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Abstract. In this paper, we present an algorithm for fuzzy graph clustering called Equidistant Nodes 

Clustering (ENC). In the core of the algorithm there is an assumption that the nodes in a community can reach 
each other within a limited number of steps. We describe the algorithm and apply it to a natural language 
processing task of synset induction. The experimental results show that ENC outperforms popular clustering 
algorithms as according to a gold standard evaluation. 
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1 Introduction 
The problem of graph clustering arises from social 
network analysis, natural language processing, 
bioinformatics, etc. Given an undirected graph 𝐺𝐺 =
(𝑉𝑉, 𝐸𝐸), a clustering algorithm outputs a covering for the 
set of nodes 𝑉𝑉 that reasonably groups the nodes into 
communities or clusters. 

A vast diversity of the application-specific 
requirements for the cluster structure urges the 
development of scalable clustering algorithms for 
extremely large and complex graphs. In particular, we 
focus on the soft clustering of graph in which the clusters 
may overlap. This is very useful for handling such 
phenomena as protein-protein interactions [9], lexical 
ambiguity [10], etc. The contribution of this paper is 
ENC, a new graph-based algorithm for soft clustering. 
Also, we evaluate ENC on a synset induction. Our gold 
standard-based experiments show that ENC outperforms 
or performs on par with popular graph clustering 
algorithms. In some papers, soft clustering is also 
referred to as fuzzy clustering; these terms are synonyms. 

The rest of the paper is organized as follows. 
Section 2 surveys the related work. Section 3 describes 
ENC, a soft graph clustering algorithm that uses the 
equidistant node finding approach. Section 4 shows the 
experimental setup and compares ENC to other 
clustering algorithms on the synset induction task. 
Section 5 concludes the paper with the final remarks. 

2 Related Work 
Perhaps, the most well-known soft graph clustering 
algorithm is the clique percolation method (CPM) [9]. 
CPM finds communities (or clusters) with the biggest 
sizes which consist of fixed-sized adjacent cliques. In 
terms of CPM, two cliques are considered adjacent if 

they share (𝑛𝑛 − 1) nodes, where 𝑛𝑛 is number of nodes in 
the clique. This algorithm is well-known in 
bioinformatics and social network analysis; for most 
real-world tasks the value of 𝑛𝑛 is usually 2, 3 or 4. 

MaxMax [6] is a non-parametric graph clustering 
algorithm that outputs overlapping clusters designed 
especially for word sense induction problems. This 
algorithm constructs an intermediate representation of 
the input undirected graph as a directed graph according 
to the maximal affinity of the adjacent nodes. Then, it 
extracts quasi-strongly connected subgraphs from the 
intermediate graph. 

WATSET is a state-of-the-art overlapping community 
detection meta-algorithm [10]. Like MaxMax, it is 
designed especially for addressing the word sense 
induction task. WATSET internally uses non-overlapping 
community detection algorithms like Markov clustering 
(MCL) [4] and Chinese Whispers (CW) [1] by building 
and clustering an intermediate sparser undirected graph 
representation. 

3 Equidistant Node Finding for Fuzzy 
Graph Clustering 

In the core of the proposed algorithm, Equidistant 
Nodes Clustering (ENC), there is an assumption that the 
nodes inside clusters have stronger connectivity between 
each other than outside the clusters. As opposed to 
Blondel et al. [2] who treat connectivity of nodes in 
cluster as the ratio between number of edges falling 
inside the cluster and number of edges that crossing the 
cluster border, we consider connectivity in close 
connection with the length of the shortest path between 
the nodes in a cluster (the shorter the path, the stronger 
the connectivity between nodes). Therefore, clusters of 
nodes can be seen as 𝑘𝑘-cliques (a clique in which the 
distance between every pair of nodes does not exceed k 
hops). Such type of cluster structure is chosen to 
distinguish groups of nodes with short pairwise path 
length from all other nodes in networks. Hence, we put 
forward the following assumption: a subset of nodes is a 
cluster if every pair of nodes is reachable within a limited 
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predefined number of steps. 
The idea of ENC can be illustrated using the word 

synonymy data from the English Wiktionary on Fig. 1. A 
synonymy graph is an undirected graph which nodes are 
lexical units (words); a pair of nodes is connected by an 
edge iff these words are synonyms. Due to the data 
sparsity, some edges are missing, e.g., an edge between 
the words “make” and “build”, or an edge between the 
words “produce” and “assemble”. However, sets of 
words from Fig. 1 can be treated in terms of 𝑘𝑘-cliques 
with 𝑘𝑘 = 2. It means that each word pair in this set is 
connected by one edge {make, construct} or two edges 
{produce, engender}, {engender, assemble}. 

