

Storing Metagraph Model in Relational, Document-
Oriented, and Graph Databases

© Valeriy M. Chernenkiy © Yuriy E. Gapanyuk © Yuriy T. Kaganov
© Ivan V. Dunin © Maxim A. Lyaskovsky © Vadim S. Larionov

Bauman Moscow State Technical University,
Moscow, Russia

chernen@bmstu.ru, gapyu@bmstu.ru, kaganov.y.t@bmstu.ru,
johnmoony@yandex.ru, maksim_lya@mail.ru, larionov.vadim@mail.ru

Abstract. This paper proposes an approach for metagraph model storage in databases with different
data models. The formal definition of the metagraph data model is given. The approaches for mapping the
metagraph model to the flat graph, document-oriented, and relational data models are proposed. The
limitations of the RDF model in comparison with the metagraph model are considered. It is shown that the
metagraph model addresses RDF limitations in a natural way without emergence loss. The experiments result
for storing the metagraph model in different databases are given.

Keywords: metagraph, metavertex, flat graph, graph database, document-oriented database, relational
database.

1 Introduction
At present, on the one hand, the domains are becoming
more and more complex. Therefore, models based on
complex graphs are increasingly used in various fields of
science from mathematics and computer science to
biology and sociology.

On the other hand, there are currently only graph
databases based on flat graph or hypergraph models that
are not capable enough of being suitable repositories for
complex relations in the domains.

We propose to use a metagraph data model that
allows storing more complex relationships than a flat
graph or hypergraph data models.

This paper is devoted to methods of storage of the
metagraph model based on the flat graph, document-
oriented, and relational data models.

We have tried to offer a general approach to store
metagraph data in any database with the above-
mentioned data model. But at the same time, we
conducted experiments on several databases. The results
of the experiments are presented in the corresponding
section.

2 The description of the metagraph model
In this section, we will describe the metagraph model.
This model may be considered as a “logical” model of
the metagraph storage.

A metagraph is a kind of complex network model,
proposed by A. Basu and R. Blanning [1] and then

adapted for information systems description by the
present authors [2]. According to [2]:

𝑀𝑀𝐺𝐺 = 〈𝑀𝑀𝐺𝐺𝑉𝑉 , 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉 , 𝑀𝑀𝐺𝐺𝐸𝐸〉,
where 𝑀𝑀𝐺𝐺 – metagraph; 𝑀𝑀𝐺𝐺𝑉𝑉 – set of metagraph
vertices; 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉 – set of metagraph metavertices; 𝑀𝑀𝐺𝐺𝐸𝐸 –
set of metagraph edges.

A metagraph vertex is described by the set of
attributes: 𝑣𝑣𝑖𝑖 = {𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑀𝑀𝐺𝐺𝑉𝑉, where 𝑣𝑣𝑖𝑖 – metagraph
vertex; 𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘 – attribute.

A metagraph edge is described by the set of attributes,
the source and destination vertices and edge direction
flag:

𝑒𝑒𝑖𝑖 = 〈𝑣𝑣𝑆𝑆, 𝑣𝑣𝐸𝐸 , 𝑒𝑒𝑒𝑒, {𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘}〉, 𝑒𝑒𝑖𝑖 ∈ 𝑀𝑀𝐺𝐺𝐸𝐸 , 𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑟𝑟𝑠𝑠𝑒𝑒|𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒,
where 𝑒𝑒𝑖𝑖 – metagraph edge; 𝑣𝑣𝑆𝑆 – source vertex
(metavertex) of the edge; 𝑣𝑣𝐸𝐸 – destination vertex
(metavertex) of the edge; eo – edge direction flag
(eo=true – directed edge, eo=false – undirected edge);
atrk – attribute.

The metagraph fragment:
𝑀𝑀𝐺𝐺𝑖𝑖 = �𝑒𝑒𝑣𝑣𝑗𝑗�, 𝑒𝑒𝑣𝑣𝑗𝑗 ∈ (𝑀𝑀𝐺𝐺𝑉𝑉 ∪ 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉 ∪ 𝑀𝑀𝐺𝐺𝐸𝐸),

where 𝑀𝑀𝐺𝐺𝑖𝑖 – metagraph fragment; 𝑒𝑒𝑣𝑣𝑗𝑗 – an element that
belongs to the union of vertices, metavertices, and edges.

