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Abstract. Embeddings are a natural way to map text to a latent space, commonly consumed in 
downstream language tasks, e.g., question- answering, named-entity recognition or neural machine 
translations. Embeddings typically capture syntactical relations between parts of a sequence and solve 
semantic problems connected with word-sense-disambiguation (WSD) well. As a result of WSD, the curse of 
dimensionality, out-of-vocabulary words, overfitting to a domain and missing real world knowledge, infering 
meaning without context is hard. Thus we require two things. First, we need techniques to actively overcome 
syntactical problems dealing with WSD and semantically correlating words/sentences. Second, we require 
context to reconstruct the intentions and settings of a given text such that it can be understood. This work 
explores different embedding models, data augmentation techniques and context selection strategies (sub-
sampling on the input space) for real world language problems. 
 

1 Introduction 

Many NLP applications start with preprocessing pipe-
lines involving stemming, stopword removal, special 
character extraction and tokenization. When the mor-
phological treatment of text is done the most important 
step is the representation of text: projection. Language is 
a high dimensional and multi-sense problem domain 
dealing with polysemy, synonymy, antonymy and hypo-
nymy. Therefore, we often need to reduce the dimen-
sions of the problem domain, projecting it to a latent 
space. Classical models project words using WordNet 
mapping each word to a relation, employ methods from 
linear algebra like Singular Value Decomposition (SVD) 
and most famously Latent Semantic Indexing (LSI) [1]. 
More complicated statistical models involve expectation 
maximization procedures for which Latent Dirichlet 
Allocation (LDA) [2] is the standard. Word and sub-
word-level embeddings try to overcome some of the 
limitations of the former methods using neural networks 
posing language models as an optimization problem. 
Word2Vec by [3] was the first successful model that 
superseded the quality of preceding methods. 
Embeddings map words, sentences, characters or part of 
words to a non-linear latent space in ℝ𝒍𝒍 where 𝒍𝒍 stands 
for the amount of dimensions the embedding has. 
Projects like fastText, spaCy, Starspace, GloVe and 
Word2Vec Googles News embeddings offer pretrained 
language models on vast amounts of data. There are 
multiple ways to choose a context for embeddings: by 
window of size 𝒌𝒌 around a center word, by dependency 
tree around a word or by representing words as probabi-
lity distributions and discarding unlikely words. [4] 
generalize context embeddings to models of the expo-

nential family (ef-emb). [5] enhance ef-emb by creating a 
very complex selection procedure based on an amor-
tization network and variational inference to drop un-
important items from the context with an indicator 
vector. In theory context selection works with two func-
tions. The first is a function for selecting what a viable 
context is, e.g., 𝒄𝒄 =  𝒈𝒈(𝒙𝒙, 𝑿𝑿), where 𝒙𝒙 is the target item/ 
center word, 𝑿𝑿 all items/vocabulary. The second for sub-
sampling on the target and context 𝒇𝒇(𝒙𝒙, 𝒄𝒄). The origins 
of neural language models are based on [6] pro-posing a 
shallow single layer neural network with a softmax layer. 
The neural language model computes a conditional 
probability distribution over words – producing em-
beddings based on the 𝒏𝒏 preceding words, represented as 
a vector of dimensions 𝒅𝒅, shared across the entire 
network in the respective context vectors 𝑪𝑪. The most 
basic language model computes the conditional 
probabilities given a word 𝒘𝒘𝒕𝒕 and the preceding words 
using the chain rule. When the vocabulary grows large 
the normalization term in the denominator of the soft-
max becomes more difficult to handle. The model in [6] 
is intractable and could not be successfully build. The 
first model that successfully beat state-of-the-art lan-
guage models was Word2Vec by [3]. Later we will review 
word and subword-level embeddings. 

2 Word Embeddings  

At first we briefly review word-level embeddings. Cor-
pora typically consist of words that are part of sentences 
in documents. Before training, each sentence is tokeni-
zed and morphologically altered with stemming or 
lemmatization. Classical models use the bag of words 
model, so words are represented as a co-occurrence 
feature matrix. We start with Word2Vec, since almost 
every model leveraging embeddings in language take it 
as a point of reference. 
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2.1 Word2Vec 

[3] improved on several aspects of Bengio's model by 
using the skip-gram window function (an alternative 
would be CBOW) and a tractable approximation of the 
softmax called negative sampling/hierarchical softmax. 
Word2Vec has become the de facto standard in a lot of 
language downstream tasks. Google shipped pre-trained 
Word2Vec skip-gram models on Google News articles 
for everybody to use. The corpus is large (up to a billion 
words) and the dimensions of the latent space is large 
𝑑𝑑 = 300. The training would take weeks up to months 
on a just a few state-of-the-art GPUs, saving each 
researcher the time to train them themselves. We will see 
a great influx of pre-trained language models in the 
future because OOV words are a real issue and 
generalization on small sparse domains is highly 
problematic. While most of the premises of pre-trained 
models are great, they also introduce biases. [7] have 
shown that this particular dataset employs gender biases. 
Skip-gram predicts the context of a center word 𝑤𝑤𝑖𝑖  over 
a window 𝑐𝑐 such that 𝑤𝑤𝑖𝑖−𝑐𝑐 , … , 𝑤𝑤𝑖𝑖 , … , 𝑤𝑤𝑖𝑖+𝑐𝑐 is satisfied.  