 
Figure 1. An example of graph with a cluster of 
synonyms (synset) 

In this formulation, cluster overlap is possible due to 
node sharing between several equidistant node sets 
(Fig. 2). In this case, clusters of words indicated by nodes 
incident to edges with same color. As seen, the word 
“break” falls into three different clusters simultaneously: 
two of them are cliques and one is 𝑘𝑘-clique with 𝑘𝑘 = 2. 
We design our algorithm, ENC, in order to detect such 
fuzzy 𝑘𝑘-cliques. Considering the task of synset 
induction, we assume that 𝑘𝑘 = 2. 

 
Figure 2 Example of fuzzy clusters 

3.1 Overview of the ENC Algorithm 

The ENC algorithm has four steps. At the first step, we 
extract all the regions of interest from the graph, i.e., two-
hops neighborhood for each node in the graph. Such a 
neighborhood size is chosen to consider all possible 𝑘𝑘-

cliques involving corresponding node. This is crucial for 
the reduction the problem size by not considering the 
non-informative parts of the graph (outside of two-hops 
neighborhood for corresponding node), which is useful 
in processing very large graphs. Aforementioned regions 
of interest will be used in subsequent steps to extract 𝑘𝑘-
cliques. 

At the second step, we extract all the 𝑘𝑘-cliques from 
each ego network (i.e., node and all its two hops 
neighborhood). In order to do this, it is possible to reduce 
task of finding 𝑘𝑘-cliques to the well-known task of 
finding simple cliques [3] by topology modification of 
each initial ego network. This topology modification 
implies reducing all two-hops paths to single hop paths 
by applying transitive closure procedure. After that, 
cliques that we have in transitive closure-based graph is 
at the same time 𝑘𝑘-cliques in corresponding ego network. 
At this point, we have a large number of 𝑘𝑘-cliques with 
small structural differences in the adjacent ego networks 
since these ego networks can share most of its nodes. 

At the third step, we rank all the 𝑘𝑘-cliques by 
mapping them to a real number. Given a 𝑘𝑘-clique С and 
a ranking function in general form as 𝑓𝑓 ∶ С → ℝ, we 
denote as 𝛼𝛼 ∈ ℝ the score of the 𝑘𝑘-clique. In particular, 
𝑓𝑓 assesses whether the 𝑘𝑘-clique looks like synset or not, 
and its output 𝛼𝛼 number is “degree” of such similarity. 
There are a number of ways to determine 𝑓𝑓 depending on 
what type of clusters the algorithm should detect. 
Considering the task of synset induction, we chose the 
following options for determining 𝑓𝑓 function (the list is 
not limited by the following functions and may be 
augmented in further research): 
• Average edge weight in 𝑘𝑘-clique (in this case 𝑘𝑘-

cliques with higher values of average edge weights 
are more likely to be synsets). According to the synset 
induction task, edge weight corresponds to the 
strength of connection between different nodes. 
Hence, the higher edge weight is, the more similar 
two nodes are. We refer to this implementation of 
function 𝑓𝑓 as rank_w in the results section. 

• Transitivity of 𝑘𝑘-clique (relative number of triangles 
in 𝑘𝑘-clique). It shows how dense is corresponding 𝑘𝑘-
clique. The denser graph is, the higher values of 
transitivity it has. We refer to this function as rank_t. 

• Density of 𝑘𝑘-clique (ratio of the number of edges 
in 𝑘𝑘-clique to total number of possible edges). 
Actually, it is another way to assess how dense graph 
is. We refer to this function as rank_d. 

