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Abstract. Current approaches to identifying drug-drug interactions (DDIs),
which involve clinical evaluation of drugs and post-marketing surveil-
lance, are unable to provide complete, accurate information, nor do they
alert the public to potentially dangerous DDIs before the drugs reach the
market. Predicting potential drug-drug interaction helps reduce unan-
ticipated drug interactions and drug development costs and optimizes
the drug design process. Many bioinformatics databases have begun to
present their data as Linked Open Data (LOD), a graph data model,
using Semantic Web technologies. The knowledge graphs provide a pow-
erful model for defining the data, in addition to making it possible to
use underlying graph structure for extraction of meaningful information.
In this work, we have applied Knowledge Graph (KG) Embedding ap-
proaches to extract feature vector representation of drugs using LOD to
predict potential drug-drug interactions. We have investigated the effect
of different embedding methods on the DDI prediction and showed that
the knowledge embeddings are powerful predictors and comparable to
current state-of-the-art methods for inferring new DDIs. We have ap-
plied Logistic Regression, Naive Bayes and Random Forest on Drugbank
KG with the 10-fold traditional cross validation (CV) using RDF2Vec,
TransE and TransD. RDF2Vec with uniform weighting surpass other
embedding methods.
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1 Introduction

Adverse Drug Events (ADEs) are a significant threat to public health. A study
by [14] estimates 6.7% of hospitalized patients experience serious adverse drug
effects with fatality rate 0.32% in the USA. In 2014, 807,270 cases of serious
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ADEs were reported in the United States, resulting in 123,927 lost lives 3 . ADEs
present a financial burden to the healthcare system due to the costs of further
hospitalization, morbidity, mortality, and health-care utilization. The majority
of adverse drug effects are caused by unintended drug-drug interactions (DDIs),
which occasionally arise through co-prescription of a drug with other drug(s)
[2]. Patient groups such as elderly patients and cancer patients are more likely
to take multiple drugs simultaneously, which increases their risk of DDIs [20,
9]. Current approaches to identifying DDIs, which involve clinical evaluation of
drugs and post-marketing surveillance, are unable to provide complete, accu-
rate information, nor do they alert the public to potentially dangerous DDIs
before the drugs reach the market [19]. Predicting potential drug-drug interac-
tion helps reduce unanticipated drug interactions and drug development costs
and optimizes the drug design process. Thus, there is clear need for automated
methods for detecting drug-drug interactions.

In recent years, biological data and knowledge bases have been increasingly
built on Semantic Web technologies and knowledge graphs are used for informa-
tion retrieval, data integration, and federation. Many bioinformatics databases
have begun to present their data as Linked Open Data (LOD), a graph data
model, using Semantic Web technologies [22, 13]. The knowledge graphs pro-
vide a powerful model for defining the data, in addition to making it possible
to use underlying graph structure for extraction of meaningful information. In
this work, we have applied Knowledge Graph Embedding approaches to extract
feature vector representation of drugs using DrugBank LOD from Bio2RDF to
predict potential drug-drug interactions. This study also aims to investigate the
effect of different embedding methods and linked data sources on the DDI pre-
diction task.

Researchers have used various approaches and data sources to predict novel
drug interactions [19]. These approaches include extracting DDI statements from
medical texts and drug event reports [27], inferring DDI mechanism [17] by in-
tegration knowledge from several sources and using network proximities [5]. The
machine learning based approaches have commonly used pharmacological simi-
larities of drugs as features [6]. Gottlieb et al. [10], by using different drug similar-
ity metrics, developed a new prediction framework called INDI. INDI trained a
logistic classifier using 7 similarities, also using them to calculate their maximum
likelihood by using known drug-drug interactions. Cheng et al. [7] presented the
HNAI framework for predicting drug interactions using phenotypic, therapeutic,
structural, and genomic similarities of drugs. Cami et al. [5] have trained a lo-
gistic classifier by extracting the pharmacological and graph/network qualities
between drugs. Zhang et al. [25] used a label propagation method on drug chem-
ical infrastructure, drug side effect and drug off-side effects. Li et al. [15] have
developed a Bayesian network that combines drug molecular similarity and drug
phenotypic (side effect) similarity to predict the combination effect of drugs.
Zhang et al. [26] collects a variety of drug data and thus predicts drug-drug

3 https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance
/AdverseDrugEffects/ucm070461.htm



Graph Embeddings for DDI prediction 3

interactions by integrating chemical, biological, phenotypic and network data.
Abdelaziz et al. [1] presented Tiresias, a similarity-based framework for predict-
ing DDIs. They used 1,014 features derived from pharmacological similarities
and from drug text and similarity based on the Knowledge Graph embeddings
(TransE and HolE). Each feature represents the similarity value of the known
interacting drug pair to the most similar drug pair.

