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Abstract—In recent years, the maintenance period of the
software system is increasing. The size of the software system
has grown, and the number of classes and the relationship
between classes are also increasingly complicated. If we can
categorize software components based on information such as
functions and roles, we believe that these classified components
can be understood together, and are useful for understanding
the system. In this paper, we proposed a classification method
for software components based on similarity of use relation. For
each component, a set of components used by the component was
analyzed. And then, for each pair of components, the distance was
calculated from the coincidence of the two sets. A distance matrix
was created and components were classified by hierarchical
cluster analysis. We applied this method to jlGui consisting of
70 components. 8 clusters of 36 components were extracted from
the 70 components. Characteristics of the extracted clusters were
evaluated, and the content of each cluster was introduced as a
case study. In 7 clusters out of the 8 clusters, components of the
cluster were strongly similar with each other from the viewpoint
of their functions. Through these experiments, we confirmed that
our method is effective for classifying components of the target
software, and is useful for understanding them.

Index Terms—component, use-relations, hierarchical cluster
analysis

I. INTRODUCTION

In recent years, the maintenance period of the software
system has increased, by also experiencing the entry of new
developers. In order to participate in the maintenance of such
a software system, it is the first important task to become ac-
customed to the environment surrounding the software system
[1], and it is necessary to understand the configuration of the
target software. In the process of understanding, the developer
first understands the diagram and documents representing the
composition of the software and then reads the source code of
each component of the software in order to grasp the details
of each subsystem and the overall image.

In reading the source code, the developer browses the source
code of another component one by one on an editor or a
source code browser like SPARS-J [2], by referring to the
package hierarchy and the name of another class appearing in
the source code, and so on. In this way, the source codes
of a lot of components are read strategically in order to
understand efficiently. In fact, when the developer encounters a
component similar to the components the developer confirmed
once, it often happens that reworking occurs in order to

remember its functions and role. This type of rework needs
time, however, it makes their understanding deeper. However,
as the number of files and classes increases through a long
period of maintenance, the frequency of the rework in under-
standing increases, and the content to be understood becomes
also complicated. The effort required for understanding the
internal structure by developers participating later will be
much greater than the effort expected by the original developer.
By analyzing the source code by the statement unit, a lot
of methods for extracting code clone [3], extracting coding-
pattern [4], and extracting coding-rule [5] have been proposed.
As the scale of the software system increases, the relationship
between statements becomes complicated, and the analysis
cost gradually increases, so we would like to propose a method
with a coarser granularity, based on the anlysis by the class
unit.

In the evaluation experiment for the component retrieval
system SPARS-J [2], it was effective to guide the component
to be browsed next based on its use relationships, and it was
popular among developers. If we can categorize software com-
ponents based on their functions and roles by obtaining infor-
mation from analysis of use-relationships, we can understand
these classified components together and this classification
would be useful for understanding the target software. For
example, when realizing a specific feature, it is often necessary
to use certain components together. We compare use-relations
of two components (-A, -B), that means components that
component-A uses and components that component-B uses are
compared. In the case where there are many common compo-
nents in the two component set, we consider that component-A
and -B are supposed to implement the same specific function
or very similar function. We think that understanding of these
components can be performed efficiently by also considering
components that are commonly used by these components. By
being able to understand efficiently, we believe that developers
devote much effort to other work and can carry out with high
quality. As a result, we think it can improve productivity and
quality of maintenance.

In this paper, we proposed a classification method for
software components based on similarity of use relation. In
this method, for each component, a set of components used
by the component was analyzed. And then, for each pair of
components, the distance between the two components was
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calculated from the coincidence of the two sets. In this way,
a distance matrix of the target software components was cre-
ated and software components were classified by hierarchical
cluster analysis.