• Also we test some combinations of aforementioned 
metrics like multiplication of average edge weight to 
transitivity coefficient (rank_wt) and multiplication 
of average edge weight to graph density (rank_wd). 
The reason of considering these combinations is 
because we believe that 𝑘𝑘-cliques both with higher 
values of edge weights and dense inner structure have 
much more probability to be “successful” synset 
candidates. 

Last thing on this step is sorting all 𝑘𝑘-cliques by its  𝛼𝛼 
value in decreasing order, thus, obtaining list of 𝑘𝑘-cliques 
sorted by its likelihood to be a proper community. 
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At the fourth step, we successively map the 𝑘𝑘-cliques 
from the sorted list to the topology of the input graph 
according to its 𝛼𝛼 value. It means that we take the 𝑘𝑘-
clique with highest 𝛼𝛼 value from the list. Then, we mark 
all the nodes in the input graph that correspond nodes in 
selected 𝑘𝑘-cliques with id of that clique. Then we take 
next 𝑘𝑘-clique (according to its 𝛼𝛼 value) and mark 
corresponding nodes in the input graph again. At some 
point, there may be a situation when nodes in selected 𝑘𝑘-
clique has already been marked with another clique ids 
in one of the previous steps (i.e., different 𝑘𝑘-cliques are 
overlapped). It is important to consider the overlapping 
degree (number of nodes in 𝑘𝑘-clique that marked by 
other 𝑘𝑘-cliques) of each 𝑘𝑘-clique with other already 
mapped 𝑘𝑘-cliques, since it may affect the correctness of 
the algorithm results. For instance, if 𝑘𝑘-clique candidate 
overlaps with 50 % of all its nodes with another 𝑘𝑘-clique 
that has already been mapped to input graph then it is 
highly likely to be excluded (depending of the 𝑘𝑘-clique 
size). The reason is because different synsets tend to 
overlap by only small part of its nodes (like in example 
depicted on fig. 2). 

After mapping all 𝑘𝑘-cliques from the sorted list to the 
topology of initial graph we treat the successful ones as 
the output set of soft clusters (so called synsets in the 
synset induction task). 

3.2 Pseudocode 

The pseudocode for the proposed overlapping 
community detection algorithm, ENC, is presented 
below. 
 

Input: an undirected graph G 
Output: a set of clusters clusters 
1 for each v in G do 
2  Gs ← ExtractSubgraph(G,v,2) 
3  T ← TransitiveClosure(Gs,2) 
4  cliques_local ← {K:Ci∈T,i∈N} 
5  cliques_global ← cliques_global ∪ 

      cliques_local 
6 end for 
7 cliques_ranked ← {(αi,Ci):α∈R, 0≤αi≤1, 

    αi ← GetRank(Ci), i∈N, 
         1≤i≤len(cliques_global)} 

8 cliques_sorted ← 
   SortCliques(cliques_ranked) 

9 for each v in G do 
10  v.β ← 0 
11 end for 
12 for i = 0 to |cliques_sorted| do 
13  (αi,Ci) ← cliques_sorted[i] 
14  if CheckOverlap(G,Ci) is true then 
15  clusters ← clusters ∪ 

  {vj:vj∈Ci.V, j∈N, 1≤j≤|Ci.V|} 
16   for each v in Ci do 
17    v.β ← v.β + 1 
18   end for 
19  end if 
20 end for 

 
ENC starts from the procedure of determining 𝑘𝑘-

cliques in the neighborhood of each node. Line 2 
describes extraction of a subgraph of 𝐺𝐺 with the center in 
node 𝑣𝑣 and its two hops neighborhood. Line 3 describes 
the transitive closure for the nodes having the path length 

less or equal than two steps. In line 4, simple cliques are 
extracted from the transitive closure graph. All the nodes 
forming cliques are collected in the shared list in line 5. 
In lines 1–6 we extract all possible 𝑘𝑘-cliques candidates. 

