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1 Introduction 
At present, on the one hand, the domains are becoming 
more and more complex. Therefore, models based on 
complex graphs are increasingly used in various fields of 
science from mathematics and computer science to 
biology and sociology. 

On the other hand, there are currently only graph 
databases based on flat graph or hypergraph models that 
are not capable enough of being suitable repositories for 
complex relations in the domains. 

We propose to use a metagraph data model that 
allows storing more complex relationships than a flat 
graph or hypergraph data models. 

This paper is devoted to methods of storage of the 
metagraph model based on the flat graph, document-
oriented, and relational data models. 

We have tried to offer a general approach to store 
metagraph data in any database with the above-
mentioned data model. But at the same time, we 
conducted experiments on several databases. The results 
of the experiments are presented in the corresponding 
section. 

2 The description of the metagraph model 
In this section, we will describe the metagraph model. 
This model may be considered as a “logical” model of 
the metagraph storage. 

A metagraph is a kind of complex network model, 
proposed by A. Basu and R. Blanning [1] and then 

adapted for information systems description by the 
present authors [2]. According to [2]:  

𝑀𝑀𝐺𝐺 = 〈𝑀𝑀𝐺𝐺𝑉𝑉 , 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉 , 𝑀𝑀𝐺𝐺𝐸𝐸〉, 
where 𝑀𝑀𝐺𝐺 – metagraph; 𝑀𝑀𝐺𝐺𝑉𝑉 – set of metagraph 
vertices; 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉 – set of metagraph metavertices; 𝑀𝑀𝐺𝐺𝐸𝐸  – 
set of metagraph edges. 

A metagraph vertex is described by the set of 
attributes: 𝑣𝑣𝑖𝑖 = {𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑀𝑀𝐺𝐺𝑉𝑉, where 𝑣𝑣𝑖𝑖 – metagraph 
vertex; 𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘 – attribute. 

A metagraph edge is described by the set of attributes, 
the source and destination vertices and edge direction 
flag:  

𝑒𝑒𝑖𝑖 = 〈𝑣𝑣𝑆𝑆, 𝑣𝑣𝐸𝐸 , 𝑒𝑒𝑒𝑒, {𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘}〉, 𝑒𝑒𝑖𝑖 ∈ 𝑀𝑀𝐺𝐺𝐸𝐸 , 𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑟𝑟𝑠𝑠𝑒𝑒|𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒, 
where 𝑒𝑒𝑖𝑖 – metagraph edge; 𝑣𝑣𝑆𝑆 – source vertex 
(metavertex) of the edge; 𝑣𝑣𝐸𝐸  – destination vertex 
(metavertex) of the edge; eo – edge direction flag 
(eo=true – directed edge, eo=false – undirected edge); 
atrk – attribute. 

The metagraph fragment:  
𝑀𝑀𝐺𝐺𝑖𝑖 = �𝑒𝑒𝑣𝑣𝑗𝑗�, 𝑒𝑒𝑣𝑣𝑗𝑗 ∈ (𝑀𝑀𝐺𝐺𝑉𝑉 ∪ 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉 ∪ 𝑀𝑀𝐺𝐺𝐸𝐸), 

where 𝑀𝑀𝐺𝐺𝑖𝑖 – metagraph fragment; 𝑒𝑒𝑣𝑣𝑗𝑗  – an element that 
belongs to the union of vertices, metavertices, and edges. 

The metagraph metavertex:  
𝑚𝑚𝑣𝑣𝑖𝑖 = 〈{𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘}, 𝑀𝑀𝐺𝐺𝑗𝑗〉, 𝑚𝑚𝑣𝑣𝑖𝑖 ∈ 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉, 

where 𝑚𝑚𝑣𝑣𝑖𝑖 – metagraph metavertex belongs to set of 
metagraph metavertices 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉; 𝑎𝑎𝑡𝑡𝑟𝑟𝑘𝑘 – attribute, 𝑀𝑀𝐺𝐺𝑗𝑗 – 
metagraph fragment. 