The metagraph metavertex:
𝑚𝑚𝑣𝑣𝑖𝑖 = 〈{𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘}, 𝑀𝑀𝐺𝐺𝑗𝑗〉, 𝑚𝑚𝑣𝑣𝑖𝑖 ∈ 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉,

where 𝑚𝑚𝑣𝑣𝑖𝑖 – metagraph metavertex belongs to set of
metagraph metavertices 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉; 𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘 – attribute, 𝑀𝑀𝐺𝐺𝑗𝑗 –
metagraph fragment.

Thus, a metavertex in addition to the attributes
includes a fragment of the metagraph. The presence of
private attributes and connections for a metavertex is a
distinguishing feature of a metagraph. It makes the
definition of metagraph holonic – a metavertex may
include a number of lower level elements and in turn,
may be included in a number of higher level elements.

From the general system theory point of view, a

Proceedings of the XX International Conference
“Data Analytics and Management in Data Intensive
Domains” (DAMDID/RCDL’2018), Moscow, Russia,
October 9-12, 2018

82

metavertex is a special case of the manifestation of the
emergence principle, which means that a metavertex
with its private attributes and connections becomes a
whole that cannot be separated into its component parts.
The example of metagraph is shown in Figure 1.

v3v3

v1v1

v2v2

v5v5

v4v4

mv1 mv2e4

e5

e1

e2

e3

e6

e7

e8

mv3

Figure 1 The example of metagraph

This example contains three metavertices: mv1, mv2,
and mv3. Metavertex mv1 contains vertices v1, v2, v3 and
connecting them edges e1, e2, e3. Metavertex mv2 contains
vertices v4, v5 and connecting them edge e6. Edges e4, e5
are examples of edges connecting vertices v2-v4 and v3-v5
respectively and are contained in different metavertices
mv1 and mv2. Edge e7 is an example of an edge connecting
metavertices mv1 and mv2. Edge e8 is an example of an
edge connecting vertex v2 and metavertex mv2.
Metavertex mv3 contains metavertex mv2, vertices v2, v3
and edge e2 from metavertex mv1 and also edges e4, e5, e8
showing the holonic nature of the metagraph structure.
The Figure 1 shows that the metagraph model allows
describing complex data structures and it is the metavertex
that allows implementing emergence principle in data
structures.

It should be noted that according to [2] the metagraph
model also includes more complex elements such as
metaedges and metagraph agents. However, they are
derived from the considered model elements and do not
affect the methods of metagraphs storage in different
databases.

3 Mapping the metagraph model to storage
models
The logical model described in the previous section is a
higher-level model. To store the metagraph model
efficiently, we must create mappings from “logical”
model to “physical” models used in different databases.

In this section, we will consider metagraph model
mappings to the flat graph model, document model, and
relational model.

3.1 Mapping metagraph model to the flat graph
model

The main idea of this mapping is to flatten the
hierarchical metagraph model.

Of course, it is impossible to turn a hierarchical graph
model into a flat one directly. The key idea to do this is
to use multipartite graphs [3].

Consider there is a flat graph:
𝐹𝐹𝐺𝐺 = 〈𝐹𝐹𝐺𝐺𝑉𝑉 , 𝐹𝐹𝐺𝐺𝐸𝐸〉,

where 𝐹𝐹𝐺𝐺𝑉𝑉 – set of graph vertices; 𝐹𝐹𝐺𝐺𝐸𝐸 – set of graph
edges.

Then a flat graph 𝐹𝐹𝐺𝐺 may be unambiguously
transformed into bipartite graph 𝐵𝐵𝐹𝐹𝐺𝐺:

𝐵𝐵𝐹𝐹𝐺𝐺 = 〈𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 , 𝐵𝐵𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸〉,
𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 = 〈𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 , 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸〉,

𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 , 𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸 ,
where 𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 – set of graph vertices; 𝐵𝐵𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 – set
of graph edges. The set 𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 can be divided into two
disjoint and independent sets 𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 and 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸 and there
are two isomorphisms 𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 and 𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸 .
Thus, we transform the edges of graph 𝐹𝐹𝐺𝐺 into subset of
vertices of graph 𝐵𝐵𝐹𝐹𝐺𝐺. The set 𝐵𝐵𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 stores the
information about relations between vertices and edges
in graph 𝐹𝐹𝐺𝐺.