1
𝑇𝑇

� � log 𝑠𝑠(𝑤𝑤𝑡𝑡+𝑗𝑗|𝑤𝑤𝑡𝑡)
−𝑐𝑐≤𝑗𝑗≤𝑐𝑐,𝑗𝑗≠0

𝑇𝑇

𝑡𝑡−1

 

CBOW does the opposite, given a word context 
𝑤𝑤𝑖𝑖−𝑐𝑐, … , 𝑤𝑤𝑖𝑖 , … , 𝑤𝑤𝑖𝑖+𝑐𝑐  predict the center word 𝑤𝑤𝑖𝑖  that is 
most likely. Negative sampling speeds up the 
performance by using the positive samples of the context 
words 2 ∗ 𝑐𝑐 and uses only a few negative samples that 
are not in its context. The respective objective cost 
function is  

 
where 𝜎𝜎 is the sigmoid function, a binary function, 
drawing 𝑘𝑘 samples from the negative or noise distribu-
tion 𝑃𝑃𝑛𝑛(𝑤𝑤), to distinguish the negative draws 𝔼𝔼𝑤𝑤𝑖𝑖  from 
the target word 𝑤𝑤𝑂𝑂 drawn from the context of 𝑤𝑤𝐼𝐼 . 
The objective of negative sampling is to learn high 
quality word embeddings by comparing noise (out of 
context) to words from the context. Another language 
model building upon Word2Vec is Global Vectors for 
Word Representation (GloVe) by [10], which is trained 
on an aggregated global word co-occurrence matrix from 
a corpus. The difference to Word2Vec is that the global 
statistics are taken into account contrary to Word2Vec, 
that works on local context windows alone. GloVe 
typically performs better than Word2Vec skip-gram, 
especially when the vocabulary is large. GloVe is also 
available on different corpora such as Twitter, Common 
Crawl or Wikipedia. 

2.2 Bag of Tricks - fastText 

Another interesting and popular word embedding model 
is fastText by [11]. It bases on a similar idea as Word2Vec. 
Instead of negative sampling - using the hierarchical 
softmax, and instead of words - using n-gram features. 
N-grams build on bag of words, commonly known as a 
co-occurrence matrix 𝑫𝑫 × 𝑽𝑽 where documents 𝑫𝑫 are 
rows and the whole vocabulary 𝑽𝑽 the features assuming 

i.i.d word order. Given a sequence of words [𝒘𝒘𝟏𝟏, … , 𝒘𝒘𝒌𝒌] 
n-grams take slices of 𝒏𝒏, e.g., [[𝒘𝒘𝟏𝟏, … , 𝒘𝒘𝒏𝒏]𝟏𝟏, … ,
[𝒘𝒘𝒊𝒊+𝟏𝟏, … , 𝒘𝒘𝒏𝒏+𝟏𝟏]𝒌𝒌]. fastText comes in two flavours: 
character-level and word-level n-grams. We will review 
the character-level n-grams later. 

 

The corresponding cost function where 𝒇𝒇 is the hierar-
chical softmax function, 𝒙𝒙𝒏𝒏 is a document with bag of n-
gram feature vectors, 𝑨𝑨 and 𝑩𝑩 are weight matrices and 
𝒚𝒚𝒏𝒏 the label given a classification task. The label 𝒚𝒚 in this 
case is the word. The unsupervised learning task is 
hierarchical softmax with CBOW denoted as 𝒇𝒇 and has 
the following form: 

. 
As can be seen instead of finding the surrounding context 
of a word 𝑤𝑤 we try to find the most probable word given 
the context 𝐶𝐶. What is novel about this approach is using 
n-gram features instead of windows speeding up the 
training, while still matching state-of-the-art results. 
fastText training time on a sentiment analysis task was 10 
seconds compared to the shortest running model of 2-3 
hours up to several days. As we see later, this model can 
be largely improved with character n-grams proposed in 
[12] and [13]. 

2.3 CoVe 

So far we have investigated shallow neural networks 
with single layers and therefore only one non-linearity. 
[14] have found that training an attentional sequence-to-
sequence model normally used for neural machine 
translations helps at enriching word vectors not just on 
the word-level hierarchy. By training a two-layer, 
bidirectional long short-term memory [15], on a source 
language (English) to a target (German), they achieve 
state-of-the-art performance. All sequences of words 𝒘𝒘𝒙𝒙 
are pre-initialized with GloVe(𝒘𝒘𝒙𝒙) where words become 
sequences of vectors.  

 
where 𝑤𝑤𝑚𝑚 is a sentence in the source language and 𝑤𝑤𝑧𝑧  a 
sentence of the target language maximizing the likely-
hood of an encoder MT-LSTM ℎ, a decoder LSTM ℎ𝑡𝑡

𝑑𝑑𝑒𝑒𝑐𝑐  

. 