Thus, a metavertex in addition to the attributes 
includes a fragment of the metagraph. The presence of 
private attributes and connections for a metavertex is a 
distinguishing feature of a metagraph. It makes the 
definition of metagraph holonic – a metavertex may 
include a number of lower level elements and in turn, 
may be included in a number of higher level elements. 

From the general system theory point of view, a 
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metavertex is a special case of the manifestation of the 
emergence principle, which means that a metavertex 
with its private attributes and connections becomes a 
whole that cannot be separated into its component parts. 
The example of metagraph is shown in Figure 1. 
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Figure 1 The example of metagraph 

This example contains three metavertices: mv1, mv2, 
and mv3. Metavertex mv1 contains vertices v1, v2, v3 and 
connecting them edges e1, e2, e3. Metavertex mv2 contains 
vertices v4, v5 and connecting them edge e6. Edges e4, e5 
are examples of edges connecting vertices v2-v4 and v3-v5 
respectively and are contained in different metavertices 
mv1 and mv2. Edge e7 is an example of an edge connecting 
metavertices mv1 and mv2. Edge e8 is an example of an 
edge connecting vertex v2 and metavertex mv2. 
Metavertex mv3 contains metavertex mv2, vertices v2, v3 
and edge e2 from metavertex mv1 and also edges e4, e5, e8 
showing the holonic nature of the metagraph structure. 
The Figure 1 shows that the metagraph model allows 
describing complex data structures and it is the metavertex 
that allows implementing emergence principle in data 
structures. 

It should be noted that according to [2] the metagraph 
model also includes more complex elements such as 
metaedges and metagraph agents. However, they are 
derived from the considered model elements and do not 
affect the methods of metagraphs storage in different 
databases. 

3 Mapping the metagraph model to storage 
models 
The logical model described in the previous section is a 
higher-level model. To store the metagraph model 
efficiently, we must create mappings from “logical” 
model to “physical” models used in different databases. 

In this section, we will consider metagraph model 
mappings to the flat graph model, document model, and 
relational model. 

3.1 Mapping metagraph model to the flat graph 
model 

The main idea of this mapping is to flatten the 
hierarchical metagraph model.  

Of course, it is impossible to turn a hierarchical graph 
model into a flat one directly. The key idea to do this is 
to use multipartite graphs [3]. 

Consider there is a flat graph:  
𝐹𝐹𝐺𝐺 = 〈𝐹𝐹𝐺𝐺𝑉𝑉 , 𝐹𝐹𝐺𝐺𝐸𝐸〉, 

where 𝐹𝐹𝐺𝐺𝑉𝑉 – set of graph vertices; 𝐹𝐹𝐺𝐺𝐸𝐸  – set of graph 
edges.  

Then a flat graph 𝐹𝐹𝐺𝐺 may be unambiguously 
transformed into bipartite graph 𝐵𝐵𝐹𝐹𝐺𝐺:  

𝐵𝐵𝐹𝐹𝐺𝐺 = 〈𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 , 𝐵𝐵𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸〉, 
𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 = 〈𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 , 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸〉, 

𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 , 𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸 , 
where 𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇  – set of graph vertices; 𝐵𝐵𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  – set 
of graph edges. The set 𝐵𝐵𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇  can be divided into two 
disjoint and independent sets 𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 and 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸  and there 
are two isomorphisms 𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝑉𝑉 and 𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝐹𝐹𝐺𝐺𝐵𝐵𝐸𝐸 . 
Thus, we transform the edges of graph 𝐹𝐹𝐺𝐺 into subset of 
vertices of graph 𝐵𝐵𝐹𝐹𝐺𝐺. The set 𝐵𝐵𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  stores the 
information about relations between vertices and edges 
in graph 𝐹𝐹𝐺𝐺. 

It is important to note that from bipartite graph point 
of view there is no difference whether original graph 𝐹𝐹𝐺𝐺 
oriented or not, because edges of the graph 𝐹𝐹𝐺𝐺 are 
represented as vertices and, orientation sign became the 
property of the new vertex. 

From the general system theory point of view, 
transforming edge into vertex, we consider the relation 
between entities as a special kind of higher-order entity 
that includes lower-level entities. 