It is important to note that from bipartite graph point
of view there is no difference whether original graph 𝐹𝐹𝐺𝐺
oriented or not, because edges of the graph 𝐹𝐹𝐺𝐺 are
represented as vertices and, orientation sign became the
property of the new vertex.

From the general system theory point of view,
transforming edge into vertex, we consider the relation
between entities as a special kind of higher-order entity
that includes lower-level entities.

Now we will apply this approach of flattening to
metagraphs. In case of metagraph we use not bipartite but
tripartite target graph 𝑇𝑇𝐹𝐹𝐺𝐺:

𝑇𝑇𝐹𝐹𝐺𝐺 = 〈𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸〉,
𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 = 〈𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉〉,

𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝑀𝑀𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝑀𝑀𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉 ↔ 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉.
The set 𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 can be divided into three disjoint

and independent sets 𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉. There are
three isomorphisms between metagraph vertices,
metavertices, edges and corresponding subsets of
𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇: 𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝑀𝑀𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝑀𝑀𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉 ↔
𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉. The set 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 stores the information about
relations between vertices, metavertices, edges in
original metagraph.

v3

v1

v2

mv1
e1

e2

e3

mv2

Figure 2 The example of metagraph for flattening

83

v3v1 v2e1 e2

mv1

mv2

e3

Figure 3 The example of flattened metagraph

Consider the example of flattening metagraph model.
The original metagraph is represented in Fig. 2 and
corresponding flat graph is represented in Fig. 3. The
vertices, metavertices and edges of original metagraph are
represented with vertices of different shapes.

From the general system theory point of view,
emergent metagraph elements such as vertices,
metavertices, edges are transformed into independent
vertices of the flat graph.

The proposed mapping may be used for storing
metagraph data in graph or hybrid databases such as
Neo4j or ArangoDB.

It is important to note that flattening metagraph
model does not solve all problems for graph database
usage. Consider the example of a query using the Neo4j
database query language “Cypher”:
(n1:Label1)-[rel:TYPE]->(n2:Label2)

One can see that used notation is RDF-like and
suppose that graph edges are named. But flatten
metagraph model does not use named edges because
metagraph edges are transformed into vertices.

Thus, query languages of flat graph databases are not
suitable for the metagraph model because they blur the
semantics of the metagraph model.

3.2 Mapping metagraph model to the document
model

From the general system theory point of view, emergent
metagraph elements such as vertices, metavertices, edges
should be represented as independent entities.

In the previous subsection, we use flat graph vertices
for such a representation. But instead of graph vertices,
we can also represent independent entities as documents
for the document-oriented database. Flat graph edges are
represented as relations via id-idrefs between documents.

For the sake of clarity, we use the Prolog-like
predicate textual representation. This representation may
be easily converted into JSON or XML formats because
it is compliant with JSON semantics and contains nested
key-value pairs and collections.

The classical Prolog uses the following form of the
predicate: 𝑠𝑠𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒(𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚1, 𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚2, ⋯ , 𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚𝑁𝑁). We
used extended form of predicate where along with atoms
predicate can also include key-value pairs and nested
predicates: 𝑠𝑠𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒(𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚, ⋯ , 𝑘𝑘𝑒𝑒𝑦𝑦 = 𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒, ⋯ ,
𝑠𝑠𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒(⋯), ⋯). The mapping of metagraph model

fragments into predicate representation is described in
details in [2].

The proposed textual representation may be used for
storing metagraph data in a document-oriented database
or text or document fields of the relational database using
JSON or XML formats.

3.3 Mapping metagraph model to the relational
model

Nowadays NoSQL databases are very popular. But
traditional relational databases are still the most mature
solution and widely used in information systems.
Therefore, we also need the relational representation of
the metagraph model. There are two ways to store
metagraphs in a relational database.