We implemented a prototype for the proposed method, and
its analysis target is a software system described in Java. The
prototype system treats the Java source files as a component
and excludes components defined outside the software, such
as components in libraries. Our system generates a distance
matrix from the analysis result of Classycle’s analyzer [6], and
hierarchical cluster analysis is executed by R. We conducted
two evaluation experiments. In the first experiment, we applied
it to the actual software system of open source project and
evaluated the similarity of the components in the obtained
cluster from several viewpoints. As a result, many of the
components in the cluster showed strong similarity in terms of
their functionality, and more than half of similar components
were joined as clusters. In the second experiment, we intro-
duced how the components in the clusters were combined, as
a case study. Some clusters were composed of a collection
of components that have a simple structure and a simple use
relationship, and some clusters were composed of a collection
of components that realize multiple functions by using several
other components. In the case study, knowing the components
commonly used by the components in the cluster was effective
in understanding the contents of the components in the cluster.
Through these experiments, we introduce that the obtained
clusters have sufficient accuracy to be used for software
understanding, and our method is effective to classify and
understand the components of the target software.

The main contributions of our research are as follows:
• We have hypothesized that “When two components use

many common components, these two components are
implemented for the same or similar purpose”, and con-
firmed it by experiment.

• We showed that the proposed method can combine most
of the functionally related components as clusters.

• We showed that the obtained clusters have sufficient
accuracy for software understanding, and our method is
effective to classify and understand the components of
the target software.

• We showed that the components in the cluster could be
used as examples when adding new components that use
the same components.

Section II introduces the component graph as a background.
Section III introduces our method and implementation. Section
IV conducts two experiments. Finally, Section V discusses the
results and improved ways and introduces related works.

II. BACKGROUND

A. Component Graph and Use Relation between Components

In general, a component is a modular part of a system that
encapsulates its content and whose manifestation is replace-
able within its environment [7]. We model software systems
by using a weighted directed graph, called a Component

Graph [2]. In the component graph (V,E) , a node v ∈ V
represents a software component, and a directed edge exy ∈ E
from node x to y represents a use relation meaning that
component x uses component y. This use relation indicates
that a component realizes its own function by utilizing features
of other components. If you need to understand how features
in a particular component are specifically implemented, you
can use use-relations to understand which parts of the software
you need to reference together.

B. Classification methods using metrics that represent the
characteristics of software components

For a lot of components extracted from multiple software
systems, Kobori suggested a method for extracting the same
or similar components as the target components [8]. In this
method, metrics representing the characteristics of software
components are obtained from the source code of each compo-
nent. These metrics are the number of methods and the number
of tokens that represent the scale of the component, and
the cyclomatic complexity that represents the complexity of
control structure of the component, and so on. In the method,
components that have the same or similar values in these
metrics are extracted. Through experiments, they showed that
extracted components are mainly copied components or copied
and modified components from the original ones. This method
is a method assumed for using in the software component
retrieval system. In the software component retrieval system,
it collects a lot of software system. The method could help to
extract the almost identical (copied or copied and modified)
components across a lot of software systems. Our method is to
classify components in one software system, based on the fact
that components are using a lot of common components. The
purpose of our method is to obtain a set of components using
similar functions and to obtain a set of components whose role
and features in the software are similar.

III. PROPOSED METHOD

When implementing a feature in a new component, we also
use the features realized by other existing components as nec-
essary. From this, it can be considered that which components
are used by a certain component can also be information for
estimating the features realized in the component. In some
cases, when using a certain feature, it is necessary to use
some other components together. In such a case, there is
a commonality in the set of using components among the
components that use the feature. Based on the fact that the
using components are similar, we thought that these compo-
nents are similar in function and role. Therefore, we make a
hypothesis that “When two components use many common
components, these two components are implemented for the
same or similar purpose”, and confirm it by experiments. We
propose a method for classifying components based on the
commonality of components that are used by the components.
We thought that this method can extract several components
groups that are recognizable as collections of components that
are similar in function or role. Through evaluation experiments
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to an open source project, we introduce characteristics of the
obtained component groups and components in the obtained
component groups have a strong relationship.

A. Implementation of the analysis tool

We implemented a classification tool for Java source files of
a target software system. The system constructs a component
graph for Java source files of the target software system and
produces a distance matrix used by the hierarchical cluster
analysis on R. For extracting use relations, we used Classycle’s
analyzer [6], that is an analyzing tool for java class and pack-
age dependencies. In the analysis of the Classycle’s analyzer,
we get the following as use relations: inheritance of class,
declaration of variables, a creation of instances, method calls,
and reference of fields, and inner classes and use relations
about inner classes are merged into the major class in the
Java source files. Figure 1 is an overview of the system, and
the following is the analysis procedure:
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Fig. 1. Overview of the Proposed Method

1. Classycle’s analyzer [6] provides the use relations of
the target system.

2. Build a component graph based on the use-relations.
3. For each component, a set of components used by

the component is obtained from the graph.
4. For each pair of components, a distance between

the two components is calculated from a degree of
coincidence of the two sets. A distance matrix for
the target software components is produced.

