programme and Austria, Spain, Finland,
Ireland, Sweden, Germany, Poland, Portugal, Netherlands,
Belgium, Norway.

REFERENCES

[1] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[2] ——, Systems and software engineering-Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality
models, 2011.

[3] ——, “ISO/IEC 25000 software and system engineering–software prod-
uct quality requirements and evaluation (SQuaRE)–guide to SQuaRE,”
International Organization for Standardization, 2005.

[4] S. Sentilles, E. Papatheocharous, F. Ciccozzi, and K. Petersen, “A
property model ontology,” in Software Engineering and Advanced Ap-
plications (SEAA), 2016 42th Euromicro Conference on. IEEE, 2016,
pp. 165–172.

[5] G. McGraw, Software security: building security in. Addison-Wesley
Professional, 2006, vol. 1.

[6] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering.” in EASE, vol. 8, 2008, pp.
68–77.

[7] E. Chew, M. M. Swanson, K. M. Stine, N. Bartol, A. Brown, and
W. Robinson, “Performance measurement guide for information secu-
rity,” Tech. Rep., 2008.

[8] R. Savola, “Towards a security metrics taxonomy for the information and
communication technology industry,” in Software Engineering Advances,
2007. ICSEA 2007. International Conference on. IEEE, 2007, pp. 60–
60.

[9] V. Verendel, “Quantified security is a weak hypothesis: a critical survey
of results and assumptions,” in Proceedings of the 2009 workshop on
New security paradigms workshop. ACM, 2009, pp. 37–50.

[10] F. d. F. Rosa, R. Bonacin, and M. Jino, “The security assessment
domain: A survey of taxonomies and ontologies,” arXiv preprint
arXiv:1706.09772, 2017.

[11] P. Morrison, D. Moye, and L. A. Williams, “Mapping the field of
software security metrics,” North Carolina State University. Dept. of
Computer Science, Tech. Rep., 2014.

[12] J. L. Wright, M. McQueen, and L. Wellman, “Analyses of two end-user
software vulnerability exposure metrics (extended version),” Information
Security Technical Report, vol. 17, no. 4, pp. 173–184, 2013.

[13] ——, “Analyses of two end-user software vulnerability exposure met-
rics,” in 2012 Seventh International Conference on Availability, Relia-
bility and Security. IEEE, 2012, pp. 1–10.

[14] I. V. Krsul, Software vulnerability analysis. Purdue University West
Lafayette, IN, 1998.

[15] K. Buyens, B. De Win, and W. Joosen, “Identifying and resolving least
privilege violations in software architectures,” in Availability, Reliability
and Security, 2009. ARES’09. International Conference on. IEEE, 2009,
pp. 232–239.

[16] P. K. Manadhata, D. K. Kaynar, and J. M. Wing, “A formal model for a
system’s attack surface,” CARNEGIE-MELLON UNIV PITTSBURGH
PA SCHOOL OF COMPUTER SCIENCE, Tech. Rep., 2007.

[17] M. Lindvall, R. T. Tvedt, and P. Costa, “An empirically-based process
for software architecture evaluation,” Empirical Software Engineering,
vol. 8, no. 1, pp. 83–108, 2003.

[18] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall, 2002.

[19] C. P. Pfleeger and S. L. Pfleeger, Security in computing. Prentice Hall
Professional Technical Reference, 2002.

[20] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Transactions on Software Engineering, no. 3, pp. 371–386, 2010.

[21] S. Sentilles, F. Ciccozzi, and E. Papatheocharous, “PROMOpedia: a web-
content management-based encyclopedia of software property models,”
in Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings. ACM, 2018, pp. 45–48.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 36

TABLE V: List of selected papers with their ID

pID Paper reference
p1 B. Alshammari, C. Fidge, and D. Corney, “A hierarchical security assessment model for object-oriented programs,” in Quality Soft-

ware(QSIC), 2011 11th International Conference on. IEEE, 2011, pp. 218227.
p15 Y. Shin and L. Williams, “An empirical model to predict security vulnerabilities using code complexity metrics,” inProceedings of the

Second ACM-IEEE international symposium on Empirical software engineering and measurement. ACM, 2008, pp. 315317.
p18 J. L. Wright, M. McQueen, and L. Wellman, “Analyses of two end-user software vulnerability exposure metrics (extended version),”

Information Security Technical Report, vol. 17, no. 4, pp. 173184, 2013
p22 M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software architecture security risk analysis using formalized signatures,” in

Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013, pp. 662671.
p25 Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating complexity, code churn, and developer activity metrics as indicators of

software vulnerabilities,” IEEE Transactions on Software Engineering,vol. 37, no. 6, pp. 772787, 2011.
p27 R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting with quantitative evaluation tools for monitoring operational security,” IEEE

Transactions on Software Engineering, no. 5, pp. 633650, 1999.
p37 P. Manadhata, J. Wing, M. Flynn, and M. McQueen, “Measuring the attack surfaces of two FTP daemons,” in Proceedings of the 2nd

ACMworkshop on Quality of protection. ACM, 2006, pp. 310.
p38 K. Buyens, R. Scandariato, and W. Joosen, “Measuring the interplay of security principles in software architectures,” in Proceedings of the

2009 3rd International Symposium on Empirical Software Engineering and Measurement. IEEE Computer Society, 2009, pp. 554563.
p43 V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software components with dependency graphs,” in Proceedings of the 6th

International Workshop on Security Measurements and Metrics. ACM, 2010, p. 3.
p47 J. Walden and M. Doyle, “Savi: Static-analysis vulnerability indicator,” IEEE Security & Privacy, no. 1, 2012.
p50 J. A. Wang, H. Wang, M. Guo, and M. Xia, “Security metrics for software systems,” in Proceedings of the 47th Annual Southeast Regional

Conference. ACM, 2009, p. 47.
p51 I. Chowdhury, B. Chan, and M. Zulkernine, “Security metrics for source code structures,” in Proceedings of the fourth international workshop

on Software engineering for secure systems. ACM, 2008, pp. 5764.
p53 J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of open source web applications,” in Empirical Software Engineering and

Measurement, 2009. ESEM 2009. 3rd International Symposium on.IEEE, 2009, pp. 545553
p59 M. Gegick, P. Rotella, and L. Williams, “Toward non-security failures as a predictor of security faults and failures,” in International

Symposium on Engineering Secure Software and Systems. Springer, 2009, pp. 135149.
p60 A. A. Younis, Y. K. Malaiya, and I. Ray, “Using attack surface entry points and reachability analysis to assess the risk of software

vulnerability exploitability,” in High-Assurance Systems Engineering (HASE),2014 IEEE 15th International Symposium on. IEEE, 2014,
pp. 18

p63 A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in Empirical Software Engineering and Measurement, 2013 ACM/IEEE International Symposium on.
IEEE,2013, pp. 6574.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 37