The softmax attention 𝛼𝛼𝑡𝑡 over the decoder 𝒉𝒉𝒕𝒕
𝒅𝒅𝒅𝒅𝒄𝒄 

represents the relevance of each step from the encoder ℎ. 
ℎ𝑡𝑡�  then is a hidden state where the softmax and 𝒉𝒉𝒕𝒕

𝒅𝒅𝒅𝒅𝒄𝒄 are 
concatenated, possibly to attend to the relevant parts, 
while not forgetting what was learned during the 
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decoding. Intuitively we are training a machine 
translation model where the only interesting part are the 
learned context vectors for sequences of the MT-LSTM. 
It was shown that the model performs better, when 
concatenating GloVe and CoVe into one single vector. 
The idea behind this is that we can transfer the higher 
level features learned in sequence-to-sequence tasks to 
standard downstream tasks like classification. By first 
using GloVe on the word-level and then the MT-LSTM, 
we are creating layers of abstractions. Essentially this is 
a first step towards transfer learning, which is standard 
practice in computer vision tasks with pre-trained CNNs. 
The top achiever is a model called Char + CoVe-L with 
a large CoVe model concatenated with a n-gram 
character features model. 

2.4 Bias and Critique 

Currently is a time producing a lot of different models 
based on experimentation and educated guesses. It is 
usually left to the reader trying to find explanations in 
embeddings for language. What does a word-level 
embedding like Word2Vec actually represent? While 
there is still a lot of ground to cover, recent papers focus 
a little more on the whys instead of the hows. Before 
going into details about subword embeddings and 
selection procedures let us discuss some of the problems, 
challenges and critique gaining a little more insight on 
why embeddings actually work. Most of the state-of-the-
art models evaluate word embeddings with intrinsic 
evaluations. Intrinsic evaluation is usually qualitative, 
given a set of semantic word analogy pairs, test if the 
model connects them correctly. 𝑚𝑚𝑎𝑎𝑛𝑛���������⃗ − 𝑤𝑤𝑒𝑒𝑚𝑚𝑎𝑎𝑛𝑛���������������⃗ ≈
𝑘𝑘𝑘𝑘𝑛𝑛𝑘𝑘���������⃗ − 𝑞𝑞𝑠𝑠𝑒𝑒𝑒𝑒𝑛𝑛������������⃗  . The woman/queen vs. man/king is the 
most famous of all examples. One could deduct that 
given a large number of such analogy word pairs, testing 
the presence of synonymy, polysemy and word 
positioning is sufficient. Intrinsic evaluation shows 
exactly what works, not what does not work or even what 
works but should not. Extrinsically it is not possible to 
use labels testing the precision and recall of our system. 
And it is easy to see why: What would you expect should 
a general approximation of a word should look like? 
Should it be able to learn every possible dimension and 
therefore interpretation of what we perceive of it? If so, 
how should it learn to distinguish different domains with 
a different context? The context of a domain is never 
explained or given to the models.  
Given a reasonable amount of test cases, quality can be 
ensured to some extent. How good or bad they actually 
perform is usually tested in downstream language tasks. 
If the embeddings perform better on that specific task 
compared to a preceding model, it is declared state-of-
the-art. Interestingly, [7] show that even state of the art 
embeddings display a large amount of bias towards 
certain topics: 𝑚𝑚𝑎𝑎𝑛𝑛���������⃗ − 𝑤𝑤𝑒𝑒𝑚𝑚𝑎𝑎𝑛𝑛���������������⃗ ≈ 𝑠𝑠𝑟𝑟𝑒𝑒𝑘𝑘𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚𝑒𝑒𝑟𝑟�����������������������������⃗ −
ℎ𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑎𝑎𝑘𝑘𝑒𝑒𝑟𝑟��������������������������⃗ . 

Training real language models on real data yields real 
bias. The world and its written words are not fair and they 
incorporate really narrow views and concepts. Gender 
inequality and racism are two of the most challenging 

societal problems in the 21st century. Learning 
embeddings always yields a representation of the input. 
The bias is statistically significant. The problem is more 
obvious when considering that the standard Word2Vec 
model trained on the Googles News Corpus is applied on 
thousands of downstream language tasks. These kind of 
biases are not unique to language modelling and can be 
found in computer vision as well. [7] hints that there are 
three forms of bias: occupational stereotypes, analogies 
with stereotypes and indirect gender bias. They also 
acknowledge that not everything we perceive as bias 
should be seen as such, e.g. football and footballer is 
male dominant for other reasons than just bias. To debias 
embeddings the answer is quite clear: we need additional 
knowledge in form of gender specific word lists. [7] 
suggests to create a reference model 𝑘𝑘 with word vectors 
that are gender biased words.  
While this works for a direct bias, it is much harder with 
indirect bias to spread across different latent dimensions. 
Therefore, a debiasing algorithm is suggested with two 
steps 1.) Identify the gender subspace and 2.) Equalize 
(factor out gender) or soften (reduce magnitude). What 
do these models learn? [16] have found that Word2Vec 
with skip-gram and negative sampling is a PMI matrix. 
A (P)PMI matrix (extra P for keeping only positive 
entries) is a high dimensional and sparse context matrix, 
where each row is a word 𝑤𝑤 from the vocabulary 𝑉𝑉 and 
each column represents a context 𝑐𝑐, where it occurs. 
PPMI matrices are theoretically well known and provide 
a guiding hand for what Word2Vec actually learns. The 
problem of PPMI matrices is actually that you need to 
carefully consider each context for each occurring word, 
which does not scale up to billions of tokens. The results 
actually show that Word2Vec skip-gram with negative 
sampling is still the better choice from a view of 
precision and scalability. For further exploration of the 
theoretical aspects of word embeddings see [17]; for an 
explanation of the additivity of vectors [18], and for a 
geometric interpretation of Word2Vec skip-gram with 
negative sampling. 