5. By using the distance matrix, hierarchical cluster
analysis is performed on R.

6. The dendrogram is obtained by R. We decide a
threshold value and clusters under the threshold value
are recognized as groups of similar components.

B. Distance between two Components

Consider two components A and B. LA represents a set of
components that are used by A, and LB represents a set of
components that are used by B, respectively.

At first, we define the similarity of components A and B
sim(LA, LB) by using the Jaccard coefficient.

sim(LA, LB) =
|LA ∩ LB|
|LA ∪ LB|

This value has a range of 0 to 1, and the higher this value,
the more likely that LA and LB are similar. And then, we
define the distance of components A and B dist(LA, LB) as
following; (For representation, the distance was 10 timed, and
it does not have other special meaning.)

dist(LA, LB) = (1− sim(LA, LB)) ∗ 10

C. About Linkage Criterion for Hierarchical Clustering

In the hierarchical clustering, there are candidates to com-
pute the distance for a cluster consists of multiple objects, so
the user needs to decide on the linkage criterion to use. For
our study, we decided to use the linkage criterions provided by
R, since it was intended to create a prototype of an analytical
environment. The linkage criterions are roughly divided into
two methods: methods to recalculate a distance directly from
distances of multiple objects, such as a single linkage, a
complete linkage, and UPGMA, and methods to recalculate
a distance from the center or the center of gravity of the
cluster, such as Ward, and centroid method. From them, we
decided to use the former methods. In general clustering, it is
considered that the latter methods can be utilized because a set
of vectors is used as input and hierarchical clustering is done
by calculating the distance between vectors. However, in our
analysis, only the distances between components are given as
input, so it is meaningless to consider the center of the cluster.

We introduce three types of results, based on the single link-
age method, the complete linkage method, and the UPGMA, as
a preliminary experiment, and examine which linkage criterion
should be used. The target system is GoGui that is a graphical
interface program for playing Go and is composed of 181
Java source files. Figure 2 is a dendrogram of the hierarchical
clustering using the single linkage method. In the case of the
single linkage method, if a component has a similarity to any
component in the cluster, the component is also merged into
the cluster. So a very large cluster is easily formed, however,
similarities between components in a cluster would not be
strong. Figure 3 is a dendrogram of the hierarchical clustering
using the complete linkage method. In the case of the complete
linkage method, a component is merged into the cluster only
if the component has similarities with all components in the
cluster. A lot of small clusters are formed, however, similarities
between components in each cluster would be strong.

Figure 4 is a dendrogram of the hierarchical clustering using
the UPGMA. We can confirm a lot of small clusters as in
the case of Figure 3, and we can also confirm that these
clusters are merged into a large cluster as in the case of Figure
2. In this way, the dendrogram obtained by UPGMA is a
balanced result. By adjusting a threshold height for getting
clusters, we can obtain very similar clusters obtained by the
other two approaches. In this study, we use the UPGMA as a
linkage criterion in the hierarchical clustering. The problem of
deciding the threshold height for getting cluster is considered
to be a problem to be tackled in the future, and we will show
how the results change by the upper or lower thresholds in
the experiments. As another linkage criterion, we can also
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Fig. 2. A Dendrogram of GoGui Components (SLM)

Fig. 3. A Dendrogram of GoGui Components (CLM)

consider a method to recalculate a group of using components
for each cluster and recalculate the distance between clusters.
This also would be a problem to be tackled in the future,
however, we consider that it contributes to the improvement
of accuracy and the overall trend does not change significantly.

IV. EXPERIMENTS

For the experiments, we applied our method to jlGui Ver.3.0.
It is a graphical music player which supports Java Sound
capabilities and consists of 70 Java source files. We obtained
a dendrogram of hierarchical clustering using UPGMA. By
showing the results of the following two experiments, it is
shown that the obtained clusters were composed of compo-
nents with strong similarity.