The second step ranks all the 𝑘𝑘-cliques formed after 
transitive closures. In line 7 each 𝑘𝑘-clique is initialized 
with some real number 0 ≤ 𝛼𝛼 ≤ 1 using the GetRank 
function. GetRank function represent one of the 
procedures described in Section 3.1 that takes 𝑘𝑘-clique 
as input and returns its corresponding 𝛼𝛼-value. It may be, 
for instance, density or transitivity of considered 𝑘𝑘-
clique. Then, after forming the list consisting of all 
possible 𝑘𝑘-cliques, we sort it by the descending order of 
𝛼𝛼 in line 8 using SortCliques function. 

Lines 9–11 initialize the 𝑘𝑘-cliques counter for each 
involved node. In real-world graphs, a node does not 
participate in a very big number of 𝑘𝑘-cliques, so we aim 
at preventing this behavior with counting them. 

Finally, in the last loop we determine all the 
communities by choosing the most important 𝑘𝑘-cliques. 
For that, we apply the CheckOverlap function in line 14 
that determines whether the given 𝑘𝑘-clique is suitable to 
be a community, or we should discard it. In terms of 
synset induction task, we check compliance with the 
conditions in Section 3.1. It means that we discard 𝑘𝑘-
cliques that overlaps in almost all its nodes, and, vice 
versa, accept 𝑘𝑘-cliques that has only small part of its 
nodes participating in other 𝑘𝑘-cliques. In case if 𝑘𝑘-clique 
is suitable, we put it into the final list of clusters in line 
15 and mark its nodes in lines 16–18 to prevent 
unnecessary overlapping with the 𝑘𝑘-cliques provided 
with the lower values of 𝛼𝛼. Reasoning about choosing 
appropriate conditions for the CheckOverlap functions 
are described in Section 3.1. 

4 Evaluation 
We evaluate ENC by comparing its performance to 
several state-of-the-art graph clustering algorithms on a 
synset induction task. A synset induction task is a natural 
language processing task of clustering a synonymy graph 
to group the words having the same meaning into sets of 
synonyms—synsets. In this task, the input is a synonymy 
graph 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), where 𝑉𝑉 is the vocabulary and 𝐸𝐸 ⊆ 𝑉𝑉2 
is a reflexive symmetric relation (synonymy) defined on 
the vocabulary. The performance of the algorithms is 
compared to the pre-defined gold standard clustering. 

We compare ENC to the following algorithms: 
CPM [9], MaxMax [6] and WATSET [10]. Our evaluation 
approach is the same as in [6] and [10]. We run clustering 
algorithms on the same input graph and compare the 
result to a gold standard clustering. For that, we 
decompose every synset of 𝑛𝑛 words into a set of 𝑛𝑛(𝑛𝑛−1)

2
 

word pairs and compute pairwise precision, recall and 
their harmonic mean also known as F1-score. We used 
the same input graph as in [10] which has 77 906 nodes, 
71 880 edges, and based on the English Wiktionary. The 
edges were weighted using cosine similarity between the 
Skip-gram vectors trained on the Google News 
corpus [7]. As the gold standard, we use the same synsets 
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from WordNet [5] and BabelNet [8] for the English 
language as in [10]. 

4.1 ENC Parameter Tuning 

A simple way to improve the community detection 
quality by ENC is to prune the input graph by deleting 
edges with small weight. In terms of synset induction, we 
found that edges with the weight smaller than 0.3 may be 
useless because it is highly unlikely that the nodes 
incident to such edges are really synonyms. When this 
filter is enabled, we denote it as filt_on. Otherwise, we 
denote it as filt_off. 

Another way to tune the ENC algorithm is to 
normalize 𝑘𝑘-clique ranks according to their sizes. 
Normalization should help to keep balance between 𝑘𝑘-
clique size and density of edges inside it when computing 
the 𝑘𝑘-clique rank. When this filter is enabled, we refer to 
it as norm_on. Otherwise, we denote it as norm_off. 