3 Subword Embeddings 
Subword embeddings deal with words by slicing them 
into smaller proportions. This is advantageous due to the 
fact that single words and their corresponding vectors 
only match by symbolic comparison. Thus, there are 
advantages of representing words as vectors of sub-level 
symbolic representations, that first largely occurred in 
neural machine translations. The representations range 
from character CNNs/LSTMs [19] to character n-grams 
[12][13]. These models typically handle out-of-vocabu-
lary words much better than their corresponding word 
embeddings. While subword-level embeddings deal 
better with OOV and relatedness than words, there are 
dedicated strategies for OOV handling beyond subword 
embeddings. 

3.1 Out-of-vocabulary words 

Out-of-vocabulary (OOV) words is a problem in two 
circumstances. The first is that the amount of OOV 
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words is large, and second - the dataset is small and deals 
with niche words, where every word constitutes heavily. 
Words that do not match any given word vector are 
mapped to the UNK token. There are several strategies 
on dealing with OOV words ranging from using the 
context words around OOV words [20], using pre-trained 
language models to assign their vector to OOV words 
[21] or retrain character-level language models on pre-
trained models [22]. [20] found a few tricks to improve 
on Word2Vec with  their proposed model Nonce2Vec. 
They use pre-trained word embeddings from Word2Vec 
and treat OOV words as the sum of their context words. 
They show that this is applicable on smaller datasets as 
well. [21] found it effective to use vectors of pre-trained 
language models, where a word was OOV in their 
domain. Using the pre-trained vector of a different 
domain helped them in improving the initialization of 
their OOV words in comparison to assign a global UNK 
token to their data points. They improved models on 
reading comprehension considerably especially with 
OOV words. [22] have shown that generating OOV word 
embeddings by training a character-level model on a pre-
trained dataset. The goal is to re-create the vectors by 
leveraging character information. With a character-level 
vector word representation OOV words can be handled 
based on the sum of character vectors. They have found 
that this is much better in cases where the dataset is small 
and pre-trained embeddings are available. 

3.2 Character-level  

Character-level embedding models typically build on 
pre-trained word embeddings. Additionally characters 
based representations of words are itself vectors for each 
character of a word or vector representation of the n-
grams of a word. [23] explore different architectures for 
language modelling and compare three different models 
with differing inputs to language models. The three 
setups, see Figure 1, use an LSTM for the language 
model and either words as 

 

Figure 1: Three different models as 
depicted in [23] 

input and softmax as output, single characters with a 
CNN as input and output, or a character CNN as input 
with a softmax output. In the following we will explore 
different character-level models. [19] presents a model 
with a character-level convolutional neural network 
(CNN) with a highway network over characters. Charac-
ters are used as an input to a single layer CNN with max-
pooling, using a highway network, introduced in [24], 

similarly to a RNN with a carry mechanism, before 
applying a LSTM with a softmax for the most likely next 
word representation. Most interesting in this work is the 
application of the CNN with the highway network. A few 
things to note, the vocabulary 𝐶𝐶 over characters and 𝑑𝑑 as 
usual the embedding size, we deal with ℝ𝑑𝑑×|𝐶𝐶| matrix 
character embeddings. A word 𝑘𝑘 ∈ 𝑉𝑉 is decomposed as 
a sequence of characters [𝑐𝑐1, … , 𝑐𝑐𝑙𝑙], where 𝑙𝑙 = |𝑘𝑘|, the 
matrix representation then is 𝐶𝐶𝑘𝑘 ∈ ℝ𝑑𝑑×𝑙𝑙. The columns 
are character vectors, the rows character dimensions 𝑑𝑑. 
The character-level CNN maximizes the following cost 
function 

, 
where 𝐶𝐶𝑘𝑘 is a filter of width 𝑤𝑤 creating a feature map 𝑓𝑓𝑘𝑘, 
indexed by 𝑖𝑖 … 𝑖𝑖 + 𝑤𝑤 − 1 columns over the filters of 𝐶𝐶𝑘𝑘. 
⟨. . . ⟩ is the inner product. The convolution or kernel can 
be seen as a generator for character n-grams. This is then 
fed to 𝑦𝑦𝑘𝑘 which takes the maximum of the feature map, 
e.g., applies a max pooling transformation. After this 𝑦𝑦𝑘𝑘 
is used as input to a highway network, which is 
essentially a RNN/LSTM network with different gating 
mechanisms. 

. 

The transform gate 𝑡𝑡 maps the input into a different latent 
space, (1 − 𝑡𝑡) is the carry gate, deciding, what 
information will carry on over time. 𝑘𝑘(𝐹𝐹𝐻𝐻𝑦𝑦 + 𝑏𝑏𝐻𝐻) is a 
typical affine transformation with a non-linearity 
applied. ⨀ is the entry-wise product or Hadamard 
Product. Stacking several layers of highway networks 
allows to carry parts of the input to the output, while 
combining them in a recurrent fashion. At last, the output 
𝑧𝑧 is fit into an LSTM with a softmax to obtain distribu-
tions over the next word. [19] manages to reduce 
parameter size by 60% while achieving state of the art 
language modelling results. Furthermore, they find that 
their models learn semantic and orthographic relations 
from characters, arguing if word-level embeddings seem 
even necessary. They also successfully deal with OOV 
words assigning intrinsically chosen words like 
𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 to the correct word 𝑙𝑙𝑒𝑒𝑒𝑒𝑘𝑘, that word-level 
models failed to learn. 

