
Generation of Mimic Software Project Data Sets

for Software Engineering Research

Maohua Gan

Graduate School of Natural

Science and Technology

Okayama University

Okayama, Japan
pa2i5772@s.okayama-u.ac.jp

Kentaro Sasaki

Previously at Faculty of

Engineering

Okayama University

Okayama, Japan
ken.default.0828@gmail.com

Akito Monden

Graduate School of Natural

Science and Technology

Okayama University

Okayama, Japan
monden@okayama-u.ac.jp

Zeynep Yucel

Graduate School of Natural

Science and Technology

Okayama University

Okayama, Japan
zeynep@okayama-u.ac.jp

Abstract—To conduct empirical research on industry software

development, it is necessary to obtain data of real software

projects from industry. However, only few such industry data sets

are publicly available; and unfortunately, most of them are very

old. In addition, most of today’s software companies cannot make

their data open, because software development involves many

stakeholders, and thus, its data confidentiality must be strongly

preserved. This paper proposes a method to artificially generate a

“mimic” software project data set whose characteristics (such as

average, standard deviation and correlation coefficients) are very

similar to a given confidential data set. The proposed method uses

the Box–Muller method for generating normally distributed

random numbers, then, exponential transformation and number

reordering are used for data mimicry. Instead of using the original

(confidential) data set, researchers are expected to use the mimic

data set to produce similar results as the original data set. To

evaluate the usefulness of the proposed method, effort estimation

models were built from an industry data set and its mimic data set.

We confirmed that two models are very similar to each other,

which suggests the usefulness of our proposal.

Keywords— empirical software engineering, data confidentiality,

software effort estimation, data mining

I. INTRODUCTION

In the research field of empirical software engineering,
researchers demand for data of real software development
projects from industry. However, only few industry data sets are
publicly available. Also, these data sets are quite old, which
becomes a great problem in ensuring the validity and reliability
of the research. For example, tera-Promise repository [13]
provides several industry data sets such as Desharnais [7],
COCOMO '81 [4], Kemerer [9], Albrecht [1], but these data
were recorded in the 1980's; thus, the development
environments and processes may greatly differ from modern
software development. In addition, the sample size is often very
small, e.g. Kemerer has only 15 projects and Albrecht has only
24 projects. Surprisingly, these old and small data sets are still
actively used in recent research papers in top journals (e.g.
[2][11][16]) due to lack of new industry data sets.

Meanwhile, although many companies measure and
accumulate data of recent software development projects, it
becomes more and more difficult for university researchers to

use them for the research because the legal compliance to
various data protection regulations has become extremely
important for todays’ companies. Moreover, since software
development involves many stakeholders, their data
confidentiality must be strongly preserved; thus, it became more
difficult to take the data out of the company. In addition,
although there are some studies performed using the latest
software development data, only their analysis results are
disclosed and the data itself is not disclosed. For example, the
white paper on software development data in 2016-2017 [17]
provides various analysis results of 4046 software development
projects held in 31 Japanese software development companies;
however, the data set itself is not disclosed.

In this paper, to make it possible for academic researchers to
use the confidential software project data set of a company, we
propose a method to artificially create a mimic data set that has
very similar characteristics to a given confidential data set.
Instead of using the original (confidential) data set, researchers
are expected to use the mimic data set to produce similar results
as the original data set. For example, researchers can use the
mimic data set for the purpose of evaluation of software effort
estimation methods, because many industry data sets are
required for the evaluation of the stability assessment of the
methods [16]. Moreover, such a mimic data set is also useful to
practitioners because many companies want to compare their
software development performance (such as productivity and
defect density) with other companies.

As a basic idea of our proposal, we measure statistics of each
variable as well as correlation coefficients between all pairs of
variables in a confidential data set. Next, to produce a mimic
variable, we use the Box–Muller method [5] for generating
normally distributed random numbers; then, exponential
transformation is applied to the generated values to mimic the
value distribution of the original variable. After generating all
mimic variables, number reordering is applied to the generated
values to mimic the correlation coefficients between all pairs of
original variables.