1 Can we say that the components in the resulting
cluster are strongly related components?
Initially, we prepared several situations that we can
imagine when the roles and objectives of the com-
ponents are similar. Considering some conditions
that similar components satisfy, we treated them as
criteria to show similarity. For each criterion, we
examined how many components in the cluster meets
the criteria. It corresponded to the accuracy. Then,
we examined how many similar components exist
outside the cluster. It corresponded to the recall.

2 What kind of clusters have been obtained?
For some clusters, we introduced the collection of
components in the clusters and the role of each

Fig. 4. A Dendrogram of GoGui Components (UPGMA)

component, as a case study. We will show the results
classified by our method were realistic ones.

A. About Criterion for similarity

At first, we prepared several situations that we can imagine
when the roles and objectives of the components are similar.

1) Many of the components that have common process-
ing to achieve similar functionality are derived from
the same class or implement the same interface. The
processing performed by these components and the
APIs provided by them is often quite similar. These
components share similar code fragments, so they would
be comprehensible at once.

2) Components that realize different objectives for the same
target should be considered as a group associated with
the target. Common processing would be performed
as pre- or post-processing. So these components share
similar code fragments and would be comprehensible at
once to understand how to use the target.

3) Components that are considered to realize a large fea-
ture are also considered as a functional group when
observing from a vantage point. The targets of these
components are often slightly different, but it is possible
to verify the relationship between them. These compo-
nents will help you to get a rough understanding of what
features are provided for a particular element.

4) If the same design pattern is deployed in multiple
locations in a software system, you can see that there
are multiple components that have a specific role on the
design pattern in the software. We believe that using the
same design pattern has a common intention, so these
components are considered to be comprehensible to
understand a part of software design. In addition, these
components sometimes share similar code fragments to
perform the common processing.

In such cases, we thought that the components used by
these components had a commonality. Besides, the similarity
of components may be confirmed by the similarity of package
classification and their names. Based on those, seven criteria
were set to confirm that the two components are similar, and
they were used for calculating the precision and the recall.

C1 The two components were derived from the same
class or implemented the same interface.
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C2 The two components belonged to the same package.
C3 The two components used the same word as a part

of the name.
C4 The two components shared similar code fragments.
C5 When comparing the components used by the two

components, the proportion of matching components
was over 50%.

C6 The two components were thought to constitute a
part of a specific functional group.

C7 There were several methods with the same signature
in the two components．

B. About precision and recall

In order to calculate the precision, we randomly extracted a
component from each cluster and treated it as component A.
Next, at the given criterion, components related to component
A were searched from the components in the cluster. We
calculated the number of related components in the cluster
divided by the number of components in the cluster and we
regarded it as the precision for the criteria. If there is no related
component without component A, it is represented by ×.

The recall was calculated only for items where related
components existed. At the given criteria, components related
to component A were searched from all components in the
software. We calculated the number of related components
in the cluster divided by the number of related components
in the software and we regarded it as the recall for the
criteria. If there were no related components in the cluster
without component A, we express it by ×. For both cases, the
component A was also counted for the number of components.

C. Experiment 1 : Can we say that the components in the
resulting cluster are strongly related components?

1) Overview: For 70 jlGui components, we performed
the hierarchical clustering based on UPGMA. Figure 5 is a
dendrogram of the analysis, and we cut the dendrogram by a
red line on Figure 5 and got the eight sets of components
joining under the red line as clusters. These clusters were
numbered as shown in Figure 5, and we investigated the
precision and recall for each criterion for each cluster.

TABLE I
THE PRECISION FOR JLGUI CLUSTERS

NC C1 C2 C3 C4 C5 C6 C7
#1 5 4/5 4/5 4/5 × 5/5 5/5 4/5
#2 4 4/4 4/4 4/4 3/4 4/4 4/4 4/4
#3 9 4/9 7/9 7/9 × 7/9 6/9 8/9
#4 4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
#5 5 4/5 5/5 5/5 3/5 5/5 5/5 5/5
#6 3 3/3 × 3/3 3/3 3/3 3/3 3/3
#7 4 × 2/4 2/4 × 4/4 3/4 ×
#8 2 × × × × × × ×