This work differs from other previous machine learning based approaches in
the following aspects: i) Many existing methods have used similarities of drugs
based on the properties such as targets, side-effects, fingerprint and indications
[10, 26, 23, 7]. Each similarity is used as a feature for a binary classifier, but
there is a limited number of these features. In the proposed approach a drug
is characterized with a feature vector large enough to increase the classifier’s
predictive power. It is possible to use these feature vectors in other drug-related
machine learning tasks (e.g. drug-target, drug-adverse effect). ii) We are able
to make predictions for the drugs that have missing or inadequate information.
Owing to linked open data, the presence of an entity (drug) is sufficient to enable
embedding vectors for machine learning to be extracted. Most drugs and hence
DDIs could be included in the training set with this intention, enabling deep
learning models to be used. Similarity-based approaches, in contrast, do not
allow for the calculation of various similarities for many drugs due to lack of
drug information.

We used Knowledge Graph Embedding-based drug vectors to train vari-
ous classifiers for DDI prediction. Our results show that performance of drug
vector representation is comparable to the existing pharmacological similarity-
based DDI prediction methods. The AUC score of 0.93 and F-Score of 0.86 were
achieved based on ten cross-validations with the vector representations of drugs
for the Drugbank dataset. Finally, we make our work open and freely available
so that others can use or extend this methodology 4.

2 Materials and Method

2.1 Materials

Drugbank v5.0 [24] contains 288,856 distinct pairwise DDIs spanning 2,551
drugs. We were able to extract features for 2,124 drugs of these 2,551, filter-
ing out the drugs that have no calculated feature vector. Thus, the number of
DDIs was reduced to 253,449 .

2.2 Method

The steps of our RDF Graph Embedding based DDI prediction methodology are
shown in Figure 1. The first step is to construct knowledge graph data in RDF
format. And then as second step, the feature vector of drugs is extracted using
the knowledge graph by applying different Graph Embedding approaches namely

4 https://github.com/rcelebi/GraphEmbedding4DDI/
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RDF2VEC, TransE and TranD. The last step is to predict drug interactions
using extracted feature vectors by applying three different classifiers: Logistic
Regression (LR), Naive Bayes (NB) and Random Forest (RF).

Fig. 1. Overview of our methodology.

Knowledge Graph Construc-
tion We used an already linked
open biological dataset, Bio2RDF [4],
as background knowledge to extract
drug features. Bio2RDF is an open-
source project that integrates nu-
merous Life Sciences databases avail-
able on different websites, providing
a data integration service for sci-
entific researchers. Bio2RDF created
a large RDF graph that interlinks
data from major biological databases
related to biological entities such
as drug, protein, pathway and dis-
ease. In this study, Drugbank dataset
within Bio2RDF project release 4.0
was used as the background knowl-
edge graph after removing the drug-
drug interaction information (’drug-
bank vocabulary:ddi-interactor-in’ re-
lations). The number of triples, enti-
ties and relation types in the Drug-
bank dataset are 2,588,933, 574,152
and 76 respectively.

Feature Vector Extraction We
have tested multiple successful ap-
proaches for knowledge graph embed-
dings to generate vector representa-
tion of drugs from graphs such as
RDF2Vec [21], TransE [3] and TransD
[12]. To represent feature vector of
a drug pair, we concatenated embed-
ding vectors of each drug in the pair.
These approaches are explained in de-
tail in the following subsections.

– RDF2Vec
RDF2Vec is a recently published methodology that adapts the language
modeling approach of word2Vec [16] to RDF Graph Embeddings. Word2Vec
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trains a neural network model to learn vector representation of words, called
word embeddings. It maps each word to a vector of latent numerical val-
ues in which semantically and syntactically closer words will appear closer
in the vector space. The hypothesis which underlies this approach is that
closer words in word sequence are statistically more dependent. RDF2Vec
applies a similar approach to RDF Graph, considering the entities and rela-
tions between entities by converting the graph into set of sequences (walks or
paths) and training the neural network model to learn vector representation
of entities from the RDF graph.