Interestingly, our method can freely determine the number
of data points to generate. For example, we could produce a data
set of sample size n = 1000, which means 1000 projects, from
an original data set with much smaller samples, e.g. n = 30. This

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 38

also means that there is no one-to-one mapping of projects
between the original data set and the mimic data set. Therefore,
data privacy and confidentiality are effectively protected even if
the mimic data set is made open.

In contrast, conventional data anonymizing methods for
software engineering data employ data mutation techniques to
gain data privacy [14][15]. Since data mutation keeps the one-
to-one mapping of data points between the anonymized data set
and the original data set, threats of breaking the anonymity
cannot be perfectly prevented. Moreover, since strong data
mutation yields change of data characteristics, balancing privacy
and utility is a big challenge in this approach [15]. On the other
hand, our mimic data set is composed of randomly generated
data points without keeping the one-to-one mapping to the
original data set, data anonymization is much more effectively
achieved. We believe that companies are more confident in
using our method than using the data mutation to comply with
various data protection regulations.

To evaluate the utility of the proposed method, this paper
presents a case study of producing a mimic data set from
Deshanais data set [7], which is one of the most frequently used
data sets in software effort estimation study [10]. In the case
study, we built effort estimation models from both the original
data set and the mimic data set to see whether we could obtain
similar results from both data sets.

II. RELATED WORK

Peters et. al [14] proposed a data anonymization method
called MORPH to solve privacy issues in software development
organizations. They target defect prediction research and try to
anonymize the defect data set that consists of various software
metrics measured for each source file of a software product.
They use data mutation techniques, which add small amount of
changes to each value to make it difficult to identify a specific
source file in a data set. They further propose a method called
CLIFF, which allows to eliminate some data points that are not
necessary for the defect prediction. Combining CLIFF with
MORPH, they try to balance privacy and utility of defect data
sets [15].

Since their approach is specially proposed for two group
classification problem (i.e., distinguishing defect-prone files and
not defect-prone files in a defect data set), it cannot be applied
to general purpose data sets such as software project data sets
that we target in this paper. In addition, since data mutation
keeps the one-to-one mapping of data points between the
anonymized data set and the original data set except for
eliminated ones, threats of breaking the anonymity cannot be
perfectly prevented. In contrast, we try to produce a completely

artificial data set from given characteristics of a confidential data
set.

III. THE PROPOSED METHOD

A. Basic Idea and Procedure

In this paper, a confidential data set that needs to be kept
secret is called a “source data set” or a simply “source data.”
And, the artificially generated data to mimic the source data is
called a “mimic data set” or “mimic data.”

As source data, we target software project data sets. Table I
shows a part of Desharnais data set [7], which is one of the
commonly used software project data sets for effort estimation
studies. In Table I, “PM” stands for “project manager” and “FP”
stands for “function point.” Many software companies record
similar data sets that consist of various project features. In this
paper we assume that there is no missing value in a data set.

Typically, software project data sets contain software size
metrics such as Function Point (FP) and Source Lines of Code
(SLOC), as well as the project length (often denoted as
“duration”), and the development effort. It has been known that
the probability distribution of these variables roughly follows
log-normal distribution [10]. Therefore, this paper approximates
the value distribution of quantitative variables by the log-normal
distribution.

After setting the number of cases n to be generated in the
mimic data, the procedure to generate mimic data from source
data is described as follows:

 Step 1: For each ratio scale or interval scale variable in
the source data, generate a set of artificial values whose
distribution is similar to the source data.

 Step 2: For each ordinal scale or nominal scale variable
in the source data, generate a set of artificial values
whose distribution is similar to the source data.

 Step 3: For all variables in the mimic data, repeat
swapping of values so that the correlation coefficient
matrix of the mimic data becomes similar to that of the
source data.

In the next section, details of these steps are described.

