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Abstract—To conduct empirical research on industry software 

development, it is necessary to obtain data of real software 

projects from industry. However, only few such industry data sets 

are publicly available; and unfortunately, most of them are very 

old. In addition, most of today’s software companies cannot make 

their data open, because software development involves many 

stakeholders, and thus, its data confidentiality must be strongly 

preserved. This paper proposes a method to artificially generate a 

“mimic” software project data set whose characteristics (such as 

average, standard deviation and correlation coefficients) are very 

similar to a given confidential data set. The proposed method uses 

the Box–Muller method for generating normally distributed 

random numbers, then, exponential transformation and number 

reordering are used for data mimicry. Instead of using the original 

(confidential) data set, researchers are expected to use the mimic 

data set to produce similar results as the original data set. To 

evaluate the usefulness of the proposed method, effort estimation 

models were built from an industry data set and its mimic data set. 

We confirmed that two models are very similar to each other, 

which suggests the usefulness of our proposal. 

Keywords— empirical software engineering, data confidentiality, 

software effort estimation, data mining 

I. INTRODUCTION 

In the research field of empirical software engineering, 
researchers demand for data of real software development 
projects from industry. However, only few industry data sets are 
publicly available. Also, these data sets are quite old, which 
becomes a great problem in ensuring the validity and reliability 
of the research. For example, tera-Promise repository [13] 
provides several industry data sets such as Desharnais [7], 
COCOMO '81 [4], Kemerer [9], Albrecht [1], but these data 
were recorded in the 1980's; thus, the development 
environments and processes may greatly differ from modern 
software development. In addition, the sample size is often very 
small, e.g. Kemerer has only 15 projects and Albrecht has only 
24 projects. Surprisingly, these old and small data sets are still 
actively used in recent research papers in top journals (e.g. 
[2][11][16]) due to lack of new industry data sets. 

Meanwhile, although many companies measure and 
accumulate data of recent software development projects, it 
becomes more and more difficult for university researchers to 

use them for the research because the legal compliance to 
various data protection regulations has become extremely 
important for todays’ companies. Moreover, since software 
development involves many stakeholders, their data 
confidentiality must be strongly preserved; thus, it became more 
difficult to take the data out of the company. In addition, 
although there are some studies performed using the latest 
software development data, only their analysis results are 
disclosed and the data itself is not disclosed. For example, the 
white paper on software development data in 2016-2017 [17] 
provides various analysis results of 4046 software development 
projects held in 31 Japanese software development companies; 
however, the data set itself is not disclosed. 

In this paper, to make it possible for academic researchers to 
use the confidential software project data set of a company, we 
propose a method to artificially create a mimic data set that has 
very similar characteristics to a given confidential data set. 
Instead of using the original (confidential) data set, researchers 
are expected to use the mimic data set to produce similar results 
as the original data set. For example, researchers can use the 
mimic data set for the purpose of evaluation of software effort 
estimation methods, because many industry data sets are 
required for the evaluation of the stability assessment of the 
methods [16]. Moreover, such a mimic data set is also useful to 
practitioners because many companies want to compare their 
software development performance (such as productivity and 
defect density) with other companies. 

As a basic idea of our proposal, we measure statistics of each 
variable as well as correlation coefficients between all pairs of 
variables in a confidential data set. Next, to produce a mimic 
variable, we use the Box–Muller method [5] for generating 
normally distributed random numbers; then, exponential 
transformation is applied to the generated values to mimic the 
value distribution of the original variable. After generating all 
mimic variables, number reordering is applied to the generated 
values to mimic the correlation coefficients between all pairs of 
original variables. 

Interestingly, our method can freely determine the number 
of data points to generate. For example, we could produce a data 
set of sample size n = 1000, which means 1000 projects, from 
an original data set with much smaller samples, e.g. n = 30. This 

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 38



also means that there is no one-to-one mapping of projects 
between the original data set and the mimic data set. Therefore, 
data privacy and confidentiality are effectively protected even if 
the mimic data set is made open. 

In contrast,  conventional data anonymizing methods for 
software engineering data employ data mutation techniques to 
gain data privacy [14][15]. Since data mutation keeps the one-
to-one mapping of data points between the anonymized data set 
and the original data set, threats of breaking the anonymity 
cannot be perfectly prevented. Moreover, since strong data 
mutation yields change of data characteristics, balancing privacy 
and utility is a big challenge in this approach [15]. On the other 
hand, our mimic data set is composed of randomly generated 
data points without keeping the one-to-one mapping to the 
original data set, data anonymization is much more effectively 
achieved. We believe that companies are more confident in 
using our method than using the data mutation to comply with 
various data protection regulations.  