The first way is to use a pure relational schema. In
this case, the proposed metagraph model may be directly
or with some optimization transformed into the database
schema. The tables vertices, metavertices, edges may be
used. The Figure 4 contains a graphical representation of
such a schema using PostgreSQL database. The table
“metavertex” contains the representation of vertices and
metavertices. The table “relation” contains the
representation of edges.

Figure 4 The database schema for pure relational
metagraph representation

The second way is to use document-oriented
possibilities of a relational database. For example, the
latest versions of PostgreSQL database provide such a
possibility. The Figure 5 contains a graphical
representation of such a schema.

Figure 5 The database schema for document-relational
metagraph representation

84

In this case, vertices, metavertices, and edges are
stored as XML or JSON documents in relational tables.
The drawback of this approach is id-idrefs storage
between documents. In a relational database, we have to
do this programmatically which decrease the overall
system performance.

4 Why not using RDF model?
Nowadays the semantic web approach for knowledge storage
is widely used. In this case, the Resource Description
Framework (RDF) is used as the data model, and SPARQL
is used as the query language. RDFS (RDF Schema) and
OWL (OWL2) are used as ontology definition languages,
built on the base of RDF. Using RDFS and OWL, it is
possible to express various relationships between ontology
elements (class, subclass, equivalent class, etc.) [4]. For RDF
persisting and SPARQL processing, special storage systems
are used, e.g., Apache Jena.

But unfortunately, the RDF approach has several
limitations for complex situation description. In this
section, we will consider these limitations according to
our paper [5]. The root of limitations is the absence of
the emergence principle in the flat graph RDF model.

4.1 The reification limitation
The reification is used to define RDF statements about
other RDF statements. According to the RDF Primer [6]:
‘the purpose of reification is to record information about
when or where statements were made, who made them,
or other similar information (this is sometimes referred
to as “provenance” information)’. Thus, reification is
considered as an auxiliary technique to “log” provenance
information about statements.

RDF contains reified triple construction to describe
reification in the following form:

StatementID subject predicate object
Consider the example of the complex statement:

‘James noted that Paul noted at 4 p.m. that John arrived
in London’. In the reified triples form, this example may
be represented as follows:
1.StatementID_1 John arrived_in London
2.StatementID_2 StatementID_1 has_author Paul
3.StatementID_3 StatementID_1 has_time “4p.m.”
4.StatementID_4 StatementID_2 has_author James
5.StatementID_5 StatementID_3 has_author James

In statements 2 and 3, StatementID_1 is used as the
subject. Statements 2 and 3 contain provenance
information about the author and time of statement 1.
Statements 4 and 5 contain provenance information
about the author of statements 2 and 3. The RDF graph
form of this example is shown in Fig. 6.

subject:John

object:London

predicate:arrived_in

StatementID_1

object:Paul

predicate:has_author

object: 4 p.m.

StatementID_2

predicate:has_time

StatementID_3

object:James

predicate:has_author

object:James

predicate:has_author

StatementID_4

StatementID_5

Figure 6 The example of RDF reification

In Fig. 6 statements 1, 2, 3 are highlighted, whereas
statements 4 and 5 are not highlighted in order not to
confuse visualization of the figure. Fig. 6 shows that a
reified triple may be considered as a metavertex but in
very restrictive form, containing only one subject,
predicate, and object.

The problem shown in this example is emergence
loss because of the artificial splitting of the whole
situation into a few RDF statements. Statements 4 and 5
are represented by separate RDF statements, but they
would more intuitively be represented by a single unit
containing the whole situation.

The metagraph approach helps to represent this
example more naturally and holistically. From the
metagraph point of view, this example contains three
nested situations:
• Situation 1. John arrived in London;
• Situation 2. Paul noted at 4 p.m. situation 1;
• Situation 3. James noted situation 2.

85

vertex:John

vertex:London

edge:arrived_in

metavertex:
Situation 1

vertex:Paul
edge:noted

attribute:
has_time=4 p.m.

metavertex:
Situation 2

vertex:James

edge:noted

attribute:
has_time=4 p.m.

metavertex:
Situation 3

Figure 7 The metagraph representation of RDF
reification

Each situation is represented by a metavertex as
shown in Fig. 7. Attribute “has_time=4 p.m.” may be
bound either to edge “noted” or to metavertex “Situation
2” (Fig. 7 shows both cases).