B. Step 1. Generation of Ratio/Interval Scale Variables

This paper employs the Box–Muller method [5] to generate
quantitative variables. The Box–Muller method, also called the
Box-Muller transform, is an algorithm for generating a pairs of
normally distributed random numbers N(μ, σ2) from given
uniformly distributed random numbers. Its mathematical
expression is as follows:

TABLE I. AN EXAMPLE OF SOFTWARE PROJECT DATA SET (EXCERPT FROM DESHARNAIS DATA SET [7])

PM experience Team experience Language A FP Duration Effort (person-hours)

1 1 0 140 5 2520

7 4 0 113 13 1603

3 1 1 291 8 3626

3 1 1 67 10 1267

4 0 0 99 6 546

5 4 1 645 26 9100

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 39

𝑁1 = 𝜎√−2𝑙𝑜𝑔𝑅1𝑐𝑜𝑠2𝜋𝑅2 + 𝜇

𝑁2 = 𝜎√−2𝑙𝑜𝑔𝑅1𝑠𝑖𝑛2𝜋𝑅2 + 𝜇

where 𝑅1 and 𝑅2 are independent samples from the
uniformly distributed random numbers on the interval (0,1) .
These 𝑅1 and 𝑅2 are easily generated in many programming
languages (e.g. by using rand() function in C language). N1 and
N2 are independent random variables with a normal distribution.
In this paper we use N1 only.

 As mentioned above, we assume quantitative variables
follow log-normal distribution. To generate log-normally
distributed random numbers, we apply exponential
transformation, which is inverse transformation of the
logarithmic transformation, to values obtained by the Box-
Muller method.

 As an example, Fig. 1 shows the value distribution of “effort”
in Desharnais data set, which we consider as source data. Fig. 2
shows its log-transformed value distribution. We see in Fig. 2
that log-transformed effort values roughly follow the normal
distribution. We can use the standard deviation σ and the mean
value μ of Fig. 2 to generate the mimic data by the Box-Muller
method. Fig. 3 shows the result of the Box-Muller method,
which is the mimic data of Fig. 2. Finally, Fig. 4 shows the result
of its exponential transformation, which is a mimic data of Fig.
1. Although values in Fig. 4 are all artificially generated ones,
we see that Fig 4 well resembles Fig. 1.

 In addition, by the following equation, we can directly obtain
the standard deviation σ and the mean value μ of log-transformed
source data from the standard deviation 𝜎′ and the mean value
𝜇′ of original source data.

𝜎2 = ln{1 + (𝜎′/𝜇′)2}

𝜇 = ln(𝜇′) − 𝜎2/2

 This means that, a company who own a (secret) source data
only needs to provide 𝜎′ and 𝜇′ directly computed from the
source data.

C. Step 2. Generation of Ordinal/Nominal Scale Variables

For each ordinal scale or nominal scale variable in the

source data, we generate a set of artificial values so that the

percentage of cases in each bin is same as the source data. For

example, assuming that we have an ordinal scale variable

“requirement clarity,” which has four ranks or bins (“1. very

clear”, “2. clear”, “3. unclear”, “4. very unclear”). As also

assume that the percentage of values belonging to these bins are

20% for “1. very clear”, 25% for “2. clear”, 35% for “3. unclear”

and 10% for “5. very unclear” respectively. Then, to generate a

mimic data, we simply generate an artificial mimic sample

whose percentage of cases in each bin is same as that of the

source data.

D. Step 3. Mimicking the Relationship among Variables

For all pairs of variables in the source data, there may exists

some sort of relationship. This paper captures such

relationships via the correlation coefficient matrix of the source

data; and, the proposed method tries to make the correlation

coefficient matrix of the mimic data close to that of the source

data. This can be done by swapping values within a variable,

which does not break the value distribution of that variable. In

this study, we assume there is some outliers in the source data;

therefore, we decided to use Spearman’s rank correlation

coefficient instead of the Pearson correlation coefficient to

capture the relationships among variables.

Fig. 1 Histogram of software development effort of Desharnais data

set.

Fig. 2 Histogram of log-transformed software development effort of

Desharnais data set.

Fig. 3 Histogram of mimic data of log-transformed software

development effort of Desharnais data set.

Fig. 4 Histogram of mimic data of software development effort

of Desharnais data set.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 40

We propose the following procedure to mimic the

relationship among variables in source data.