The Table I is a summary of the precision. For each cluster,
the table shows the number of components in the cluster
(NC) and the precision for each criterion, represented by
the number of similar components in the cluster and the

number of components in the cluster. In cluster #1-#7, the
high percentage was shown on most criteria, and you can
confirm strong relationships among components in the clusters.
For these components, the structure, location, and origin of
the name were very similar and provides similar methods,
so these components can be recognized as functional groups.
Some of these components shared similar code fragments,
others do not. In experiment 2, we detailed the contents of
these clusters. On the other hand, we could not confirm any
strong relationship between the components in cluster #8.
The cluster #8 consisted of two components, one was the
delegation component for the music playlist and the other was
the component to search music files. Since the two components
used the Playlist and Playlistitem in common, there was
a common point that the two components manipulate the
playlist. However, we could not confirm any relevance other
than that.

TABLE II
RECALL FOR JLGUI CLUSTERS

NC C1 C2 C3 C4 C5 C6 C7
#1 5 4/4 4/6 4/5 × 5/5 5/5 4/5
#2 4 4/5 4/7 4/7 3/8 4/8 4/7 4/7
#3 9 4/8 7/21 7/10 × 7/12 6/10 8/10
#4 4 4/8 4/10 4/10 4/4 4/10 4/9 4/13
#5 5 4/8 5/10 5/10 3/3 5/10 5/9 5/13
#6 3 3/8 × 3/5 3/7 3/6 3/5 3/3
#7 4 × 2/4 2/6 × 4/17 3/7 ×
#8 2 × × × × × × ×

Next, the Table I is a summary of the recall for each criterion
for each cluster. For each cluster, the table shows the number
of components in the cluster (NC) and the recall for each
criterion, represented by the number of similar components
in the cluster and the number of similar components in the
software. From the result, we confirmed that most of the
related components were collected into clusters #1. Clusters
#4 and #5 seemed to be integrated because the correct set of
components were almost identical for them. Approximately
half of the related components were collected into clusters #2,
#3 and #6. There was no big difference between the criteria,
and the overall trend was high. Overall, we found that many
of the components considered to be similar were included in
the clusters. However, as in the case of #7 and #8, there were
cases where no strong association was found.

D. Experiment 2 : What kind of clusters have been obtained?

As a case study, we will explain components in the cluster
#1-#7 of the Figure 5. First, we introduced the components
obtained by the red lines in the Figure 5, and explained about
components that were commonly used. We also introduced
which components were newly added when moving the line
upward. Through these introductions, we will show that the
results classified by this method are realistic.

1) Cluster #1: 5 components: Four of the five components
were components such as OggVorbisInfo, which handled
information for several compression types, such as Ogg Voris,
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Fig. 5. A Dendrogram for jlGui (UPGMA)

Mpeg, Flac, APE etc. and these were derived from TagInfo.
The fifth component was EmptyDialog. This also used Tag-
Info, and was a part of the dialog related components. These
five components were clustered because they used TagInfo
in common. And any other components were not used in
common. If you move the red line upward, Playlistitem
representing each playlist item will be joined to the cluster.

2) Cluster #2: 4 components: Four components were com-
ponents such as OggVorbisDialog, which handled dialogs for
several compression types, such as Ogg Voris, Mpeg, Flac,
APE etc. and these were derived from TagInfoDialog, and
used a corresponding component in Cluster #1. These four
components were clustered because they used TagInfoDialog
in common. And any other components were not used in
common. If you move the red line upward, TagInfoFactory,
that was a factory class for TagInfo and TagInfoDialog joined
to the cluster #2, and finally, cluster #1 and #2 were integrated.

3) Cluster #3: 9 components: Nine components were sev-
eral types of GUI components, such as icons, bars, sliders,
popups, buttons, and so on. These components were derived
from the swing components in the standard library for GUI.
These components were clustered because they used Absolute-
Constraints in common. And any other components were not
used in common. AbsoluteConstraints was a component for
managing information about size and position on the screen.
There were 15 components using AbsoluteConstraints, and
they were scattered across Cluster #3, #6 and #8. If you
move the red line upward, ActiveJLabel joined the cluster
#3 because it also used AbsoluteConstraints.

4) Cluster #4: 4 components: Four components were com-
ponents like VisualizationPreference, which handled the pref-
erences of some items. These components were derived from
PreferenceItem, and these components were clustered be-
cause these components used PreferenceItem. And any other

components were not used in common. If you move the red
line upward, cluster #4 and #5 were integrated. Components in
Cluster #4 only used PreferenceItem, not other components.