The textual representation of Fig. 7 is shown below:
Metavertex(Name=Situation3,
 Vertex(Name=James),
 Metavertex(Name=Situation2,
 Attribute(has_time,"4 p.m."),
 Vertex(Name=Paul),
 Metavertex(Name=Situation1,
 Vertex(Name=John),
 Vertex(Name=London),
 Edge(Name=arrived_in, vS=John, vE=London,
 eo=true)),
 Edge(Name=noted, vS=Paul, vE=Situation1,
eo=true,
 Attribute(has_time,"4 p.m."))),
 Edge(Name=noted, vS=James, vE=Situation2,
eo=true))

This considered example shows that the metagraph
approach allows representing reification without
emergence loss, keeping each nested situation in its own
metavertex.

4.2 The N-ary relationship limitation
An N-ary relationship is a situation where a predicate
combines several subjects or objects or has nested
predicates. Such a situation is a problem from an RDF
point of view. To address this problem, the W3C
Working Group Note was published [7].

Consider the example of the complex statement:
‘John arrived to London at 4 p.m. by train in order to
meet his classmates James and Paul’. This is a typical
example of an N-ary relationship as shown in Fig. 8.
Both problems shown in Fig. 8 cannot be represented by
a pure RDF triplet model.

predicate:has_time

subject:John

object:London

predicate:arrived_to

object: 4 p.m.

predicate:by_transport
object:train

Problem_arrived

predicate:to_meet

object:Paulobject:James

Problem_meet

Figure 8 The example of N-ary relationship

The “Problem_arrived” is that the predicate
“arrived_to” has nested predicates “has_time” and
“by_transport”. According to [7] we are adding a
supporting subject to “Problem_arrived” representing an
instance of a relation.

The “Problem_meet” is that the predicate “to_meet”
has two objects “James” and “Paul”. According to [7] we
have several ways to solve this problem. We may use the
list construct of RDF or we may join object “James” and
“Paul” into the classmate's group. We do the latter in this
example.

The solution is shown in Fig. 9. We have added
supporting vertices “Classmates_group” and
“Problem_arrived”, which are shown in rounded boxes.
In predicate “to_meet” the “Classmates_group” is an
object while in predicate “includes” it is a subject. In
predicate “has_person”, “John” is an object while in
predicate “to_meet” he is a subject.

Since we do not use reification, this may be
represented in the RDF triple form “subject
predicate object” as follows:
1. Problem_arrived has_person John
2. Problem_arrived arrived_to London
3. Problem_arrived by_transport train
4. Problem_arrived has_time “4p.m.”
5. John to_meet Classmates_group
6. Classmates_group includes James
7. Classmates_group includes Paul

As in the reification example, the problem here is in
emergence loss due to the artificial splitting of the
situation. The “Problem_arrived” vertex is added not
because it describes the situation in a natural way, but
because it is required to keep a consistent triplet structure.
In a large RDF graph, many supporting vertices may
obscure meaningful understanding of the situation.

86

(subject,object):John

predicate:to_meet

(subject,object):
Classmates_group

object:James object:Paul

predicate:
includes

predicate:
includes

subject:
Problem_arrived

predicate:has_person

object:London

predicate:
arrived_to

object: 4 p.m. object:train

predicate:
has_time

predicate:
by_transport

Problem_meet

Problem_arrived

Figure 9 The RDF representation of N-ary relation
example

As in the reification example, the metagraph
approach helps to represent this example in a more
natural and holistic way as shown in Fig. 10.

The “Problem_arrived” is solved by binding
attributes “has_time=4 p.m.” and “by_transport=train” to
the edge “arrived_to”. The “Problem_meet” is solved by
using metavertex “Classmates_group” which includes
vertices “James” and “Paul”.

The implicit knowledge about “Classmates_group”
living in London may be shown either by the edge
“living” or by the inclusion of metavertex
“Classmates_group” into metavertex “London” (Fig. 10
shows both cases).