To evaluate the utility of the proposed method, this paper 
presents a case study of producing a mimic data set from 
Deshanais data set [7], which is one of the most frequently used 
data sets in software effort estimation study [10]. In the case 
study, we built effort estimation models from both the original 
data set and the mimic data set to see whether we could obtain 
similar results from both data sets. 

 

II. RELATED WORK 

Peters et. al [14] proposed a data anonymization method 
called MORPH to solve privacy issues in software development 
organizations. They target defect prediction research and try to 
anonymize the defect data set that consists of various software 
metrics measured for each source file of a software product. 
They use data mutation techniques, which add small amount of 
changes to each value to make it difficult to identify a specific 
source file in a data set. They further propose a method called 
CLIFF, which allows to eliminate some data points that are not 
necessary for the defect prediction. Combining CLIFF with 
MORPH, they try to balance privacy and utility of defect data 
sets [15]. 

Since their approach is specially proposed for two group 
classification problem (i.e., distinguishing defect-prone files and 
not defect-prone files in a defect data set), it cannot be applied 
to general purpose data sets such as software project data sets 
that we target in this paper. In addition, since data mutation 
keeps the one-to-one mapping of data points between the 
anonymized data set and the original data set except for 
eliminated ones, threats of breaking the anonymity cannot be 
perfectly prevented. In contrast, we try to produce a completely 

artificial data set from given characteristics of a confidential data 
set. 

III. THE PROPOSED METHOD 

A. Basic Idea and Procedure 

In this paper, a confidential data set that needs to be kept 
secret is called a “source data set” or a simply “source data.” 
And, the artificially generated data to mimic the source data is 
called a “mimic data set” or “mimic data.” 

As source data, we target software project data sets. Table I 
shows a part of Desharnais data set [7], which is one of the 
commonly used software project data sets for effort estimation 
studies. In Table I, “PM” stands for “project manager” and “FP” 
stands for “function point.” Many software companies record 
similar data sets that consist of various project features. In this 
paper we assume that there is no missing value in a data set. 

Typically, software project data sets contain software size 
metrics such as Function Point (FP) and Source Lines of Code 
(SLOC), as well as the project length (often denoted as 
“duration”), and the development effort. It has been known that 
the probability distribution of these variables roughly follows 
log-normal distribution [10]. Therefore, this paper approximates 
the value distribution of quantitative variables by the log-normal 
distribution. 

After setting the number of cases n to be generated in the 
mimic data, the procedure to generate mimic data from source 
data is described as follows: 

 Step 1: For each ratio scale or interval scale variable in 
the source data, generate a set of artificial values whose 
distribution is similar to the source data. 

 Step 2: For each ordinal scale or nominal scale variable 
in the source data, generate a set of artificial values 
whose distribution is similar to the source data. 

 Step 3: For all variables in the mimic data, repeat 
swapping of values so that the correlation coefficient 
matrix of the mimic data becomes similar to that of the 
source data. 

In the next section, details of these steps are described. 

 

B. Step 1. Generation of Ratio/Interval Scale Variables 

This paper employs the Box–Muller method [5] to generate 
quantitative variables. The Box–Muller method, also called the 
Box-Muller transform, is an algorithm for generating a pairs of 
normally distributed random numbers N(μ, σ2) from given 
uniformly distributed random numbers. Its mathematical 
expression is as follows: 

TABLE I. AN EXAMPLE OF SOFTWARE PROJECT DATA SET (EXCERPT FROM DESHARNAIS DATA SET [7]) 

PM experience Team experience Language A FP Duration Effort (person-hours) 

1 1 0 140 5 2520 

7 4 0 113 13 1603 

3 1 1 291 8 3626 

3 1 1 67 10 1267 

4 0 0 99 6 546 

5 4 1 645 26 9100 
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𝑁1 = 𝜎√−2𝑙𝑜𝑔𝑅1𝑐𝑜𝑠2𝜋𝑅2 + 𝜇

𝑁2 = 𝜎√−2𝑙𝑜𝑔𝑅1𝑠𝑖𝑛2𝜋𝑅2 + 𝜇

where 𝑅1  and 𝑅2  are independent samples from the
uniformly distributed random numbers on the interval (0,1) . 
These  𝑅1  and 𝑅2  are easily generated in many programming
languages (e.g. by using rand() function in C language). N1 and 
N2 are independent random variables with a normal distribution. 
In this paper we use N1 only. 