3.3 Character n-grams  

While character-level models work on par with word-
level models, recent works focuse on character n-grams. 
Charagram by [13] is an approach to learn character-
level compositions, not the statistics of single characters. 
Given a textual word or sentence, e.g., a sequence of 
characters 𝑥𝑥 

𝑥𝑥 = ⟨𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚⟩, 𝑥𝑥𝑗𝑗
𝑖𝑖 = ⟨𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … ,𝑥𝑥𝑗𝑗�. 

Charagram produces a character n-gram count vector, 
where each character n-gram has its own vector 𝐹𝐹𝑚𝑚𝑗𝑗

𝑖𝑖
, if 

the n-gram 𝑥𝑥𝑗𝑗
𝑖𝑖 ∈ 𝑉𝑉 is part of all n-grams of the model. 𝑓𝑓 
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is the indicator function, if 𝑥𝑥𝑗𝑗
𝑖𝑖 ∈ 𝑉𝑉 then 1 else 0.  

. 
ℎ is a single non-linearity applied over the sum of all n-
gram character vectors of 𝑥𝑥, where 𝑘𝑘 is the maximum 
length of any character n-gram in the model. 𝑉𝑉 can be 
initialized by different choices as a model parameter. 
They achieve state-of-the-art results and further beating 
LSTM and CNN based models using the spearman's 𝜌𝜌 
correlation. 

 

Figure 2: Convergence as depicted in [13] 
As we can see in Figure 2, the convergence compared the 
other models is extremely fast, almost hitting an 
optimum in the first epochs and much faster than 
comparable models. It was also found that the models 
could be trained on far fewer examples while still being 
comparable to state-of-the-art models. OOV words are 
handled naturally, because Charagram represents words 
as the sum of characters that even unseen words can be 
trained and successfully embedded. [13] have shown that 
character n-grams can be used to beat state of the art 
models trained on words. [12] proposed an architecture 
using the Word2Vec skip-gram objective on a bag of 
words of character n-grams.  
The authors describe the skip-gram with negative 
sampling introduced by [3] and exchange the respective 
scoring function.Word2Vec takes two vectors 𝑠𝑠𝑤𝑤 and 𝑣𝑣𝑤𝑤 
element in ℝ𝑑𝑑, where 𝑑𝑑 is the dimensionality and 𝑠𝑠𝑤𝑤𝑡𝑡  is 
the target word vector with the corresponding context 
vectors 𝑣𝑣𝑤𝑤𝑐𝑐: 𝑠𝑠(𝑤𝑤𝑡𝑡 , 𝑤𝑤𝑐𝑐) = 𝑠𝑠𝑤𝑤𝑡𝑡

𝑇𝑇 ∙ 𝑣𝑣𝑤𝑤𝑐𝑐. 
We would like to represent a word as a character repre-
senttation through n-grams, e.g., 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 =  ⟨𝑤𝑤ℎ, 𝑤𝑤ℎ𝑒𝑒,
ℎ𝑒𝑒𝑟𝑟, 𝑒𝑒𝑟𝑟𝑒𝑒,  𝑟𝑟𝑒𝑒⟩. The above Word2Vec objective can be 
rewritten to represent each word as a bag of character n-
grams vector representation: 

. 
where 𝑧𝑧𝑔𝑔 is a vector representation of a single n-gram, 
from a global set 𝔾𝔾 with all character n-grams. We are 
interested in the Word2Vec objective, where each word 
is now a sum of these character n-gram representations 
𝔾𝔾𝑤𝑤 ⊂ 1, … , 𝔾𝔾. [12]successfully improve on the analogy 
task over previous models and deal with OOV words 
even where the morphemes do not match up. The size of 

n-grams matter and they suggest above 𝑛𝑛 > 2 or 𝑛𝑛 ≥ 5 
for languages like German with many noun compounds.  

4 Context Selection 
Context selection is about choosing a suitable function 
over a domain 𝔻𝔻 that maps a given center and its context 
to a latent space in ℝ𝑑𝑑 where 𝑑𝑑 is the dimension of a 
latent column space. In text context selection is narrowly 
replaced by the surrounding words 𝑐𝑐𝑤𝑤 ∈ ℝ𝑘𝑘×𝑑𝑑 of a target 
word 𝑤𝑤, where 𝑘𝑘 is a window size, which is generally 
known as the skip-gram objective. CBOW on the other 
hand is the reverse operation, given a context 𝑐𝑐𝑤𝑤 what is 
its center word. It turns out that context is a much larger 
topic than just in language modelling. We will first 
review a couple of concepts applied to general problems 
of count and real valued data, using exponential family 
distributions proposed by [4] and [5]. 