Now we will apply this approach of flattening to 
metagraphs. In case of metagraph we use not bipartite but 
tripartite target graph 𝑇𝑇𝐹𝐹𝐺𝐺: 

𝑇𝑇𝐹𝐹𝐺𝐺 = 〈𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸〉, 
𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇 = 〈𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉〉, 

𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝑀𝑀𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝑀𝑀𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉 ↔ 𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉. 
The set 𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇  can be divided into three disjoint 

and independent sets 𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉. There are 
three isomorphisms between metagraph vertices, 
metavertices, edges and corresponding subsets of 
𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉𝐸𝐸𝑅𝑅𝑇𝑇: 𝑇𝑇𝐹𝐹𝐺𝐺𝑉𝑉 ↔ 𝑀𝑀𝐺𝐺𝑉𝑉 , 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸 ↔ 𝑀𝑀𝐺𝐺𝐸𝐸 , 𝑇𝑇𝐹𝐹𝐺𝐺𝑀𝑀𝑉𝑉 ↔
𝑀𝑀𝐺𝐺𝑀𝑀𝑉𝑉. The set 𝑇𝑇𝐹𝐹𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  stores the information about 
relations between vertices, metavertices, edges in 
original metagraph. 
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Figure 2 The example of metagraph for flattening 

83



 

 

v3v1 v2e1 e2

mv1

mv2

e3

 
Figure 3 The example of flattened metagraph 

Consider the example of flattening metagraph model. 
The original metagraph is represented in Fig. 2 and 
corresponding flat graph is represented in Fig. 3. The 
vertices, metavertices and edges of original metagraph are 
represented with vertices of different shapes. 

From the general system theory point of view, 
emergent metagraph elements such as vertices, 
metavertices, edges are transformed into independent 
vertices of the flat graph. 

The proposed mapping may be used for storing 
metagraph data in graph or hybrid databases such as 
Neo4j or ArangoDB. 

It is important to note that flattening metagraph 
model does not solve all problems for graph database 
usage. Consider the example of a query using the Neo4j 
database query language “Cypher”: 
(n1:Label1)-[rel:TYPE]->(n2:Label2) 

One can see that used notation is RDF-like and 
suppose that graph edges are named. But flatten 
metagraph model does not use named edges because 
metagraph edges are transformed into vertices. 

Thus, query languages of flat graph databases are not 
suitable for the metagraph model because they blur the 
semantics of the metagraph model. 

3.2 Mapping metagraph model to the document 
model 

From the general system theory point of view, emergent 
metagraph elements such as vertices, metavertices, edges 
should be represented as independent entities. 

In the previous subsection, we use flat graph vertices 
for such a representation. But instead of graph vertices, 
we can also represent independent entities as documents 
for the document-oriented database. Flat graph edges are 
represented as relations via id-idrefs between documents. 

For the sake of clarity, we use the Prolog-like 
predicate textual representation. This representation may 
be easily converted into JSON or XML formats because 
it is compliant with JSON semantics and contains nested 
key-value pairs and collections. 

The classical Prolog uses the following form of the 
predicate: 𝑠𝑠𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒(𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚1, 𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚2, ⋯ , 𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚𝑁𝑁). We 
used extended form of predicate where along with atoms 
predicate can also include key-value pairs and nested 
predicates: 𝑠𝑠𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒(𝑎𝑎𝑡𝑡𝑒𝑒𝑚𝑚, ⋯ , 𝑘𝑘𝑒𝑒𝑦𝑦 = 𝑣𝑣𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒, ⋯ ,
𝑠𝑠𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝑒𝑒(⋯ ), ⋯ ). The mapping of metagraph model 

fragments into predicate representation is described in 
details in [2]. 

The proposed textual representation may be used for 
storing metagraph data in a document-oriented database 
or text or document fields of the relational database using 
JSON or XML formats. 

3.3 Mapping metagraph model to the relational 
model 

Nowadays NoSQL databases are very popular. But 
traditional relational databases are still the most mature 
solution and widely used in information systems. 
Therefore, we also need the relational representation of 
the metagraph model. There are two ways to store 
metagraphs in a relational database. 