 As mentioned above, we assume quantitative variables 
follow log-normal distribution. To generate log-normally 
distributed random numbers, we apply exponential 
transformation, which is inverse transformation of the 
logarithmic transformation, to values obtained by the Box-
Muller method. 

 As an example, Fig. 1 shows the value distribution of “effort” 
in Desharnais data set, which we consider as source data. Fig. 2 
shows its log-transformed value distribution. We see in Fig. 2 
that log-transformed effort values roughly follow the normal 
distribution. We can use the standard deviation σ and the mean 
value μ of Fig. 2 to generate the mimic data by the Box-Muller 
method. Fig. 3 shows the result of the Box-Muller method, 
which is the mimic data of Fig. 2. Finally, Fig. 4 shows the result 
of its exponential transformation, which is a mimic data of Fig. 
1. Although values in Fig. 4 are all artificially generated ones,
we see that Fig 4 well resembles Fig. 1. 

 In addition, by the following equation, we can directly obtain 
the standard deviation σ and the mean value μ of log-transformed 
source data from the standard deviation 𝜎′ and the mean value 
𝜇′ of original source data. 

𝜎2 = ln{1 + (𝜎′/𝜇′)2}

𝜇 = ln(𝜇′) − 𝜎2/2

 This means that, a company who own a (secret) source data 
only needs to provide 𝜎′  and 𝜇′  directly computed from the 
source data. 

C. Step 2. Generation of Ordinal/Nominal Scale Variables 

For each ordinal scale or nominal scale variable in the 

source data, we generate a set of artificial values so that the 

percentage of cases in each bin is same as the source data. For 

example, assuming that we have an ordinal scale variable 

“requirement clarity,” which has four ranks or bins (“1. very 

clear”, “2. clear”, “3. unclear”, “4. very unclear”). As also 

assume that the percentage of values belonging to these bins are 

20% for “1. very clear”, 25% for “2. clear”, 35% for “3. unclear” 

and 10% for “5. very unclear” respectively. Then, to generate a 

mimic data, we simply generate an artificial mimic sample 

whose percentage of cases in each bin is same as that of the 

source data. 

D. Step 3. Mimicking the Relationship among Variables 

For all pairs of variables in the source data, there may exists 

some sort of relationship. This paper captures such 

relationships via the correlation coefficient matrix of the source 

data; and, the proposed method tries to make the correlation 

coefficient matrix of the mimic data close to that of the source 

data. This can be done by swapping values within a variable, 

which does not break the value distribution of that variable. In 

this study, we assume there is some outliers in the source data; 

therefore, we decided to use Spearman’s rank correlation 

coefficient instead of the Pearson correlation coefficient to 

capture the relationships among variables. 

Fig. 1 Histogram of software development effort of Desharnais data 

set. 

Fig. 2 Histogram of log-transformed software development effort of 

Desharnais data set. 

Fig. 3 Histogram of mimic data of log-transformed software 

development effort of Desharnais data set. 

Fig. 4 Histogram of mimic data of software development effort 

of Desharnais data set. 
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We propose the following procedure to mimic the 

relationship among variables in source data. 

1. Compute the correlation coefficient matrix of the 

source data. 

2. Randomly select one variable in the mimic data. Then, 

randomly select two values from this variable, and 

swap them. 

3. If the correlation coefficient matrix of the mimic data 

becomes more similar to that of the source data, we 

consider that the value swapping is successful, and go 

back to Step 2. Otherwise, we consider that the 

swapping is unsuccessful, cancel swapping and go 

back to Step 2. To evaluate the similarity of the 

correlation coefficient matrices, we use the sum of 

squared differences (∑(𝑎𝑖 − 𝑏𝑖)
2 ) between the set of 

rank correlation coefficients of the mimic data and 

those of the source data. If the sum of squared 

differences becomes smaller after the swapping, then 

we consider that the correlation coefficient matrices 

get more similar. 

4. When the sum of squared differences converges, 

swapping is completed (i.e. stop repeating Step 2.) 