5) Cluster #5: 5 components: As in the case of cluster #4,
five components were components like Preferences, which
handled the preferences. These components were also derived
from PreferenceItem, and these components were clustered
because these components used PreferenceItem. And any
other components were not used in common. If you move
the red line upward, cluster #4 and #5 were integrated.
Components in Cluster #5 used PreferenceItem and several
other components and this was a difference.

6) Cluster #6: 3 components: Three components were
components that realized user interfaces, such as PlayerUI,
PlaylistUI and EqualizerUI. These components were clus-
tered because these components used 8-10 GUI components in
common, including Loader, Skin and components in Cluster
#3. If you move the red line upward, Skin and Standalone-
Player joined to the cluster #6, because these components
managed a core feature using several GUI components.

7) Cluster #7: 4 components: First, BasePlaylist and
PlaylistFactory joined the cluster #7. These two components
used PlayList and Config, and realized playlist-related fea-
tures. After that, SkinLoader and FileUtil joined the cluster
#7. The latter two components didn’t use PlayList, however,
they used Config and other classes in common. If you move
the red line upward, components using Config joined to the
cluster. There were 15 components using Config, which were
scattered across Cluster #5, #6 and #7.

In this way, most of the components in the cluster were
functionally related components, and these components were
divided into two large categories. The components of the first
category had a simple structure and a simple use-relation and
realized a single function by derivation. The purpose of these

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 64



components was consistent with the purpose of commonly
used components. The components of the second category
used several components and realized multiple functions. The
purposes of the commonly used components were integrated
and it becomes the purposes of the components. When we have
to realize another screen for the software, these components
might be useful as examples. In this way, understanding the
commonly-using components was essential to understand the
roles of the components in the cluster.

Table III lists the jlGui components in order of the number
of components that use the component. Most of the compo-
nents in the list were mentioned in our case study, so we
thought the classification result was appropriate as a whole.

TABLE III
THE NUMBER OF COMPONENTS USING EACH JLGUI COMPONENT

Components Used by
javazoom.jlgui.player.amp.skin.AbsoluteConstraints 15

javazoom.jlgui.player.amp.util.Config 15
javazoom.jlgui.player.amp.PlayerUI 10

javazoom.jlgui.player.amp.tag.TagInfo 10
javazoom.jlgui.player.amp.util.ui.PreferenceItem 9
javazoom.jlgui.player.amp.tag.ui.TagInfoDialog 7

javazoom.jlgui.player.amp.playlist.Playlist 6
javazoom.jlgui.player.amp.playlist.PlaylistItem 6

javazoom.jlgui.player.amp.skin.Skin 6

V. CONSIDERATION

A. Evaluation of Experiments

We classified jlGui components based on the similarity of
the components used by each component and confirmed that
many of the components in the obtained clusters showed strong
relationships with each other. It is effective to understand the
role of the components in the cluster based on the role of
commonly used components and this approach is effective as
a systematic method to efficiently understand the inside of the
software. As in the situation that components using Absolute-
Constraints distributed in several clusters, components that
use the same components may spread across multiple clusters.
In that case, we think that the use-relations may be different
depending on the role difference, so these components are
classified into different clusters.

However, there are cases where the roles of commonly
used components do not directly indicate the role of the
components, and the roles of commonly used components are
ambiguous. There seem to be some useless cases in this way,
but we consider that our method is effective as a whole.

B. Refining Approaches for the Proposed Method

In the case of jlGui, there were about 20 components which
did not use any classes in jlGui, and these were not classified.
In the maximum case, about 30% to 50% of the components
may not be classified. Some components were realized by not
using components in jlGui but using only library components.
So the number of classified components would be increased
if we also consider use relations to the external components.

Classification would be affected by how use-relations to the
external components are treated in the calculation of similarity.
So we would like to confirm whether consideration of external
components is effective or not, and propose a refined method.

Moreover, for Cluster #1 and #2, and for #4 and #5, an
integrated cluster may be appropriate categorization when we
consider functional groups in a broad sense. In some cases,
the result would be improved by moving the threshold height
up and increasing the size of the cluster. On the other hand,
in other cases, the result would be improved by moving the
threshold height down and selecting components carefully. We
would like to confirm the appropriate threshold trend.