1. Compute the correlation coefficient matrix of the

source data.

2. Randomly select one variable in the mimic data. Then,

randomly select two values from this variable, and

swap them.

3. If the correlation coefficient matrix of the mimic data

becomes more similar to that of the source data, we

consider that the value swapping is successful, and go

back to Step 2. Otherwise, we consider that the

swapping is unsuccessful, cancel swapping and go

back to Step 2. To evaluate the similarity of the

correlation coefficient matrices, we use the sum of

squared differences (∑(𝑎𝑖 − 𝑏𝑖)
2) between the set of

rank correlation coefficients of the mimic data and

those of the source data. If the sum of squared

differences becomes smaller after the swapping, then

we consider that the correlation coefficient matrices

get more similar.

4. When the sum of squared differences converges,

swapping is completed (i.e. stop repeating Step 2.)

E. Rounding Off Generated Values

This is an additional step to make the mimic data visually

more similar to the source data. Since the values of quantitative

variables are generated from random numbers, their significant

figures are different from that of source data. For this reason,

each value should be rounded off to an appropriate precision

according to the significant figure of source data. For example,

Function Point is an integer in source data, so it should be

rounded off to integer.

IV. CASE STUDY

To evaluate the effectiveness of the proposed method, this
section presents a case study to generate a mimic data from
Desharnais data set [7]. In the case study, we built effort
estimation models from both the source data and the mimic data
to investigate their similarity.

A. Source data set

 The Desharnais data set is one of the most frequently used
data sets in software effort estimation research [10]. It contains
77 projects without missing values. This case study generated
mimic data of same sample size (n=77.) Quantitative variables
used in this paper are Duration, Transactions, Entities,
PointsAdjust, and Effort. And, qualitative variables used are
TeamExp, ManagerExp, and Lang. TeamExp and ManagerExp
are ordinal scale variables, the TeamExp ranges from 0 to 4, and
the ManagerExp ranges from 0 to 7. The variable Lang is
divided into two binary variables Lang2 and Lang3.

B. Characteristics of Generated Ratio/Interval Scale

Variables

The mean value, standard deviation, maximum value and
minimum value of quantitative variables of source data and
mimic data are shown in Table II and Table III respectively.
Their relative differences are shown in Table IV. From these
results, we see that the difference of mean value, standard

deviation and minimum value between two data sets are very
small, which indicates effectiveness of the proposed method. On
the other hand, the maximum values are turned out to be not very
similar. This is because source data contain outliers. Mimicking
the outliers are our important future work.

TABLE II. STATISTICS OF SOURCE DATA

 Mean

value

Standard

deviation

Maximum

value

Minimum

value

Duration 11.299 6.742 36 1

Transactions 177.468 145.129 886 9

Entities 120.545 85.547 387 7

PointsAdjust 298.013 181.076 1127 73

Effort 4833.909 4160.9 23940 546

TABLE III. STATISTICS OF MIMIC DATA

 Mean value
Standard

deviation

Maximum

value

Minimum

value

Duration 11.571 7.172 42 3

Transactions 180.078 139.485 822 39

Entities 123.208 91.018 534 29

PointsAdjust 300.299 168.783 986 99

Effort 4913.26 4246.176 25365 893

TABLE IV. RELATIVE DIFFERENCE OF STATISTICS BETWEEN SOURCE

DATA AND MIMIC DATA

 Mean

value

Standard

deviation

Maximum

value

Minimum

value

Duration 0.024 0.06 0.143 0.667

Transactions 0.014 0.04 0.078 0.769

Entities 0.022 0.06 0.275 0.759

PointsAdjust 0.008 0.073 0.143 0.263

Effort 0.016 0.02 0.056 0.389

Fig. 5.1 Histogram of Duration of source data.

Fig. 5.2 Histogram of Duration of mimic data.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 41

For more details of the generated variables, the distribution
of source data and mimic data of the four quantitative variables
are shown in Figure 5.1 to Figure 5.8. From these figures we can
also visually see the similarity between two data sets. (For the
variable “Effort”, we have already shown the histograms in Fig.
1 and Fig. 4.)