E. Rounding Off Generated Values 

This is an additional step to make the mimic data visually 

more similar to the source data. Since the values of quantitative 

variables are generated from random numbers, their significant 

figures are different from that of source data. For this reason, 

each value should be rounded off to an appropriate precision 

according to the significant figure of source data. For example, 

Function Point is an integer in source data, so it should be 

rounded off to integer. 

IV. CASE STUDY 

To evaluate the effectiveness of the proposed method, this 
section presents a case study to generate a mimic data from 
Desharnais data set [7]. In the case study, we built effort 
estimation models from both the source data and the mimic data 
to investigate their similarity. 

A. Source data set 

 The Desharnais data set is one of the most frequently used 
data sets in software effort estimation research [10]. It contains 
77 projects without missing values. This case study generated 
mimic data of same sample size (n=77.) Quantitative variables 
used in this paper are Duration, Transactions, Entities, 
PointsAdjust, and Effort. And, qualitative variables used are 
TeamExp, ManagerExp, and Lang. TeamExp and ManagerExp 
are ordinal scale variables, the TeamExp ranges from 0 to 4, and 
the ManagerExp ranges from 0 to 7. The variable Lang is 
divided into two binary variables Lang2 and Lang3. 

B. Characteristics of Generated Ratio/Interval Scale 

Variables 

The mean value, standard deviation, maximum value and 
minimum value of quantitative variables of source data and 
mimic data are shown in Table II and Table III respectively. 
Their relative differences are shown in Table IV. From these 
results, we see that the difference of mean value, standard 

deviation and minimum value between two data sets are very 
small, which indicates effectiveness of the proposed method. On 
the other hand, the maximum values are turned out to be not very 
similar. This is because source data contain outliers. Mimicking 
the outliers are our important future work. 

TABLE II. STATISTICS OF SOURCE DATA 

 Mean 

value 

Standard 

deviation 

Maximum 

value 

Minimum 

value 

Duration 11.299 6.742 36 1 

Transactions 177.468 145.129 886 9 

Entities 120.545 85.547 387 7 

PointsAdjust 298.013 181.076 1127 73 

Effort 4833.909 4160.9 23940 546 

 

TABLE III. STATISTICS OF MIMIC DATA 

 Mean value 
Standard 

deviation 

Maximum 

value 

Minimum 

value 

Duration 11.571 7.172 42 3 

Transactions 180.078 139.485 822 39 

Entities 123.208 91.018 534 29 

PointsAdjust 300.299 168.783 986 99 

Effort 4913.26 4246.176 25365 893 

 

TABLE IV. RELATIVE DIFFERENCE OF STATISTICS BETWEEN SOURCE 

DATA AND MIMIC DATA 

 Mean 

value 

Standard 

deviation 

Maximum 

value 

Minimum 

value 

Duration 0.024 0.06 0.143 0.667 

Transactions 0.014 0.04 0.078 0.769 

Entities 0.022 0.06 0.275 0.759 

PointsAdjust 0.008 0.073 0.143 0.263 

Effort 0.016 0.02 0.056 0.389 

 

 
Fig. 5.1 Histogram of Duration of source data. 

 
Fig. 5.2 Histogram of Duration of mimic data. 
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For more details of the generated variables, the distribution 
of source data and mimic data of the four quantitative variables 
are shown in Figure 5.1 to Figure 5.8. From these figures we can 
also visually see the similarity between two data sets. (For the 
variable “Effort”, we have already shown the histograms in Fig. 
1 and Fig. 4.) 

C. Rank Correlation Coefficient Matrix 

Fig. 6 shows the convergence of the sum of squared 
differences of rank correlation coefficients when increasing the 
number of updates (i.e. successful swapping) of variables. As 
shown in the figure, the sum squared differences becomes very 
close to zero (0.000069) as the number of updates increases. 

TABLE V. RANK CORRELATION COEFFICIENT MATRIX OF SOURCE DATA 

 TeamExp 
Manager

Exp 

Durati

on 

Transact

ions 
Entities 

PointsAdj

ust 

TeamExp 1.000       

ManagerExp 0.388  1.000      

Duration 0.365  0.233  1.000     

Transactions 0.087  0.109  0.382  1.000    

Entities 0.319  0.170  0.533  0.265  1.000   

PointsAdjust 0.266  0.190  0.592  0.744  0.778  1.000  

Lang2 -0.073  0.157  0.147  -0.129  0.045  -0.039  

Lang3 -0.075  0.180  -0.106  0.248  -0.120  0.077  

Effort 0.252  0.086  0.572  0.467  0.647  0.688  

 

 
Fig. 5.3 Histogram of Transactions of source data. 