C. Usages of the Proposed Method

First of all, as a method of using the proposed method, we
would like to use it as a method for the efficient grasp of
components and inside of the software. Next, we also believe
that some contributions can be made to maintenance work. For
example, we consider that it can also be used for checking for
omissions of correction in maintenance work. As a method
of assisting such checking work, you may use the commit
history or similar code fragments, and we expect the same
effect as those. Moreover, we think that it is effective to
suggest components with similar use-relationships, as refer-
ence examples, when adding new components to implement
additional features in maintenance. Finally, we consider that
our method supplies a good viewpoint to express the software’s
evolutionary process. By comparing the dendrograms of each
version in the middle of development, you can grasp which
part of the software is growing and can grasp the direction of
evolution and take countermeasures for it.

D. Comparison with Other Existing Methods

Currently, a comparison is not done as an experiment, and
comparison with existing classification method is a problem
to be tackled in future. In the feeling of calculating the
recalls of Experiment 1, our method seems to perform better
classification within the scope of analysis between classes,
compared to the result of classification based on package
hierarchy and based on similar code fragments. In the case
of package-based classification, classification is done with a
larger granularity, so a certain package contains several types
of components. Our method can classify them components
based on their purposes. In the case of code clone-based
analysis, as the modification after copying increases, a similar
code fragment becomes a gaped clone and it becomes difficult
to grasp. Descriptions using other classes remain at the root,
so the method is often highly resistant to modification.

E. Threats to Validity

In this study, we applied our method to only one software
system, so it is necessary to discuss generalization by applying
to various software systems. The main concern is whether the
same tendencies can be confirmed in other domain software
and whether similar tendencies can be confirmed in different
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software systems of different sizes. The purposes of compo-
nents in one software system are considered consistent, so it
may have derived good results. In order to work well, a certain
degree of commonality is required for target components, so it
might not work well if the target of the analysis was multiple
software systems. In this regard, the classifications may be
effective if components generated by a certain product line
were analyzed. There is a possibility that the approach of the
class definition in Java and our classification method have
successfully engaged. Whether our method works well for
software written in other programming languages is unknown.

F. Related Works

From the viewpoint of use-relation analysis, architecture
recovery is an active research field. Zhang represented the
object-oriented system using a class graph and proposed a
clustering algorithm to restore the high-level software archi-
tecture [9]. Constantinou represented the hierarchical relation-
ships between components as a D-layer and examined the
relationship between the architecture layer and the design
metrics [10]. Kula et al. proposed the Software Universe Graph
(SUG) Model as a structured abstraction of the evolution of
software systems and their library dependencies over time
and demonstrated its usefulness by showing several views of
visualizations [11].

There are many studies to extract patterns from the call
history of API on the source code. Zhong at el. proposed a
system to extract call sequences of API from open source
software’s repositories [4], and showed that the system is
useful for learning how to use the library’s API. Li at el.
proposed a system to extract function call sequences from
C codes as programming rules, and the system provided a
mechanism for detecting a portion that violates the rules [5].
Our method differs from these methods in that the granularity
of our analysis is between components. We believe that it
can extract informative information even in component-based
approach.

As a method to extract similar code fragments, developers
can use code clone analysis. Mondal analyzed the stability of
several kinds of cloned codes, and they reported that Type3
clones, known as gapped clones, have higher stability than
other clones [12]. Antoniol analyzed the evolution of code
duplications in 19 versions of the Linux kernel [13]. Yoshida
et al. proposed an approach to support clone refactoring based
on code dependency among code clones [14].

VI. CONCLUSION

In this paper, we proposed a classification method for
software components based on similarity of use relation.
For each pair of components, the distance was calculated
from the coincidence of their using components, and the
hierarchical clustering is performed based on the distances.
From the result of experiments, we confirmed that many
components of the cluster were strongly similar with each
other from the viewpoint of their functions, and the purpose
of commonly used components greatly helps to understand

the role of components in the cluster. We confirmed that our
method is effective for classifying components, and is useful
for understanding them. For future works, we would like to
compare properties with other classification methods including
stochastic block model, confirm its generality, and improve
accuracy. Moreover, we would like to realize supporting tools
for software understanding and for maintenance activities.
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