C. Rank Correlation Coefficient Matrix

Fig. 6 shows the convergence of the sum of squared
differences of rank correlation coefficients when increasing the
number of updates (i.e. successful swapping) of variables. As
shown in the figure, the sum squared differences becomes very
close to zero (0.000069) as the number of updates increases.

TABLE V. RANK CORRELATION COEFFICIENT MATRIX OF SOURCE DATA

 TeamExp
Manager

Exp

Durati

on

Transact

ions
Entities

PointsAdj

ust

TeamExp 1.000

ManagerExp 0.388 1.000

Duration 0.365 0.233 1.000

Transactions 0.087 0.109 0.382 1.000

Entities 0.319 0.170 0.533 0.265 1.000

PointsAdjust 0.266 0.190 0.592 0.744 0.778 1.000

Lang2 -0.073 0.157 0.147 -0.129 0.045 -0.039

Lang3 -0.075 0.180 -0.106 0.248 -0.120 0.077

Effort 0.252 0.086 0.572 0.467 0.647 0.688

Fig. 5.3 Histogram of Transactions of source data.

Fig. 5.4 Histogram of Transactions of mimic data.

Fig. 5.5 Histogram of Entities of source data.

Fig. 5.6 Histogram of Entities of mimic data.

Fig. 5.7 Histogram of PointsAdjust of source data.

Fig. 5.8 Histogram of PointsAdjust of mimic data.

Fig. 6 Convergence of the sum of squared differences of rank

correlation coefficients.

TABLE VI. RANK CORRELATION COEFFICIENT MATRIX OF MIMIC DATA
 TeamExp Manager

Exp

Durati

on

Transac

tions

Entities PointsAdj

ust

TeamExp 1.000

ManagerExp 0.389 1.000

Duration 0.365 0.235 1.000

Transactions 0.088 0.109 0.381 1.000

Entities 0.319 0.170 0.532 0.265 1.000

PointsAdjust 0.266 0.190 0.591 0.742 0.776 1.000

Lang2 -0.071 0.165 0.146 -0.128 0.045 -0.039

Lang3 -0.067 0.187 -0.106 0.248 -0.120 0.077

Effort 0.252 0.086 0.572 0.466 0.647 0.690

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 42

A part of rank correlation coefficient matrix for each data set
is shown in Table 5 and Table 6. From Table 5 and Table 6, we
can see that the maximum of the difference is 0.008, which is
sufficiently small. So it is considered that the relationship
between any two variables is sufficiently reproduced.

D. The Comparison of Predictive Model about Man-hour

Assuming the effort estimation research using mimic data.

we conduct log-log regression modeling on both source data

and mimic data respectively, and investigate their similarity.

The objective variable is “Effort” and other variables are

predictor variables. The log-log regression model is a linear

regression model with logarithmic transformation applied to

both predictor variables and the objective variable before model

construction. Kitchenham and Mendes [10] pointed out the

necessity of logarithmic transformation to improve the

prediction performance of effort estimation models.

The result of log-log regression for source data and mimic

data are shown in Table VII and Table VIII. From these tables,

we see constant (intercept) and coefficients of predictor

variables are similar. The R2 values of these models are 0.882

for source data and 0.820 for mimic data, which are also similar.

Looking at p-values, for some variable, p-value is not very

similar. One of the possible reason is that outliers might

affected the p-value. We need further investigation in our future

study. Also, in future we will evaluate the prediction

performance of the models.

V. SUMMARY

In this paper we proposed a method for artificially

generating a mimic data set from a given (confidential) source

data set. From a case study with a software project data set, our

main findings are as follows.

 The standard deviation and the mean value of

quantitative variables of mimic data are very similar to

that of source data.

 The rank correlation coefficient matrix of mimic data

is very similar to that of source data.

 Effort estimation models using log-log regression

modeling built from source data and mimic data are

similar in their coefficients.

In future, we will evaluate the prediction performance

of the built models. Also, we will apply various data

analysis techniques such as clustering and association rule

mining for mimic data to evaluate the utility of the proposed

method. In addition, we will try to improve our method by

mimicking more aspects in source data, such as outliers,

skewness and kurtosis of variables.