The textual representation of Fig. 10 is shown below:
Metavertex(Name=London,
 Metavertex(Name=Classmates_group,
 Vertex(Name=James),
 Vertex(Name=Paul),
 Edge(Name=living, vS=Classmates_group,
vE=London,
 eo=true)))
Vertex(Name=John)
Edge(Name=to_meet, vS=John,
vE=Classmates_group,
 eo=true)
Edge(Name=arrived_to, vS=John, vE=London,
eo=true,
 Attribute(has_time,"4 p.m."),
 Attribute(by_transport, train))

This considered example shows that the metagraph
approach allows the representation of N-ary relations

without emergence loss, keeping each nested situation in
its own metavertex.

vertex:John

metavertex:London

attribute:
has_time=4 p.m.

edge:arrived_to

metavertex:Classmates_group

vertex:Paulvertex:James

edge:
to_meet

attribute:
by_transport=train

edge:
living

Figure 10 The Metagraph representation of N-ary
relation example

Summing up this section, it should be noted that the
metagraph model addresses RDF limitations in a natural
way without emergence loss. Proposed textual
representation of the metagraph allows clear and
emergent description of examined problems.

Therefore, despite the prevalence of the RDF model,
we consider the development of a storage system for the
metagraph model as an important task.

5 The experiments
In this section, we present experiments results for storing
the metagraph “logical” model in several databases with
different “physical” data models.

It should be noted that these are just entry-level
experiments that should help to choose the right data
model prototype for the metagraph backend storage.

The experiments were carried out with the following
“physical” data models:
• Neo4j – the Neo4j database using flat graph model

(according to subsection 3.1);
• ArangoDB(graph) – the ArangoDB database using

flat graph model (according to subsection 3.1);
• ArangoDB(doc) – the ArangoDB database using

document-oriented model (according to subsection
3.2);

• PostgreSQL(rel) – the PostgreSQL database using
pure relational schema (according to subsection
3.3);

• PostgreSQL(doc) – the PostgreSQL database using
document-oriented possibilities of relational
database (according to subsections 3.2 and 3.3).

The characteristics of test server: Intel Xeon E7-4830
2.2 GHz, 4 Gb RAM, 1 Tb SSD, OS Ubuntu 16.04 (clean
installation on a server). Python 3.5 was used for running
test scripts. Scripts are connected to Neo4j and
ArangoDB via official Python drivers. Queries to these

87

databases were written in query languages (Cypher and
AQL respectively) without ORM and executed by
Python drivers. However, queries for PostgreSQL were
made with SQLAlchemy ORM in order to simplify
database manipulations from the python script. In all
cases, the database was generated by scripts in csv-
format. The database was reloaded from the dump after
every test, which modified the state of the database.

Each operation was repeated several times to get the
average time of execution.

The experimental dataset consisted of 1 000 000
vertices, randomly connected with 1 000 000 edges. Each
vertex of the dataset included one random integer
attribute and one random string attribute of fixed length.
For read operations (selecting hierarchy), additional ten
vertices of fixed structure (100 nested levels) were added
to the dataset to get an average time of ten reads.

The numerical axis of the charts contains operation
execution time in milliseconds. The less value is better.

The main test results are represented in the following
figures and summed up in Table 1. If the best result is
approximately the same for several databases, then all
these variants are marked in Table 1.

Figure 11 The test results for “Inserting vertex to the
existing metavertex”

Figure 12 The test results for “Inserting vertex to the
metagraph”

Figure 13 The test results for “Inserting edge to the
metagraph”

Figure 14 The test results for “Updating existing vertex
value”

Figure 15 The test results for “Deleting vertex from the
existing metavertex”

Figure 16 The test results for “Deleting edge from the
existing metavertex”

Figure 17 The test results for “Selecting hierarchy of
100 related metavertices”

Table 1 The tests results (test time in milliseconds)

Test case Neo4j ArangoDB
(graph)

ArangoDB
(doc)

PostgreSQL
(rel)

PostgreSQL
(doc)

Inserting
vertex to the

existing
metavertex

40 2 5 8 6

Inserting
vertex to the
metagraph

253 3 3 3 4

Inserting
edge to the
metagraph

148 32 7 8 6

Updating
existing

vertex value
267 5 5 3 9

Deleting
vertex from 45 6 5 6 9

88

the existing
metavertex

Deleting
edge from

the existing
metavertex

57 6 16 9 6

Selecting
hierarchy of
100 related

metavertices
45 5 323 218 187

Let's make intermediate conclusions on the basis of

the considered results of experiments.
It is necessary to recognize the Neo4j implementation

as inefficient compared to other cases. But this is not a
disadvantage of the graph model itself, because the graph
implementation in ArangoDB is quite efficient.