4.1 Generalization of Context selection  

Context embeddings are not only useful to textual data, 
but to sequential data of different shapes and forms as 
well. [4] presents a general procedure modelling on count 
and real valued data, using an expectation-maximization 
(EM) algorithm to approximate exponential family 
embeddings. The exponential family distributions are 
distributions with a special form given the natural 
parameters and sufficient statistics giving rise to the 
possibility of fitting different kinds of probability 
distributions to the same problem set. The most famous 
distributions are Gaussian, Poisson or categorical. [4] 
propose two example models for Gaussian (real valued) 
and Poisson (count based) distributions. The general 
form of exponential families are as follows: 

𝑥𝑥𝑖𝑖|𝑥𝑥𝑐𝑐𝑖𝑖~𝐸𝐸𝑥𝑥𝑠𝑠𝐹𝐹𝑎𝑎𝑚𝑚 �𝜂𝜂𝑖𝑖�𝑥𝑥𝑐𝑐𝑖𝑖�, 𝑡𝑡(𝑥𝑥𝑖𝑖)�, 
where 𝑥𝑥𝑖𝑖 is any data point, for which we like to learn the 
distribution, 𝑥𝑥𝑐𝑐𝑖𝑖  the context of each data point 𝑖𝑖. 𝜂𝜂𝑖𝑖�𝑥𝑥𝑐𝑐𝑖𝑖� 
is the natural parameter space that is always convex, e.g., 
within the bounds of the applicable finite integral of the 
function and 𝑡𝑡(𝑥𝑥𝑖𝑖) the sufficient statistic, a function that 
fully summarizes the data 𝑥𝑥 such that there exist no other 
statistic that provides additional information. The natural 
parameter has the general form  

𝜂𝜂𝑖𝑖�𝑥𝑥𝑐𝑐𝑖𝑖� = 𝑓𝑓𝑖𝑖(𝜌𝜌[𝑖𝑖]𝑇𝑇 � 𝛼𝛼[𝑗𝑗]𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑐𝑐𝑖𝑖

), 

where 𝜌𝜌[𝑖𝑖] are the embedding parameters for a respective 
target, 𝛼𝛼[𝑗𝑗] are the context parameters, a probability 
distribution over context elements, and 𝑓𝑓 is the link 
function that must be defined for each individual 
problem, connecting context with a data point. The 
objective cost function is the sum of log conditional 
probabilities of each data point which is then optimized 
using stochastic gradient descent. If the probability 
distribution is categorical, the objective is almost 
equivalent to Word2Vec with CBOW. 
Given this framework one can construct all kinds of 
contexts and link functions to solve embeddings for a 
specific domain. [5] propose an advancement on the ef-
emb by [4], by considering only a subset of elements in 
the context, instead of using all of them, naming their 
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model context selection for exponential family 
embeddings (CS-EFE). Additionally, CS-EFE depends 
on three parameters, the embeddings for a target, the 
context of the target and a hidden binary vector that 
indicates what the target depends on. The authors 
leverage amortized variational inference (VI). We will 
try to describe the work in 3 steps. Why VI? Why 
blackbox VI? Why amortized VI?  

 

Figure 3: Amortized inference network as 
depicted in [5] 

ef-emb could be easily optimized with gradient descent 
given the cost function. What has changed is that CS-
EFE deploys an additional set of coefficients 𝑏𝑏 that 
indicate if an element of a context is part of the target 
word or not. To do this we need to marginalize out this 
binary vector 𝑏𝑏. Therefore, we use VI to deposit the 
functional over the exponential family to approximate 
the best solution possible. While this is a good starting 
point, this objective is still intractable and we need to find 
ways to approximate this even further by the variational 
lower bound or ELBO and share parameters across the 
contexts, which VI alone is not able to do. This reduces 
the runtime and storage complexities considerably and 
introduces a lower error bound that guarantees errors 
lower than, but not errors close to. The first problem is 
that the original VI has no parameter sharing of the 
context 𝜐𝜐, which in this case is absolutely needed. 
Context is shared, that is why an amortization network 
for parameter sharing is needed, e.g., amortized VI. In 
Figure 3 we see the amortization network, where 𝑥𝑥 is the 
target, in language modelling the word 𝑤𝑤, the score 𝑠𝑠𝑛𝑛𝑗𝑗𝑘𝑘 
is a score over 𝛼𝛼𝑗𝑗𝑘𝑘 the context vector, 𝜌𝜌𝑗𝑗 the target 
embedding, 𝜋𝜋𝑛𝑛𝑗𝑗 are the prior probability parameters of 
𝑏𝑏𝑛𝑛𝑗𝑗𝑘𝑘 and ℎ𝑛𝑛𝑗𝑗𝑛𝑛

𝑘𝑘  are Gaussian kernels, where each score of 
each target word except the kth is assigned to one of the 
kernels. The second problem is that we cannot fit the 
variational distribution 𝑞𝑞(𝑏𝑏𝑛𝑛𝑗𝑗; 𝑣𝑣𝑛𝑛𝑗𝑗) to each target indivi-
dually and hence use blackbox VI, approximating the 
expectation by Monte Carlo sampling, obtaining noisy 
gradients of the ELBO. To simplify: Select the correct 
context from a window using a binary vector as indicator, 
which cannot be computed, using VI. VI cannot share 
parameters, which there are plenty of and cannot, even 
with sharing, estimate the correct gradients given the 
KLD. Using an indicator vector to select appropriate 
elements from the context results in variable length 
context vectors, for which we need a fixed size repre-
sentation. Instead of this we use Gaussian real valued 
kernels to estimate mean and variance for each binary 

vector and assign it. We use Monte Carlo sampling, 
because we would need to compute every possible 
setting between the binary vector and context vector, 
which guarantees an error that is smaller than the evi-
dence lower bound obtaining “tainted” or “noisy” 
gradients. 

