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Abstract. Analytics based on sensor data is gradually becoming an industry standard in equipment 
maintenance. However, it involves several challenges, such as sensor data preprocessing, feature engineering 
and forecasting model development. Due to work in progress, this paper is mainly focused on sensor data 
preprocessing, which plays a crucial role in predictive maintenance due to the fact, that real-world sensing 
equipment usually provides data with missing values and a considerable amount of noise. Obviously, poor 
data quality can render practically useless all the following steps of data analysis. Thus, many missing data 
imputation, outlier filtering, and noise reduction algorithms were introduced in the literature. Streaming 
sensor data can be represented in a form of univariate time series. This paper provides an overview of common 
univariate time series preprocessing steps and the most appropriate methods, with consideration of the field 
of application. Sensor data from different sources comes in different scales and should be normalized. Thus, 
the comparison of univariate time series normalization techniques is given. Conventional algorithm quality 
metrics for each of the preprocessing steps are described. Basic sensor data quality assessment approach is 
suggested. Moreover, the architecture of a sensor data preprocessing module is proposed. The overview of 
time series-specific feature engineering techniques is given. The brief enumeration of considered forecasting 
approaches is provided. 
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1 Introduction 
Maintenance costs are a major part of the total operating 
costs of any business involving complex equipment. 
Conducted surveys of maintenance management 
effectiveness indicate that one-third of all maintenance 
costs is wasted as the result of unnecessary or improperly 
carried out maintenance [16]. With the spread of Internet 
of Things concept, sensor data can be collected from a 
huge amount of devices and equipment. This data can be 
used for real-time health monitoring and effective 
maintenance. However, this approach to maintenance, 
also known as predictive maintenance, involves several 
challenges. 

First of all, often collected data is of poor quality, 
which can lead to unreliable analysis and ineffective 
maintenance. Consequently, data from sensing 
equipment needs to be preprocessed before it can be used 
for any analysis. Poor data quality means non-
compliance with requirements on at least one of the data 
quality assessment metrics. The root of problems can 
vary: connection issues, sensor malfunction, transmitting 
hardware failure, data processing server downtime, 
software crash, measuring equipment inaccuracy and 
many more. Common cases of poor data quality involve 

unacceptable amount of missing values, outliers, sudden 
spikes etc. Simply ignoring these issues can be critical 
due to several reasons. For example, some analysis tools, 
including popular machine learning algorithms, can’t 
handle missing values. The absence of outlier filtration 
can dramatically skew the results. Measuring equipment 
standard error can be mistaken for an actual pattern in 
data. As a result, time series preprocessing involves 
several independent steps: missing data imputation, 
noise reduction, and data normalization. After these 
steps, data can be evaluated in quality and passed further 
for analysis. It is clear, that preprocessing should be done 
in near real-time to minimize the delay between data 
measurement and decision making. Thus, there is a need 
for a fast and scalable independent module, that can 
preprocess constantly incoming sensor data. This paper 
proposes the design of such a module, keeping in mind 
the following integration with the existing architecture of 
a predictive maintenance system, introduced in [14]. 

Secondly, it can be difficult to distinguish the patterns 
and relationships in the initial data. The process of 
extracting and generating new characteristics and 
features out of the available data, commonly referred to 
as feature engineering, has two main objectives. The first 
one is to represent the data in such a form, that will make 
it easier to establish simple yet strong connections 
between the input and the output variables for the 
forecasting model, increasing the quality of the forecasts. 
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The second objective is to pick the most useful features 
out of all the available ones, reducing the amount of 
computations of the forecasting model. 

Finally, a proper forecasting model is to be chosen 
and implemented. There are various approaches to time 
series forecasting, from straightforward methods like 
naive method to way more sophisticated ones like long-
short term recurrent neural network. The main 
complication here is the trade-off between the forecast 
quality and the ease of model implementation and 
deployment. 

The remaining part of the paper is organized as 
follows. The preprocessing module architecture is 
described in Section 2. Section 3 reviews missing data 
imputation methods. Section 4 is devoted to time series 
noise reduction. Section 5 briefly overviews data 
normalization techniques. In section 6, some thoughts on 
data quality assessment are combined. Section 7 is 
devoted to time series feature engineering. The brief 
overview of time series forecasting approaches is given 
in section 8. Finally, the future directions of presented 
work are given in section 9. 