Graph Walks
G (V, E) is a graph with V nodes and E edges. The random walk algorithm
was used to generate Pv paths at depth d starting at each vertex v in V.
At first iteration, the algorithm traverses the direct outgoing edges of a root
vertex (vr), then randomly exploring the connected edges through visited
vertices until d iterations is reached . The union of all the Pvr walks, starting
from all entities (vr) in the knowledge network were used as a set of sequences
to train artificial neural network models.
By biasing the walks, we could capture more meaningful information and
therefore better representation of entities. To do this, each edge is assigned
a weight and the walks will follow an edge with a probability based on
its weight in selection method similar to roulette wheel selection. In their
study, Cochez et al. [8] discussed three successful weighting strategies for
RDF2Vec; Uniform, PageRank[18], PageRank split. Uniform weight is the
standard approach taken by RDF2Vec where each edge has equal probabil-
ity to be followed. PageRank weighting assigns or splits (divides) PageRank
score of a node to its incoming edges.

Neural Network Training
Each word (entity) is trained to maximize its log probability according to
the context words within the fixed-size window. Each word in the vocabu-
lary is represented by two vectors; input and output vectors. While learning
the input vectors is cheap, learning the output vectors is very expensive.
Approximation techniques such as hierarchical softmax and negative sam-
pling have been developed for efficient training. Word2vec introduces two
architectures to obtain vector embedding representation of words: Continu-
ous Bag-of-Words (CBOW) and Skip-Gram.

Continuous Bag-of-Words Model
The CBOW model is a two-layer artificial neural network model that predicts
a target word using context words in near proximity. Given word sequence
w1, w2, w3, .., wT , CBOW tries to maximize the average log probability of
the target word as follows:

1

T

T∑
t=1

logp(wt|wt−c + · · ·+ wt+c) (1)
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where c is the context window and p defined as :

p(wt|wt−c + · · ·+ wt+c) =
exp(vT v′wt

)∑V
w=1 exp(vT v′w)

(2)

where v′w is output vector of word w, V is the complete vocabulary of words
and v is the averaged input vector of all the context words.

Skip-Gram Model

While CBOW predicts the word given the context, the Skip-gram predicts
the context of the given word. It tries to find useful word representations
to predict the words around the target word in a training document or
sentences. Given word sequence w1, w2, w3, .., wT and context window size c,
Skip-gram maximizes the average log probability as follows:

1

T

T∑
t=1

∑
−c≤j≤c,j=0

logp(wt+j |wt) (3)

where p is defined using softmax function as follows:

p(wt+j |wi) =
exp(v′

T
wt+j

vwt)∑V
w=1 exp(v′Twk

vwt
)

(4)

where vw and vw are the input and the output vector of the word w, and V
is the complete vocabulary of words.

– TransE

TransE embeds every entity and relation in the knowledge graph (KG) into
low-dimensional vectors where the relations are represented as translation
from head entity to tail entity. For a triple (h, r, t) in KB, the embedding
head h is close to the embedding tail t by adding the embedding relation
r, that is h + r ≈ t. A vector representation of every entity and relation
in the KG could be computed by learning a neural network model, which
minimizes difference between its head entity and its tail entity in embedding
space. TransE is convenient for modeling one-to-one relations, but is insuffi-
cient for one-to-many, many-to-one and many-to-many relations.

– TransD

In TransD, each entity or relation is defined by two vectors; one being the
embedding vector of an entity or a relation, the other the projection vector.
The projection vector represents the way to project an entity vector into
a relation vector space to be used to construct mapping matrices. Every
entity-relation pair has a unique mapping matrix. Thus, it can handle one-
to-many, many-to-one and many-to-many relations. In addition, TransD has
no matrix-by-vector operations which can be replaced by vectors operations.
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Prediction and Evaluation

– Data balance: For DDI prediction using supervised machine learning, a
binary classifier needs negative and positive example sets. In previous studies
the negative set typically was chosen randomly from unknown interactions.
Alternatively, the set of all unknown interactions could be designated as the
negative set, but designating all unknown interactions as the negative set
creates a data balance issue, influencing performance metrics (such as AUPR
and F1-score). Other studies accounted for this issue through a random
undersampling from these unknown interactions at a ratio corresponding to
the positive set [7], or inferring negatives by clustering [11]. In this study,
the negative samples were taken from unknown drug pairs in sample size
equivalent to the positive samples.