The first way is to use a pure relational schema. In 
this case, the proposed metagraph model may be directly 
or with some optimization transformed into the database 
schema. The tables vertices, metavertices, edges may be 
used. The Figure 4 contains a graphical representation of 
such a schema using PostgreSQL database. The table 
“metavertex” contains the representation of vertices and 
metavertices. The table “relation” contains the 
representation of edges. 

 
Figure 4 The database schema for pure relational 
metagraph representation 

The second way is to use document-oriented 
possibilities of a relational database. For example, the 
latest versions of PostgreSQL database provide such a 
possibility. The Figure 5 contains a graphical 
representation of such a schema. 

 
Figure 5 The database schema for document-relational 
metagraph representation 
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In this case, vertices, metavertices, and edges are 
stored as XML or JSON documents in relational tables. 
The drawback of this approach is id-idrefs storage 
between documents. In a relational database, we have to 
do this programmatically which decrease the overall 
system performance. 

4 Why not using RDF model? 
Nowadays the semantic web approach for knowledge storage 
is widely used. In this case, the Resource Description 
Framework (RDF) is used as the data model, and SPARQL 
is used as the query language. RDFS (RDF Schema) and 
OWL (OWL2) are used as ontology definition languages, 
built on the base of RDF. Using RDFS and OWL, it is 
possible to express various relationships between ontology 
elements (class, subclass, equivalent class, etc.) [4]. For RDF 
persisting and SPARQL processing, special storage systems 
are used, e.g., Apache Jena. 

But unfortunately, the RDF approach has several 
limitations for complex situation description. In this 
section, we will consider these limitations according to 
our paper [5]. The root of limitations is the absence of 
the emergence principle in the flat graph RDF model. 

4.1 The reification limitation 
The reification is used to define RDF statements about 
other RDF statements. According to the RDF Primer [6]: 
‘the purpose of reification is to record information about 
when or where statements were made, who made them, 
or other similar information (this is sometimes referred 
to as “provenance” information)’. Thus, reification is 
considered as an auxiliary technique to “log” provenance 
information about statements. 

RDF contains reified triple construction to describe 
reification in the following form: 

StatementID subject predicate object 
Consider the example of the complex statement: 

‘James noted that Paul noted at 4 p.m. that John arrived 
in London’. In the reified triples form, this example may 
be represented as follows: 
1.StatementID_1 John arrived_in London 
2.StatementID_2 StatementID_1 has_author Paul 
3.StatementID_3 StatementID_1 has_time “4p.m.” 
4.StatementID_4 StatementID_2 has_author James 
5.StatementID_5 StatementID_3 has_author James 

In statements 2 and 3, StatementID_1 is used as the 
subject. Statements 2 and 3 contain provenance 
information about the author and time of statement 1. 
Statements 4 and 5 contain provenance information 
about the author of statements 2 and 3. The RDF graph 
form of this example is shown in Fig. 6. 

subject:John 

object:London

predicate:arrived_in

StatementID_1 

object:Paul

predicate:has_author

object: 4 p.m.

StatementID_2 

predicate:has_time

StatementID_3

object:James

predicate:has_author

object:James

predicate:has_author

StatementID_4 

StatementID_5 

 
Figure 6 The example of RDF reification 

In Fig. 6 statements 1, 2, 3 are highlighted, whereas 
statements 4 and 5 are not highlighted in order not to 
confuse visualization of the figure. Fig. 6 shows that a 
reified triple may be considered as a metavertex but in 
very restrictive form, containing only one subject, 
predicate, and object. 

The problem shown in this example is emergence 
loss because of the artificial splitting of the whole 
situation into a few RDF statements. Statements 4 and 5 
are represented by separate RDF statements, but they 
would more intuitively be represented by a single unit 
containing the whole situation.  