Also, we selected the following conditions for 𝑘𝑘-
clique overlapping (where 𝑛𝑛 is number of nodes in 𝑘𝑘-
clique and 𝑚𝑚 is number of overlapped nodes, which 
participate in other 𝑘𝑘-cliques as well, see Section 3.1 for 
details): 

• 

⎩
⎪
⎨

⎪
⎧

𝑚𝑚 = 1, 2 ≤ 𝑛𝑛 ≤ 3
𝑚𝑚 = 2, 4 ≤ 𝑛𝑛 ≤ 6

𝑚𝑚 = 3, 7 ≤ 𝑛𝑛 ≤ 10
𝑚𝑚 = 4, 11 ≤ 𝑛𝑛 ≤ 15

𝑚𝑚 = 5, 𝑛𝑛 ≥ 16

, we refer to these conditions 

as cond_1 in results section. 

• 

⎩
⎪
⎨

⎪
⎧

𝑚𝑚 = 1, 2 ≤ 𝑛𝑛 ≤ 3
𝑚𝑚 = 2, 4 ≤ 𝑛𝑛 ≤ 6
𝑚𝑚 = 3, 7 ≤ 𝑛𝑛 ≤ 9

𝑚𝑚 = 4, 10 ≤ 𝑛𝑛 ≤ 12
𝑚𝑚 = 5, 𝑛𝑛 ≥ 13

, as cond_2. 

• 

⎩
⎪
⎨

⎪
⎧

𝑚𝑚 = 1, 2 ≤ 𝑛𝑛 ≤ 3
𝑚𝑚 = 2, 4 ≤ 𝑛𝑛 ≤ 5
𝑚𝑚 = 3, 6 ≤ 𝑛𝑛 ≤ 8

𝑚𝑚 = 4, 9 ≤ 𝑛𝑛 ≤ 10
𝑚𝑚 = 5, 11 ≤ 𝑛𝑛 ≤ 15

𝑘𝑘 = 6, 𝑛𝑛 ≥ 16

, as cond_3. 

• 

⎩
⎪
⎨

⎪
⎧

𝑚𝑚 = 1, n = 2
𝑚𝑚 = 2, 3 ≤ 𝑛𝑛 ≤ 5
𝑚𝑚 = 3, 6 ≤ 𝑛𝑛 ≤ 7
𝑚𝑚 = 4, 8 ≤ 𝑛𝑛 ≤ 9

𝑚𝑚 = 5, 10 ≤ 𝑛𝑛 ≤ 14
𝑘𝑘 = 6, 𝑛𝑛 ≥ 15

, as cond_4. 

Aforementioned conditions are selected only to agree 
with task of synset induction (i.e., the assumption that 
different synset can share only small part of its nodes). 
These conditions may be the subject of tuning in the 
further research. 

We conclude this subsection with summary table for 
all tunable parameters in proposed algorithm and in 
reference algorithms. Table 1 shows the combination of 
the parameters used in our study. 
 
 
 

Table 1 Parameter tuning; the best-found combination 
is highlighted (for WATSET and CPM) 

Method Parameters 

ENC 

Edge filtering ∈ {filt_on, filt_off} 
𝑘𝑘-clique ranking function 𝑓𝑓  ∈ {rank_w, 

rank_t, rank_d, rank_wt, rank_wd} 
𝑘𝑘-clique rank normalization ∈ 

{norm_on, norm_off} 
Overlapping condition ∈ {cond_1, 

cond_2, cond_3, cond_4} 

WATSET 

ClusterLocal ∈ {MCL, CWtop, 
CWlog, CWnolog} 

ClusterGlobal ∈ {MCL, CWtop, 
CWlog, CWnolog} 

CPM k ∈ {2, 3, 4} 

4.2 Results 

We carried out 100 experiments for different 
configurations of the evaluated algorithms. The results 
obtained on WordNet are present in Table 2; the results 
obtained on BabelNet are present in Table 3. The values 
of precision, recall and F1-score are provided. For brevity 
reasons, each table contains results only for ten 
experiments. Also, only best achieved results of WATSET 
and CPM are provided. All rows in tables are sorted in 
decreasing order according to the value of F1. 

Table 2 Results for WordNet 

№ Method Pr Re F1 
1 WATSET [CWlog, MCL] 0,398 0,294 0,338 
… … … … ... 