– Evaluation Metrics: While many studies use the AUC score in compu-
tational prediction for drug-drug interactions, some studies [1, 11] have em-
phasized that this score is insufficiently accurate, therefore metrics such as
AUPR and F1 score are viable alternatives. We used the evaluation metrics
including AUC, F1 score and AUPR to accurately measure the performance
of our classifiers.

– Parameters: We combined the generated walks to be used as input to
RDF2Vec where the graph walk parameters are depth = 1,2,3,4 and walks
per entity = 250. And we trained the word2vec model using CBOW and
SG neural network architectures with the following parameters; window size
= 5, number of iterations = 5, negative samples = 25 and dimension =
100. The size of each drug vector is 100. Thus, the classifiers used 200
features for prediction of DDIs. The default parameters given by OpenKE
(openke.thunlp.org) were used for TransE and TransD models. Logistic Re-
gression (LR), Naive Bayes (NB) and Random Forest (RF) were trained
using Scikit-learn machine learning package. The parameters used for build-
ing the classifiers are as follows; C=0.01 for LR, Gaussian version for NB
and number of estimators = 200 for RF.

3 Results

We first performed the experiments applying Logistic Regression, Naive Bayes
and Random Forest on Drugbank KG with ten repetitions of 10-fold traditional
cross validation (CV) using three well known knowledge graph embedding meth-
ods, namely RDF2Vec, TransE and TransD. The results of the experiments are
shown in Table 1. RDF2Vec using uniform weight strategy has performed bet-
ter than the other graph walks generation methods and embedding methods.
RDFVec uniform-weight embedding vectors using Skip-Gram Neural Network
achieved the best performance values. The best AUC value obtained is 0.932
and the best F-Score value is 0.860 using Random Forest learning algorithm.

Comparison with the state-of-art methods: In spite of the high number
of methods which have been proposed for DDI prediction, their results have had
insufficient basis for comparison because of the differing terms of their datasets
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Table 1. AUC and F-score values for Drugbank Knowledge Graph using different
embedding methods

Embedding Method AUC F-score
NB LR RF NB LR RF

RDF2Vec Uniform CBOW 0.703 0.787 0.927 0.640 0.715 0.853
SG 0.739 0.799 0.932 0.683 0.730 0.860

PageRank CBOW 0.625 0.682 0.891 0.495 0.622 0.815
SG 0.642 0.695 0.893 0.621 0.634 0.816

PageRank Split CBOW 0.618 0.676 0.893 0.548 0.619 0.817
SG 0.636 0.706 0.894 0.635 0.644 0.817

TransE 0.734 0.763 0.912 0.686 0.700 0.835

TransD 0.714 0.738 0.914 0.676 0.679 0.836

(known DDIs) and evaluation methodologies of the studies. The most noteworthy
of these studies is the Tiresias framework [1], which uses both pharmacological
similarities and similarities from embedding features. Tiresias has reported an
F-score of 0.851 and AUPR of 0.919, all features included, as their best results
and an F-score of 0.813 and AUPR of 0.887 with only pharmacological similarity
features (equivalent performance with INDI [10]) using Drugbank version 4.0.
Our embedding using the same DDI dataset with similar settings achieved a high
F-score of 0.867 and AUPR of 0.918. It shows that the proposed embedding based
method is comparable to current state-of-the-art methods.

4 Conclusion

To the best of our knowledge, this study used the largest DDI dataset (the
number of known DDIs is 253,449) available to be used as input for our machine
learning models. Our methodology enabled us to extract features for a large
number of samples which is essential for deep learning methods to be applied.
Previous studies used much lesser known DDI samples (≈ 40− 50K).

We have applied Logistic Regression, Naive Bayes and Random Forest on
Drugbank KG with the 10-fold traditional cross validation (CV) using RDF2Vec,
TransE and TransD. RDF2Vec with uniform weighting surpass other embedding
methods.

In this study, knowledge graph embedding feature vectors were used to pre-
dict the potential DDIs. We have investigated the effect of different embedding
methods on the DDI prediction. We showed that the knowledge embeddings
are powerful predictors and comparable to current state-of-the-art methods for
inferring new DDIs. One limitation of our method is that it does not provide
the mechanistic explanations for predicted potential DDIs since the embedding
features were constructed using a black-box model (neural network). Through
the integration with Electronic Health Record (EHR) system, the predictions
made by our approach could be valuable to the system, as it would prevent co-
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prescription of potentially hazardous interacting drugs. Consideration of these
predictions would also be helpful to the design large-scale clinical trials.
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