2 Preprocessing Module Architecture 

The preprocessing module is a part of the system for 
predictive maintenance, deployed to a Hadoop [29] 
cluster in a cloud manner. The module is wrapped in 
Docker [17] container and runs on a standalone node of 
the cluster. One of the key requirements for the module 
is the seamless integration into the architecture. The data 
is retrieved from Apache Kafka message queue [2], 
transformed by the preprocessing module and passed in 
parallel to OpenTSDB [25] and Apache Hive [11] for 
storage. To satisfy the requirements onto speed and 
scalability the transformations are conducted onto 
Apache Spark Streaming engine [27]. 
There are many stream data processing frameworks 
including but not limited to Apache Storm [5], Apache 
Flink [1], Apache Samza [4] and Kafka Streams [3]. 
Although Spark Streaming has latency issues and sliding 
window processing may be tricky due to Spark inherent 
batch-based streaming model, is has several advantages 
which make Spark Streaming a safer choice. 
First of all, Spark Streaming is a mature framework with 
thorough documentation and huge community. As a 
result of long-term popularity, there are plenty of open-
source tools for Spark Streaming, including solutions for 
relatively painless integration with Kafka and mentioned 
earlier database management systems [28, 11, 21]. 
Another advantage is the existence of pySpark [23] – an 
API for Python, one of the biggest programming 
languages at this moment. All other enumerated 
frameworks require Scala, Clojure or Java knowledge, 
which makes them less accessible. 
One of the biggest downsides of Spark Streaming is 
performance degradation on sudden bursts of input data. 
However, in case of sensor data processing the input data 
flow intensity remains nearly the same at all time 
intervals, which mitigates the downside. 

The data flow and module components are introduced 

below in figure 1. The whole module consists of 4 
transformation steps and the data quality assessment 
step. 

Figure 1 Components and data flow within the 
preprocessing module 
 
3 Missing Data Imputation 
Sometimes due to a sensor malfunction, unstable internet 
connection or other technical difficulties the data for 
some points in time is missing. Simply ignoring those 
gaps may be not the best strategy, because it can lead to 
a loss of efficiency and unreliable results of the analysis. 
Another approach is to try to impute the missing values 
based on the available information. 

3.1 Methods 

The detailed overview of basic imputation methods and 
their implementations can be found in imputeTS R 
package documentation [19]. 

Some simple methods that are applicable not only to 
time series: median imputation, mode imputation, mean 
imputation, random imputation. These methods are fast 
and very straight-forward, but lack accuracy. 
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Simple time series specific methods include LOCF 
(last observation carried forward), NOCB (next 
observation carried backward), interpolation (linear, 
polynomial, Stineman) and moving average (simple, 
weighted, exponential). All of them are rather fast and 
can work in specific cases, but fall off when there is 
seasonality in the data or large missing sub-sequences. 

More sophisticated approaches like Structural Model 
& Kalman Smoothing, ARIMA State Space 
Representation & Kalman Smoothing [10] can be used 
for seasonal data with complex patterns. 

However, sensor data has one unfortunate 
characteristic – the gaps of missing data can be too long 
for conventional methods to work properly. In this case, 
the method proposed in [22] can be the appropriate 
choice. The idea of the Dynamic Time Warping Based 
Imputation is to find the most similar sub-sequence to the 
sub-sequence before the missing values, then complete 
the gap by the next sub-sequence of the most similar one. 
The result is a very plausible gap imputation with a 
drawback of a huge computational cost. 

3.2 Metrics 

Missing data imputation involves 2 types of quality 
metrics based on the pattern of imputation. 

For single value imputations, the metrics coincide 
with the ones commonly used in time series forecasting 
– RMSE (Root Mean Square Error)and MAPE (Mean 
Absolute Percentage Error). 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ (𝑠𝑠�̂�𝚤−𝑠𝑠𝑖𝑖)2𝑖𝑖
𝑛𝑛

, 

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 = 100%
𝑛𝑛

× ∑ �𝑠𝑠𝑖𝑖−𝑠𝑠�̂�𝚤
𝑠𝑠𝑖𝑖

�𝑖𝑖 , 
where yi is real value, ŷi is the forecasted value and n 

is the number of forecasts. 
However, different metrics are used for long gap 

imputation. The most popular of them are similarity and 
Dynamic Time Warping distance. 

𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑎𝑎𝑟𝑟𝑖𝑖𝑡𝑡𝑦𝑦 =
1
𝑛𝑛
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1
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𝑚𝑚𝑎𝑎𝑥𝑥(𝑦𝑦�̂�𝚤) − 𝑚𝑚𝑖𝑖𝑛𝑛(𝑦𝑦�̂�𝚤)

�𝑖𝑖
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DTW calculation algorithm can be found at [19]. It is 
worth mentioning, that modern implementations often 
have adjustments to speed up the calculations (for 
example, DDTW [13]). 

 
4 Noise Reduction 

Similar to missing data points, sensor data is usually 
contaminated with noise, which can be mistaken for 
actual data pattern, which yet again leads to a loss of 
efficiency and unreliable results of the analysis. The task 
of noise reduction is to subtract the maximum amount of 
noise from the initial data, leaving the maximum amount 
of useful signal. 