REFERENCES

[1] A. J. Albrecht, J. Gaffney, “Software function, source lines of code, and
development effort prediction,” IEEE Transactions on Software
Engineering, vol. 9, pp.639-648, 1983.

[2] M. Azzeh, M., “A replicated assessment and comparison of adaptation
techniques for analogy-based effort estimation,” Empirical Software
Engineering, vol.17, no.1-2, pp.90-127, 2012.

[3] B. Baskeles, B. Turhan, and A. Bener, “Software effort estimation using
machine learning methods,” Proc. 22nd International Symposium on
Computer and Information Sciences (ISCIS2007), pp.126-131, Dec. 2007.

[4] B. Boehm, “Software engineering economics,” Prentice-Hall, NY, 1981.

[5] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” The Annals of Mathematical Statistics, vol. 29, no. 2
pp. 610–611, 1958.

[6] L. Briand, T. Langley, and I. Wieczorrek, “A replicated assessment and
comparison of common software cost modeling techniques,” Proc. 22nd
International Conference on Software Engineering (ICSE2000), pp.377-
386, 2000.

[7] J.-M. Desharnais, “Analyse statistique de la productivitie des projects
informatique a partie de la technique des point des function,” Master’s
Thesis, University of Montreal, 1989.

[8] M. C. Jones, and A. Pewsey, “Sinh-arcsinh distributions,” Biometrika,
vol.96, no.4, pp.761-780, Dec. 2009.

[9] C. F. Kemerer, “An empirical validation of software cost estimation
models,” Communications of the ACM, vol. 30, no. 5, pp. 416-429, 1987.

[10] B. Kitchenham, and E. Mendes, “Why comparative effort prediction
studies may be invalid,” Proc. 5th International Conference on Predictor
Models in Software Engineering, Article no.4, May 2009.

[11] E. Kocaguneli, T. Menzies, J. Keung, “On the value of ensemble effort
estimation”, IEEE Transactions on Software Engineering, vol. 38, no. 6,
pp. 1403-1416, 2012.

[12] K. Maxwell, “Applied statistics for software managers,” Englewood
Cliffs, NJ, Prentice-Hall, 2002.

[13] T. Menzies, R. Krishna, and D. Pryor, “The promise repository of
empirical software engineering data,” http://openscience.us/repo, North
Carolina State University, Department of Computer Science, 2015.

[14] F. Peters and T. Menzies, “Privacy and utility for defect prediction:
experiments with MORPH,” Proc. International Conference on Software
Engineering, pp.189-199, 2012.

[15] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and
utility in cross-company defect prediction,” IEEE Transactions on
Software Engineering, vol. 39, no. 8, pp. 1054-1068, 2013.

[16] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, “A stability
assessment of solution adaptation techniques for analogy-based software
effort estimation,” Empirical Software Engineering, vol.22, no.1, pp.474-
504, 2017.

[17] Software Reliability Enhancement Center, Information-technology
Promotion Agency, “White paper on software development data in 2016-
2017,” SEC Books, 2016

TABLE VIII. EFFORT ESTIMATION MODEL FOR MIMIC DATA

Coefficient p-value

Intercept 1.502 0.000

TeamExp -0.020 0.329

ManagerExp 0.011 0.554

LOG(Length) 0.162 0.180

LOG(Transactions) 0.259 0.082

LOG(Entities) 0.217 0.159

LOG(PointsAdjust) 0.424 0.127

Lang2 -0.073 0.205

Lang3 -0.602 0.000

TABLE VII. EFFORT ESTIMATION MODEL FOR SOURCE DATA

Coefficient p-value

Intercept 1.373 0.000

TeamExp -0.006 0.727

ManagerExp 0.010 0.550

LOG(Length) 0.254 0.016

LOG(Transactions) 0.204 0.127

LOG(Entities) 0.184 0.173

LOG(PointsAdjust) 0.504 0.046

Lang2 -0.065 0.195

Lang3 -0.604 0.000

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 43