14 ENC [filt_on, rank_d, 
norm_off, cond_4] 0,429 0,272 0,333 

15 ENC [filt_on, rank_wd, 
norm_off, cond_4] 0,423 0,272 0,331 

16 ENC [filt_on, rank_d, 
norm_on, cond_4] 0,359 0,302 0,328 

17 ENC [filt_on, rank_wd, 
norm_on, cond_4] 0,359 0,302 0,328 

18 ENC [filt_on, rank_wd, 
norm_off, cond_3] 0,424 0,267 0,328 

19 ENC [filt_on, rank_w, 
norm_off, cond_4] 0,350 0,307 0,327 

20 ENC [filt_off, rank_wd, 
norm_on, cond_2] 0,340 0,315 0,327 

… … … … … 
97 CPM [k2] 0,557 0,154 0,241 
98 MaxMax 0,133 0,367 0,195 
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Table 3 Results for BabelNet 

№ Method Pr Re F1 

1 ENC [filt_on, rank_d, 
norm_off, cond_4] 0,492 0,313 0,382 

2 ENC [filt_on, rank_wd, 
norm_off, cond_4] 0,489 0,314 0,382 

3 ENC [filt_on, rank_wd, 
norm_off, cond_3] 0,492 0,310 0,380 

4 ENC [filt_on, rank_d, 
norm_off, cond_3] 0,495 0,306 0,379 

5 ENC [filt_on, rank_wd, 
norm_on, cond_4] 0,439 0,332 0,378 

6 ENC [filt_on, rank_d, 
norm_on, cond_4] 0,438 0,332 0,378 

7 ENC [filt_on, rank_w, 
norm_off, cond_4] 0,429 0,336 0,377 

8 ENC [filt_off, rank_wd, 
norm_off, cond_4] 0,442 0,328 0,377 

18 WATSET [MCL, MCL] 0,416 0,342 0,375 
… … … … … 
93 CPM [k2] 0,522 0,245 0,333 
… … … … … 
98 MaxMax 0,164 0,382 0,229 

 
On WordNet, the ENC algorithm shown lower values 

of F1 comparing to WATSET. However, ENC shows high 
values of precision for the cases of turned off 
normalization, graph density-based ranking alongside 
with filtering low-weight edges and softest conditions of 
𝑘𝑘-clique overlapping (cliques can overlap by more 
nodes). Despite the fact that CPM shows the highest 
precision and MaxMax shows the highest recall, both 
algorithms demonstrate imbalance between its precision 
and recall, which resulting in lower values of F1. 

On BabelNet, the ENC algorithm shows the best 
overall results. The only stable parameter is filtering, 
which is always turned on for each testing instance. 
Much softer conditions (cond_3 and cond_4) meet much 
more often than more stronger conditions (cond_1 and 
cond_2). As seen from the Table 3, ENC shows nearly 
the same precision of overlapping community detection 
with and without normalization as well as for different 𝑘𝑘-
cliques ranking functions. The results for CPM and 
MaxMax on BabelNet demonstrate imbalance between 
precision and recall, which leads to lower values of F1, 
like in the case of WordNet. 

As according to the experimental results obtained on 
WordNet and BabelNet, ENC shows generally better 
results for synset induction task when algorithm 
parameters are oriented on detecting clusters with dense 
edge structure (rank_d, rank_w and its combination 
rank_wd). The reason for this is a fact that set of words 
tend to be synset if it has a lot of connections between its 
words. Also, ENC works well when there is 
preprocessing in the form of discarding low-weight 
edges before computation. This helps filter useless 
connections between clusters thus highlighting clusters 
inner dense structure. Another important feature for 
ENC-based synset induction is soft overlapping 
conditions (cond_3 or cond_4). It allows to have much 

more variability when forming and mapping 𝑘𝑘-cliques on 
the input graph. 

5 Conclusion 
As according to the experimental results, the 
assumptions in our algorithm, ENC, makes it possible to 
successfully capture the structure in synonymy graphs 
for English. ENC showed the performance comparable 
to the state-of-the-art algorithm, WATSET, although using 
a different treatment for the overlapping community 
detection problem. Further studies include scaling of the 
algorithm for larger graphs and applying ENC for synset 
induction from other languages. 
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