4.2 Context selection  

Context selection in language models is at this point a 
well studied task. Word2Vec by [3] uses a context 
window of surrounding words. While this sounds 
intuitive, there are a lot of suggestions on improving this. 
Originally, [3] suggested to use sub-sampling to remove 
frequently co-occurring words and use context distribu-
tion smoothing reducing bias towards rare words. This is 
very much in conjunction with count based methods that 
clip off the top/bottom percent of a vocabulary. [25] have 
found that using dependency based word embeddings 
has an impact on the quality and quantity of functional 
similarity tasks such as 𝑐𝑐𝑒𝑒𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒. However, it is to note 
that on topical similarity tasks the suggested model 
performs worse. [25] note that mostly a linear context, 
e.g., windows, is used. Given a corpora and a target word 
𝑤𝑤, with a corresponding sentence (e.g., context) and 
modifiers of that sentence 𝑚𝑚1, … , 𝑚𝑚𝑘𝑘 with head ℎ, a 
dependency tree is created, see Figure 4, with the 
Stanford Dependency parser.  

 

Figure 4: Context capture as depicted in 
[25] 

The contexts (𝑚𝑚1, 𝑙𝑙1), … , (𝑚𝑚𝑘𝑘, 𝑙𝑙𝑘𝑘), (ℎ, 𝑙𝑙ℎ
1), where 𝑙𝑙 is the 

dependency relation between head and modifier (e.g., 
nsubj, dobj, prep with, amod). While 𝑙𝑙 is the forward 
relation or outgoing relation from the head - the target 
word - 𝑙𝑙1 is the in-going relation or inverse-relation. 
Given a Word2Vec model with a small window size of 
𝑘𝑘 = 2 and a larger window size 𝑘𝑘 = 5, the dependency 
based model learns different word relations and minimi-
zes two effects. We can see in Figure 4 that coincidental 
filtering takes place, because “Australian” is obviously 
not part of “science” in general, which Word2Vec would 
take as a context in either model. Secondly, if the 
window size is small, out-of-reach words like “discover” 
and “telescope” would have been filtered out. Longer 
more complex sentences could have several head words, 
where the context is out-of-reach in larger Word2Vec 
models as well. In comparison with Word2Vec, the 
dependency base model has a higher precision and recall 
on functional similarity tests. 
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4.3 Dict2Vec 

Word2Vec, GloVe and fastText create strong baseline 
models for word embeddings. Newer trends also incur-
porate additional information from external data sources, 
augmenting word vectors. [26] improve on the 
Word2Vec model by [3] using dictionaries. Dictionaries 
are records with a word mapping to a definition.  

Guitar - a stringed musical instrument, with a fretted 
fingerboard, typically incurved sides, and six or twelve 
strings, played by plucking or strumming with the fingers 
or a plectrum. 
The key concept presented in [26] is that each word can 
be weakly and strongly linked to each other given the 
definition. For instance, the Guitar and Violin share the 
words stringed musical instrument, that should strongly 
tie them together. In the definition of the Violin there is 
no plucking or strumming and thus is considered a weak 
pair. Moreover weak pairs are promoted to strong pairs, 
when they are within the 𝐾𝐾 closest neighbouring words 
calculated with a cosine distance. The skip-gram object-
tive with negative sampling can be rephrased given the 
definition to positively and negatively couple words. The 
positive sampling cost function is 

𝐉𝐉𝐩𝐩𝐩𝐩𝐩𝐩(𝐰𝐰𝐭𝐭) = 𝜷𝜷𝒔𝒔 ⋅  ∑ 𝓵𝓵(𝒗𝒗𝒕𝒕 ⋅ 𝒗𝒗𝒊𝒊) = 𝜷𝜷𝒘𝒘 ⋅  ∑ 𝓵𝓵�𝒗𝒗𝒕𝒕 ⋅ 𝒗𝒗𝒋𝒋� 𝒘𝒘𝒋𝒋∈𝑽𝑽𝒘𝒘(𝒘𝒘𝒕𝒕)  𝒘𝒘𝒊𝒊∈𝑽𝑽𝒔𝒔(𝒘𝒘𝒕𝒕) . 

ℓ is the logistic loss function, 𝒘𝒘𝒕𝒕 is each target word of 
the corpus with its corresponding vector 𝒗𝒗𝒕𝒕, 𝑽𝑽𝒔𝒔(𝒘𝒘𝒕𝒕) are 
strong pairs, 𝑽𝑽𝒘𝒘(𝒘𝒘𝒕𝒕) are weak pairs and 𝒗𝒗𝒊𝒊/𝒗𝒗𝒋𝒋 are corres-
ponding strong and weak pair vectors. The hyperpara-
meters 𝜷𝜷𝒔𝒔 and 𝜷𝜷𝒘𝒘 are chosen to best fit to the learning of 
strong and weak pairs. Set to zero, the model behaves 
exactly like Word2Vec. The corresponding negative 
sampling cost function is 

𝐉𝐉𝐧𝐧𝐧𝐧𝐧𝐧(𝐰𝐰𝐭𝐭) = ∑ 𝓵𝓵(−𝒗𝒗𝒕𝒕 ⋅ 𝒗𝒗𝒊𝒊)𝒘𝒘𝒊𝒊∈𝓕𝓕(𝒘𝒘𝒕𝒕),𝒘𝒘𝒊𝒊∉𝓢𝓢(𝒘𝒘𝒕𝒕),𝒘𝒘𝒊𝒊∉𝓦𝓦(𝒘𝒘𝒕𝒕) . 