4.1 Methods 

According to Chen et al. [6] noise reduction methods 
can be divided into 2 categories: frequency domain 
approaches and time domain approaches. 

Frequency domain approaches are based on signal 
decomposition into frequency components. The most 
common approaches involve discrete/fast/short-time 
Fourier transform either wavelet transform. 

Most of the time domain approaches are based on 
smoothing the signal of each given data point based on 
the values of its neighbors. 

The comparison of the basic noise reduction methods 
can be found in the work of Köhler et al. [15]. The 
conducted experiment involves the comparison of 
moving average filter, exponential smoothing filter, 
linear Fourier smoothing, nonlinear wavelet shrinkage 
and simple nonlinear noise reduction in different 
conditions. 

The downside of the approaches listed above is that 
they modify almost all the data values, most of which are 
initially correct. Song et al. [26] proposed the first 
constraint-based approach for cleaning stream data. The 
idea is to sanity check the changes of values in time based 
on subject area constraints. This method allows to detect 
and repair large spike errors in data. The biggest 
advantage of this method is the support of online 
cleaning over streaming data. 

However, this method can be used only for large 
outlier detection. In some cases, even small errors can be 
important and repairing only spike errors is insufficient. 
Zhang et al. [30] proposed a novel statistical-based 
cleaning by introducing the repairment likelihoods with 
respect to speed changes. Several effective and 
computationally efficient heuristics are also introduced 
in this work. 

4.2 Metrics 

Most of the papers involve RMSE, defined earlier, as a 
denoising quality metric. However, there are several less 
popular ones, including the Symmetrical Visual Error 
Measure, proposed in [18]. 

 
5 Data Normalization 

Making sure that your data is of uniform scale is key 
for many methods, including k-NN, linear models, 
artificial neural networks and many more. Even 
univariate time series data should be normalized because 
it might be further used in combination with data of 
different scale from other sources. 

The most well-known and widely used are min-max 
normalization and z-score normalization. Min-max 
implies that you know the minimum and the maximum 
values in your dataset beforehand, which is often not the 
case. Z-score is more robust but performs poorly om non-
stationary time series. 

ŷ𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑠𝑠−𝑚𝑚𝑖𝑖𝑛𝑛(𝑌𝑌)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌)−𝑚𝑚𝑖𝑖𝑛𝑛(𝑌𝑌)

, 

ŷ𝑧𝑧−𝑠𝑠𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒 = 𝑠𝑠−𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛(𝑌𝑌)
𝑠𝑠𝑡𝑡𝑑𝑑(𝑌𝑌)

, 
where ŷ is a value after normalization, y is a value 

prior normalization and Y is the set of values being 
normalized. 

Some less popular methods are decimal scaling 
normalization, which holds all the drawbacks of min-
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max normalization, sigmoid normalization, which is 
actively used in neural networks and tanh estimators, 
which roughly can be described as a hyperbolic tangent 
of the z-score normalization. 

ŷ𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑙𝑙 = 𝑠𝑠
10𝑐𝑐, 

where d is the order of values in the set. 
ŷ𝑠𝑠𝑖𝑖𝑔𝑔𝑚𝑚𝑡𝑡𝑖𝑖𝑑𝑑 = 1

1+𝑒𝑒𝑦𝑦, 

ŷ𝑡𝑡𝑚𝑚𝑛𝑛ℎ = 0.5 ∗ �𝑡𝑡𝑎𝑎𝑛𝑛ℎ �0.01∗�𝑠𝑠−𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛(𝑌𝑌)�
𝑠𝑠𝑡𝑡𝑑𝑑(𝑌𝑌)

� + 1�. 
According to the experiment, conducted in [20], there 

is no optimal time series normalization method and one 
should choose the appropriate method based on the data 
patterns. Regarding sensor data, the mean and standard 
deviation remain approximately the same throughout 
time, which makes z-score normalization a reasonable 
choice. 

 
6 Data Quality Assessment 
Data Quality Assessment (DQA) is the scientific and 
statistical evaluation of data to determine if data obtained 
from environmental data operations are of the right type, 
quality, and quantity to support their intended use [8]. 

There is a comprehensive work on time series data 
quality assessment done in [9], which shows that there 
are dozens of different metrics that can be used to 
measure the quality of data. Obviously, using all of them 
is excessive and computationally inefficient, so only a 
few are to be chosen. However, there is no common view 
on which metrics are better. The simple yet effective 
strategy might be to look onto the most popular ones: 
• event data loss (gaps in the data); 
• values out of range (values out of sane interval for 

the domain); 
• value spikes (improbable sudden changes); 
• wrong timestamps; 
• rounded measurement value (not desirable level of 

detail); 
• signal noise (slightly inaccurate measurements). 