The metagraph approach helps to represent this 
example more naturally and holistically. From the 
metagraph point of view, this example contains three 
nested situations: 
• Situation 1. John arrived in London; 
• Situation 2. Paul noted at 4 p.m. situation 1; 
• Situation 3. James noted situation 2. 
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vertex:John 

vertex:London

edge:arrived_in

metavertex:
Situation 1

vertex:Paul
edge:noted

attribute: 
has_time=4 p.m.

metavertex:
Situation 2

vertex:James

edge:noted

attribute: 
has_time=4 p.m.

metavertex:
Situation 3

 
Figure 7 The metagraph representation of RDF 
reification 

Each situation is represented by a metavertex as 
shown in Fig. 7. Attribute “has_time=4 p.m.” may be 
bound either to edge “noted” or to metavertex “Situation 
2” (Fig. 7 shows both cases). 

The textual representation of Fig. 7 is shown below: 
Metavertex(Name=Situation3, 
  Vertex(Name=James), 
  Metavertex(Name=Situation2,  
    Attribute(has_time,"4 p.m."), 
    Vertex(Name=Paul), 
    Metavertex(Name=Situation1, 
      Vertex(Name=John), 
      Vertex(Name=London), 
      Edge(Name=arrived_in, vS=John, vE=London, 
        eo=true)), 
    Edge(Name=noted, vS=Paul, vE=Situation1, 
eo=true,  
      Attribute(has_time,"4 p.m."))), 
  Edge(Name=noted, vS=James, vE=Situation2, 
eo=true)) 

This considered example shows that the metagraph 
approach allows representing reification without 
emergence loss, keeping each nested situation in its own 
metavertex. 

4.2 The N-ary relationship limitation 
An N-ary relationship is a situation where a predicate 
combines several subjects or objects or has nested 
predicates. Such a situation is a problem from an RDF 
point of view. To address this problem, the W3C 
Working Group Note was published [7]. 

Consider the example of the complex statement: 
‘John arrived to London at 4 p.m. by train in order to 
meet his classmates James and Paul’. This is a typical 
example of an N-ary relationship as shown in Fig. 8. 
Both problems shown in Fig. 8 cannot be represented by 
a pure RDF triplet model. 

predicate:has_time

subject:John 

object:London

predicate:arrived_to

object: 4 p.m.

predicate:by_transport
object:train

Problem_arrived

predicate:to_meet

object:Paulobject:James

Problem_meet

 
Figure 8 The example of N-ary relationship 

The “Problem_arrived” is that the predicate 
“arrived_to” has nested predicates “has_time” and 
“by_transport”. According to [7] we are adding a 
supporting subject to “Problem_arrived” representing an 
instance of a relation.  

The “Problem_meet” is that the predicate “to_meet” 
has two objects “James” and “Paul”. According to [7] we 
have several ways to solve this problem. We may use the 
list construct of RDF or we may join object “James” and 
“Paul” into the classmate's group. We do the latter in this 
example. 

The solution is shown in Fig. 9. We have added 
supporting vertices “Classmates_group” and 
“Problem_arrived”, which are shown in rounded boxes. 
In predicate “to_meet” the “Classmates_group” is an 
object while in predicate “includes” it is a subject. In 
predicate “has_person”, “John” is an object while in 
predicate “to_meet” he is a subject. 

Since we do not use reification, this may be 
represented in the RDF triple form “subject 
predicate object” as follows: 
1. Problem_arrived has_person John 
2. Problem_arrived arrived_to London 
3. Problem_arrived by_transport train 
4. Problem_arrived has_time “4p.m.” 
5. John to_meet Classmates_group 
6. Classmates_group includes James 
7. Classmates_group includes Paul 

As in the reification example, the problem here is in 
emergence loss due to the artificial splitting of the 
situation. The “Problem_arrived” vertex is added not 
because it describes the situation in a natural way, but 
because it is required to keep a consistent triplet structure. 
In a large RDF graph, many supporting vertices may 
obscure meaningful understanding of the situation. 
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(subject,object):John 

predicate:to_meet

(subject,object):
Classmates_group

object:James object:Paul

predicate:
includes

predicate:
includes

subject:
Problem_arrived

predicate:has_person

object:London

predicate:
arrived_to

object: 4 p.m. object:train

predicate:
has_time

predicate:
by_transport

Problem_meet

Problem_arrived
 

Figure 9 The RDF representation of N-ary relation 
example 

As in the reification example, the metagraph 
approach helps to represent this example in a more 
natural and holistic way as shown in Fig. 10. 