 

Fig. 5.4 Histogram of Transactions of mimic data. 

 
Fig. 5.5 Histogram of Entities of source data. 

 

Fig. 5.6 Histogram of Entities of mimic data. 

 
Fig. 5.7 Histogram of PointsAdjust of source data. 

 

 

Fig. 5.8 Histogram of PointsAdjust of mimic data. 

 
Fig. 6 Convergence of the sum of squared differences of rank 

correlation coefficients. 

TABLE VI. RANK CORRELATION COEFFICIENT MATRIX OF MIMIC DATA 
 TeamExp Manager

Exp 

Durati

on 

Transac

tions 

Entities PointsAdj

ust 

TeamExp 1.000       

ManagerExp 0.389  1.000      

Duration 0.365  0.235  1.000     

Transactions 0.088  0.109  0.381  1.000    

Entities 0.319  0.170  0.532  0.265  1.000   

PointsAdjust 0.266  0.190  0.591  0.742  0.776  1.000  

Lang2 -0.071  0.165  0.146  -0.128  0.045  -0.039  

Lang3 -0.067  0.187  -0.106  0.248  -0.120  0.077  

Effort 0.252  0.086  0.572  0.466  0.647  0.690  
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A part of rank correlation coefficient matrix for each data set 
is shown in Table 5 and Table 6. From Table 5 and Table 6, we 
can see that the maximum of the difference is 0.008, which is 
sufficiently small. So it is considered that the relationship 
between any two variables is sufficiently reproduced. 

D. The Comparison of Predictive Model about Man-hour 

Assuming the effort estimation research using mimic data. 

we conduct log-log regression modeling on both source data 

and mimic data respectively, and investigate their similarity. 

The objective variable is “Effort” and other variables are 

predictor variables. The log-log regression model is a linear 

regression model with logarithmic transformation applied to 

both predictor variables and the objective variable before model 

construction. Kitchenham and Mendes [10] pointed out the 

necessity of logarithmic transformation to improve the 

prediction performance of effort estimation models. 

The result of log-log regression for source data and mimic 

data are shown in Table VII and Table VIII. From these tables, 

we see constant (intercept) and coefficients of predictor 

variables are similar. The R2 values of these models are 0.882 

for source data and 0.820 for mimic data, which are also similar. 

Looking at p-values, for some variable, p-value is not very 

similar. One of the possible reason is that outliers might 

affected the p-value. We need further investigation in our future 

study. Also, in future we will evaluate the prediction 

performance of the models. 

V. SUMMARY 

In this paper we proposed a method for artificially 

generating a mimic data set from a given (confidential) source 

data set. From a case study with a software project data set, our 

main findings are as follows. 

 The standard deviation and the mean value of

quantitative variables of mimic data are very similar to

that of source data.

 The rank correlation coefficient matrix of mimic data

is very similar to that of source data.

 Effort estimation models using log-log regression

modeling built from source data and mimic data are

similar in their coefficients.

In future, we will evaluate the prediction performance 

of the built models. Also, we will apply various data 

analysis techniques such as clustering and association rule 

mining for mimic data to evaluate the utility of the proposed 

method. In addition, we will try to improve our method by 

mimicking more aspects in source data, such as outliers, 

skewness and kurtosis of variables. 
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TABLE VIII. EFFORT ESTIMATION MODEL FOR MIMIC DATA 

Coefficient p-value

Intercept 1.502 0.000

TeamExp -0.020 0.329

ManagerExp 0.011 0.554

LOG(Length) 0.162 0.180

LOG(Transactions) 0.259 0.082

LOG(Entities) 0.217 0.159

LOG(PointsAdjust) 0.424 0.127

Lang2 -0.073 0.205

Lang3 -0.602 0.000

TABLE VII. EFFORT ESTIMATION MODEL FOR SOURCE DATA 

Coefficient p-value

Intercept 1.373 0.000

TeamExp -0.006 0.727

ManagerExp 0.010 0.550

LOG(Length) 0.254 0.016

LOG(Transactions) 0.204 0.127

LOG(Entities) 0.184 0.173

LOG(PointsAdjust) 0.504 0.046

Lang2 -0.065 0.195

Lang3 -0.604 0.000
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