The assessment is to be done for both data prior and 
after preprocessing to acquire an evaluation of 
preprocessing module effectiveness. It is also worth 
keeping in mind, that initially clean data is different to 
the data, that was made “clean” during preprocessing due 
to approximations and inevitable errors of the methods 
involved on each step. 

7 Feature Engineering 

Feature engineering is, probably, the most peculiar step 
of data processing, as it depends on the initial data type, 
its origin, quantity, quality, the desired output of the 
forecasting model and even the nature of the model itself. 
As it was already mentioned, sensor data can be 
represented in a form of univariate time series. The 
conventional approaches to time series feature 
engineering can be divided into 3 categories: timestamp 
features, statistical features, and spectral features. The 
feature extraction step is usually followed by a 
dimensionality reduction step. 

It is worth mentioning, that there are automatic time 
series feature engineering tools such as tsfresh [7], which 
achieve decent results with almost no effort required. 

7.1 Timestamp Features 

The idea of this approach is to extract the features from 
the timestamp of each observation. The most commonly 
used features are: 
• minutes elapsed for the day; 
• hour of the day; 
• day of the month; 
• weekend or not; 
• season of the year; 
• public holiday or not. 

Talking about sensor data, some examples of useful 
timestamp features are: 
• time since the last maintenance; 
• age of equipment; 
• time since the last failure; 
• operating time of equipment. 

Using just these features alone for predictions will 
likely result in a poor model. However, in combination 
with other features, they can boost the quality of 
forecasts. 

7.2 Statistical Features 

This approach involves sliding through a time series with 
the window of a given width and calculating statistics for 
each iteration. The most common statistical features are 
the mean of the previous few values, the median, the 
mode, the minimal value, the maximum value, the 
standard deviation and many more. In addition to 
calculated statistics, we can also use the lagged values of 
a time series as features. 

The biggest challenge of this approach is that the 
window can be of any width and there is no general 
algorithm to choose it. Usually, the researchers just try 
out several values of the width and choose the one that 
performs best. However, if there is a seasonal pattern in 
data, it is worth making the width of the window not less 
than the period of the seasons. 

7.3 Spectral Features 

Different variations of Fourier transform and wavelet 
transform are used to extract spectral features from a 
nonstationary signal. The basic idea behind those 
methods is to decompose a given time series into a sum 
of several basic functions, providing a different 
representation of the initial signal. The biggest drawback 
of those methods is that they are relatively 
computationally expensive. 

7.4 Dimensionality Reduction 

Feature extraction provides many features, some of 
which can be useless or strongly correlated with each 
other. Excessive features not only add unnecessary 
computations but also can decrease the quality of the 
model. Thus, several dimensionality reduction methods 
were introduced to minimize the number of features, at 
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the same time keeping the maximum amount of 
information. The most common ones are principal 
component analysis, independent component analysis 
and partial least squares regression. 

8 Remaining Lifetime Forecasting 

There is a variety of methods, that can be used for time 
series forecasting. Each of them has advantages and 
drawbacks and can be viable in certain circumstances. 

First of all, there are some basic methods such as 
average method, naive method, seasonal naive method, 
and drift method, which are very simple yet can be 
effective when the data pattern is easy. 

Secondly, linear regression models can be used for 
forecasting. In the simplest case, the regression model 
allows for a linear relationship between the forecast 
variable and some predictor variables. The biggest 
downside is inherent linearity, while real-world data is 
mostly non-linear. 

The most common approach is to use stochastic 
models – ARMA, ARIMA, SARIMAX, etc. One of the 
biggest drawbacks of those models is that they require 
fine-tuning of several hyperparameters, which is 
computationally expensive and not intuitive. 

One of the recently popular approaches is to use 
decision trees. Random forests and gradient boosting 
methods, which are so widely used in machine learning 
competitions, can also be used for time series 
forecasting. 

Artificial neural networks approach for time series 
forecasting gained immense popularity in last few years. 
Their modifications – recurrent neural networks (RNNs) 
and long short-term memory networks (LSTMs) are 
especially effective for this task due to their “memory” 
component. Although neural networks tend to be the most 
accurate forecasting method when tuned properly and given 
enough data, they might be computationally too costly for 
the considered conditions. 

9 Conclusion 

In this study, the overview of sensor data preprocessing 
steps, methods, and common metrics is held. Some 
thoughts on sensor data quality assessment are given. 
The architecture of a fast, scalable preprocessing module 
is proposed. A brief overview of time series feature 
engineering techniques and forecasting methods is given. 
The future goals of the ongoing work are to implement 
the designed preprocessing module on Spark Streaming 
engine, integrate it into the existing predictive 
maintenance pipeline, implement the feature engineering 
step and to develop a remaining lifetime forecasting 
model. 
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