The “Problem_arrived” is solved by binding 
attributes “has_time=4 p.m.” and “by_transport=train” to 
the edge “arrived_to”. The “Problem_meet” is solved by 
using metavertex “Classmates_group” which includes 
vertices “James” and “Paul”. 

The implicit knowledge about “Classmates_group” 
living in London may be shown either by the edge 
“living” or by the inclusion of metavertex 
“Classmates_group” into metavertex “London” (Fig. 10 
shows both cases). 

The textual representation of Fig. 10 is shown below: 
Metavertex(Name=London, 
  Metavertex(Name=Classmates_group, 
    Vertex(Name=James), 
    Vertex(Name=Paul), 
    Edge(Name=living, vS=Classmates_group, 
vE=London, 
      eo=true))) 
Vertex(Name=John) 
Edge(Name=to_meet, vS=John, 
vE=Classmates_group, 
  eo=true) 
Edge(Name=arrived_to, vS=John, vE=London, 
eo=true, 
  Attribute(has_time,"4 p.m."), 
  Attribute(by_transport, train)) 

This considered example shows that the metagraph 
approach allows the representation of N-ary relations 

without emergence loss, keeping each nested situation in 
its own metavertex. 

vertex:John 

metavertex:London

attribute: 
has_time=4 p.m.

edge:arrived_to

metavertex:Classmates_group

vertex:Paulvertex:James

edge:
to_meet

attribute: 
by_transport=train

edge:
living

 
Figure 10 The Metagraph representation of N-ary 
relation example 

Summing up this section, it should be noted that the 
metagraph model addresses RDF limitations in a natural 
way without emergence loss. Proposed textual 
representation of the metagraph allows clear and 
emergent description of examined problems. 

Therefore, despite the prevalence of the RDF model, 
we consider the development of a storage system for the 
metagraph model as an important task. 

5 The experiments 
In this section, we present experiments results for storing 
the metagraph “logical” model in several databases with 
different “physical” data models. 

It should be noted that these are just entry-level 
experiments that should help to choose the right data 
model prototype for the metagraph backend storage. 

The experiments were carried out with the following 
“physical” data models: 
• Neo4j – the Neo4j database using flat graph model 

(according to subsection 3.1); 
• ArangoDB(graph) – the ArangoDB database using 

flat graph model (according to subsection 3.1); 
• ArangoDB(doc) – the ArangoDB database using 

document-oriented model (according to subsection 
3.2); 

• PostgreSQL(rel) – the PostgreSQL database using 
pure relational schema (according to subsection 
3.3); 

• PostgreSQL(doc) – the PostgreSQL database using 
document-oriented possibilities of relational 
database (according to subsections 3.2 and 3.3). 

The characteristics of test server: Intel Xeon E7-4830 
2.2 GHz, 4 Gb RAM, 1 Tb SSD, OS Ubuntu 16.04 (clean 
installation on a server). Python 3.5 was used for running 
test scripts. Scripts are connected to Neo4j and 
ArangoDB via official Python drivers. Queries to these 
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databases were written in query languages (Cypher and 
AQL respectively) without ORM and executed by 
Python drivers. However, queries for PostgreSQL were 
made with SQLAlchemy ORM in order to simplify 
database manipulations from the python script. In all 
cases, the database was generated by scripts in csv-
format. The database was reloaded from the dump after 
every test, which modified the state of the database. 

Each operation was repeated several times to get the 
average time of execution. 

The experimental dataset consisted of 1 000 000 
vertices, randomly connected with 1 000 000 edges. Each 
vertex of the dataset included one random integer 
attribute and one random string attribute of fixed length. 
For read operations (selecting hierarchy), additional ten 
vertices of fixed structure (100 nested levels) were added 
to the dataset to get an average time of ten reads. 

The numerical axis of the charts contains operation 
execution time in milliseconds. The less value is better. 