Where 𝒘𝒘𝒊𝒊 is chosen such that it is randomly chosen from 
the vocabulary at random without self 𝓕𝓕(𝒘𝒘𝒕𝒕) and it is not 
part of strong 𝒘𝒘𝒊𝒊 ∉ 𝓢𝓢(𝒘𝒘𝒕𝒕) or weak 𝒘𝒘𝒊𝒊 ∉ 𝓦𝓦(𝒘𝒘𝒕𝒕) word 
pairs. Which results in the cost function 𝐽𝐽 from a target 
word 𝒘𝒘𝒕𝒕 with a context 𝒘𝒘𝒄𝒄: 

𝐽𝐽(𝒘𝒘𝒕𝒕, 𝒘𝒘𝒄𝒄) =  𝓵𝓵(𝒗𝒗𝒕𝒕 ⋅ 𝒗𝒗𝒄𝒄) + 𝐉𝐉𝐩𝐩𝐩𝐩𝐩𝐩(𝐰𝐰𝐭𝐭) + 𝐉𝐉𝐧𝐧𝐧𝐧𝐧𝐧(𝐰𝐰𝐭𝐭). 
The results show an improvement over state-of-the-art 
models on word similarity and text classification. They 
parsed and trained on a last language corpus from 
Wikipedia comparing a pre-trained Word2Vec model 
augmented with dictionaries, a retrofitted model using 
WordNet and a single model on a raw corpus. Dict2Vec 
showed superior results on the raw corpus and improved 
the other models by up to 13%.  

4.4 Comparison  

[27] have found that different downstream and language 
modelling tasks need different types of context applied. 
They compare window-based, substitution-based, depen-
dency-based, concatenation and SVD on sub-sampling 
context for word embeddings. In Figure 5 we can see 
three kinds of datasets. WordSim-353-R, for topical 

coherence, WordSim-353-S and SimLex999 for 
functional similarity and TOEFL for evenly balanced 
parts of topical coherence and functional similarity. First 
to note: substitution based word embeddings performed 
worse overall in all domains. The idea is to substitute 
words in sentences, e.g., “I love my job” [𝐼𝐼, ? , 𝑚𝑚𝑦𝑦, 𝑗𝑗𝑒𝑒𝑏𝑏], 
substituting for “love” yields 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒 =  [𝑞𝑞𝑠𝑠𝑖𝑖𝑡𝑡 0.5, 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒0.3,
ℎ𝑎𝑎𝑡𝑡𝑒𝑒0.1, 𝑙𝑙𝑒𝑒𝑠𝑠𝑡𝑡0.1] learned by a language model. What we 
can immediately see is that typical word embeddings like 
Word2Vec with window 1, 5 and 10 outperform the 
other models on topical coherence WordSim-353-S and 
are on par with dependency based models on SimLex999 
and TOEFL. Further, dependency-based models perform 
much better on functional similarly tasks like WordSim-
353-S. Their results also suggest that concatenating 
different word embeddings yields the highest results on 
downstream language tasks such as parsing, ner or 
sentiment. Unfortunately, Dict2Vec is not in the list of 
curated models as it is still being evaluated and new. 

 

Figure 5: Context results as depicted in 
[27] 

5 Conclusion  
In this paper we explored a wide variety of concepts dealing 
with word-level and subword-level embeddings as well as 
context selection procedures. All of the suggested methods 
have assets and drawbacks. However, strategies using pre-
trained character n-grams on large datasets with negative 
sampling/hierarchical softmax on the skip-gram and 
CBOW objective performs best. That is, they bring all the 
features of pre-trained word embeddings, while dealing 
with OOV words and faster training. It would be interesting 
to see if character-level embeddings could be enhanced with 
procedures like 𝐷𝐷𝑖𝑖𝑐𝑐𝑡𝑡2𝑉𝑉𝑒𝑒𝑐𝑐, 𝐺𝐺𝑙𝑙𝑒𝑒𝑉𝑉𝑒𝑒 and 𝐶𝐶𝑒𝑒𝑉𝑉𝑒𝑒 to leverage 
external sources and incorporate global statistics as well. 
Word2Vec is the basic work-unit behind all current text 
representation learning tasks. Besides what is covered here, 
there are multiple research directions open. E.g., statistical 
models that treat words as a distribution, see [28] and [29]. 
They treat words as a probability mass functions (pmfs) and 
can express uncertainty in different dimensions as well as 
deal with all kind of WSD problems and entailment. [30] 
goes even further by representing words as hierar-chical 
pmfs. Instead of changing how the representation is created, 
they alter the representation to fit certain conditions and 
features. Another issues are domain adaptation and transfer 
learning techniques. In the future they will help in dealing 
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with the asymmetry of data. Given a dataset of a domain 
that is well known, generalize it to a target domain with 
fewer samples. This will be particularly helpful in smaller 
domains and help transpose different ideas beyond the 
current context. At last there is a desperate need for further 
theoretical under-standing. It is hard to compare every 
model and even harder when the evaluation is largely 
intrinsic and effects can only be indirectly tested in 
downstream language tasks. Here we will also work on 
further improvements. 
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