The inserting, updating and deleting operations are
very efficient in PostgreSQL (both relational and
document-oriented schemas) and ArangoDB (document-
oriented schema), but this is not the case for hierarchical
selecting which is typical metagraph operation.

The time for hierarchical selecting for graph
databases (both Neo4j and ArangoDB) is comparable to
the time of other tests while the time for hierarchical
selecting for relational and document-oriented databases
is several times longer than the time of other tests.

Thus, if the system architect is forced to use a
relational or document-oriented database as a metagraph
storage backend, then hierarchical selecting queries
should be the subject of careful optimization.

Summarizing, we can say that, provided an effective
graph database is used, the flat graph model is most
suitable for metagraph storage.

6 The related work
Nowadays, there is a tendency to complicate the graph
database data model. An example of this tendency is the
HypergraphDB [8] database. As the name implies,
HypergraphDB uses the hypergraph as a data model. The
reasoning capabilities are implemented via integration
with TuProlog.

Another interesting project is a GRAKN.AI [9]
aimed for AI purpose that explicitly combines graph-
based and ontology-based approach for data analysis.
The flat graphs and hypergraphs may be used as data
model. The Graql query language is used both for data
manipulation and reasoning.

The drawbacks of both projects can be attributed to
the fact that the most complex data model for them are
hypergraphs. It was shown in the paper [2] that the
metagraph is a holonic graph model whereas the
hypergraph is a near flat graph model that does not fully
implement the emergence principle. Therefore, the
hypergraph model doesn’t fit well for complex data
structures description.

7 Conclusions
The models based on complex graphs are increasingly
used in various fields of science from mathematics and

computer science to biology and sociology.
Nowadays, there is a tendency to complicate the

graph database data model in order to support the
complexity of the domains.

We propose to use a metagraph data model that
allows storing more complex relationships than a
hypergraph data model.

The metagraph model may be mapped to the flat
graph model, the document model and the relational
model. The main idea of this mapping it the flattening
metagraph to the flat multipartite graph. Then flat graph
may be represented as document model or relational
model.

The experiments results show that flat graph model is
most suitable for metagraph storage.

In the future, it is planned to develop a metagraph
data manipulation language and design a stable version
of the metagraph storage based on a flat graph database.

References
[1] Basu, A., Blanning, R. Metagraphs and their

applications. Springer, New York (2007)
[2] Chernenkiy, V., Gapanyuk, Yu., Revunkov, G.,

Kaganov, Yu., Fedorenko, Yu., Minakova, S.
Using metagraph approach for complex
domains description. In: Proceedings of the
XIX International Conference on Data
Analytics and Management in Data Intensive
Domains (DAMDID/RCDL 2017), Moscow,
Russia, pp. 342-349 (2017)

[3] Chartrand, G., Zhang, P. Chromatic Graph
Theory. CRC Press, New York (2008)

[4] Allemang, D., Hendler, J. Semantic Web for the
working ontologist: effective modeling in
RDFS and OWL – 2nd ed. Elsevier, Amsterdam
(2011)

[5] Chernenkiy, V., Gapanyuk, Yu., Nardid, A.,
Skvortsova, M., Gushcha, A., Fedorenko, Yu.,
Picking, R. Using the metagraph approach for
addressing RDF knowledge representation
limitations. In: Proceedings of Internet
Technologies and Applications (ITA’2017),
Wrexham, United Kingdom, pp. 47-52 (2017)

[6] RDF Primer. W3C Recommendation 10
February 2004.
https://www.w3.org/TR/2004/REC-rdf-primer-
20040210/

[7] Defining N-ary Relations on the Semantic Web.
W3C Working Group Note 12 April 2006.
http://www.w3.org/TR/swbp-n-aryRelations/

[8] HyperGraphDB website.
http://hypergraphdb.org/

[9] GRAKN.AI website. https://grakn.ai/

89