The main test results are represented in the following 
figures and summed up in Table 1. If the best result is 
approximately the same for several databases, then all 
these variants are marked in Table 1.  

 
Figure 11 The test results for “Inserting vertex to the 
existing metavertex” 

 
Figure 12 The test results for “Inserting vertex to the 
metagraph” 

 
Figure 13 The test results for “Inserting edge to the 
metagraph” 

 
Figure 14 The test results for “Updating existing vertex 
value” 

 
Figure 15 The test results for “Deleting vertex from the 
existing metavertex” 

 
Figure 16 The test results for “Deleting edge from the 
existing metavertex” 

 
Figure 17 The test results for “Selecting hierarchy of 
100 related metavertices” 

Table 1 The tests results (test time in milliseconds) 

Test case Neo4j ArangoDB 
(graph) 

ArangoDB 
(doc) 

PostgreSQL 
(rel) 

PostgreSQL 
(doc) 

Inserting 
vertex to the 

existing 
metavertex 

40 2 5 8 6 

Inserting 
vertex to the 
metagraph 

253 3 3 3 4 

Inserting 
edge to the 
metagraph 

148 32 7 8 6 

Updating 
existing 

vertex value 
267 5 5 3 9 

Deleting 
vertex from 45 6 5 6 9 
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the existing 
metavertex 

Deleting 
edge from 

the existing 
metavertex 

57 6 16 9 6 

Selecting 
hierarchy of 
100 related 

metavertices 
45 5 323 218 187 

 
Let's make intermediate conclusions on the basis of 

the considered results of experiments.  
It is necessary to recognize the Neo4j implementation 

as inefficient compared to other cases. But this is not a 
disadvantage of the graph model itself, because the graph 
implementation in ArangoDB is quite efficient. 

The inserting, updating and deleting operations are 
very efficient in PostgreSQL (both relational and 
document-oriented schemas) and ArangoDB (document-
oriented schema), but this is not the case for hierarchical 
selecting which is typical metagraph operation. 

The time for hierarchical selecting for graph 
databases (both Neo4j and ArangoDB) is comparable to 
the time of other tests while the time for hierarchical 
selecting for relational and document-oriented databases 
is several times longer than the time of other tests. 

Thus, if the system architect is forced to use a 
relational or document-oriented database as a metagraph 
storage backend, then hierarchical selecting queries 
should be the subject of careful optimization. 

Summarizing, we can say that, provided an effective 
graph database is used, the flat graph model is most 
suitable for metagraph storage. 

6 The related work 
Nowadays, there is a tendency to complicate the graph 
database data model. An example of this tendency is the 
HypergraphDB [8] database. As the name implies, 
HypergraphDB uses the hypergraph as a data model. The 
reasoning capabilities are implemented via integration 
with TuProlog. 

Another interesting project is a GRAKN.AI [9] 
aimed for AI purpose that explicitly combines graph-
based and ontology-based approach for data analysis. 
The flat graphs and hypergraphs may be used as data 
model. The Graql query language is used both for data 
manipulation and reasoning. 

The drawbacks of both projects can be attributed to 
the fact that the most complex data model for them are 
hypergraphs. It was shown in the paper [2] that the 
metagraph is a holonic graph model whereas the 
hypergraph is a near flat graph model that does not fully 
implement the emergence principle. Therefore, the 
hypergraph model doesn’t fit well for complex data 
structures description. 

7 Conclusions 
The models based on complex graphs are increasingly 
used in various fields of science from mathematics and 

computer science to biology and sociology. 
Nowadays, there is a tendency to complicate the 

graph database data model in order to support the 
complexity of the domains. 

We propose to use a metagraph data model that 
allows storing more complex relationships than a 
hypergraph data model. 

The metagraph model may be mapped to the flat 
graph model, the document model and the relational 
model. The main idea of this mapping it the flattening 
metagraph to the flat multipartite graph. Then flat graph 
may be represented as document model or relational 
model. 

The experiments results show that flat graph model is 
most suitable for metagraph storage. 

In the future, it is planned to develop a metagraph 
data manipulation language and design a stable version 
of the metagraph storage based on a flat graph database. 
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