

Sensor Data Preprocessing, Feature Engineering and
Equipment Remaining Lifetime Forecasting for Predictive

Maintenance

© Evgeniy Latyshev
Lomonosov Moscow State University,

Moscow, Russia
e.latishev@gmail.com

Abstract. Analytics based on sensor data is gradually becoming an industry standard in equipment
maintenance. However, it involves several challenges, such as sensor data preprocessing, feature engineering
and forecasting model development. Due to work in progress, this paper is mainly focused on sensor data
preprocessing, which plays a crucial role in predictive maintenance due to the fact, that real-world sensing
equipment usually provides data with missing values and a considerable amount of noise. Obviously, poor
data quality can render practically useless all the following steps of data analysis. Thus, many missing data
imputation, outlier filtering, and noise reduction algorithms were introduced in the literature. Streaming
sensor data can be represented in a form of univariate time series. This paper provides an overview of common
univariate time series preprocessing steps and the most appropriate methods, with consideration of the field
of application. Sensor data from different sources comes in different scales and should be normalized. Thus,
the comparison of univariate time series normalization techniques is given. Conventional algorithm quality
metrics for each of the preprocessing steps are described. Basic sensor data quality assessment approach is
suggested. Moreover, the architecture of a sensor data preprocessing module is proposed. The overview of
time series-specific feature engineering techniques is given. The brief enumeration of considered forecasting
approaches is provided.

Keywords: predictive maintenance, preprocessing, univariate time series, data cleaning, missing data
imputation, noise reduction, outlier filtering, data quality assessment, feature engineering, time series
forecasting

1 Introduction
Maintenance costs are a major part of the total operating
costs of any business involving complex equipment.
Conducted surveys of maintenance management
effectiveness indicate that one-third of all maintenance
costs is wasted as the result of unnecessary or improperly
carried out maintenance [16]. With the spread of Internet
of Things concept, sensor data can be collected from a
huge amount of devices and equipment. This data can be
used for real-time health monitoring and effective
maintenance. However, this approach to maintenance,
also known as predictive maintenance, involves several
challenges.

First of all, often collected data is of poor quality,
which can lead to unreliable analysis and ineffective
maintenance. Consequently, data from sensing
equipment needs to be preprocessed before it can be used
for any analysis. Poor data quality means non-
compliance with requirements on at least one of the data
quality assessment metrics. The root of problems can
vary: connection issues, sensor malfunction, transmitting
hardware failure, data processing server downtime,
software crash, measuring equipment inaccuracy and
many more. Common cases of poor data quality involve

unacceptable amount of missing values, outliers, sudden
spikes etc. Simply ignoring these issues can be critical
due to several reasons. For example, some analysis tools,
including popular machine learning algorithms, can’t
handle missing values. The absence of outlier filtration
can dramatically skew the results. Measuring equipment
standard error can be mistaken for an actual pattern in
data. As a result, time series preprocessing involves
several independent steps: missing data imputation,
noise reduction, and data normalization. After these
steps, data can be evaluated in quality and passed further
for analysis. It is clear, that preprocessing should be done
in near real-time to minimize the delay between data
measurement and decision making. Thus, there is a need
for a fast and scalable independent module, that can
preprocess constantly incoming sensor data. This paper
proposes the design of such a module, keeping in mind
the following integration with the existing architecture of
a predictive maintenance system, introduced in [14].

Secondly, it can be difficult to distinguish the patterns
and relationships in the initial data. The process of
extracting and generating new characteristics and
features out of the available data, commonly referred to
as feature engineering, has two main objectives. The first
one is to represent the data in such a form, that will make
it easier to establish simple yet strong connections
between the input and the output variables for the
forecasting model, increasing the quality of the forecasts.

Proceedings of the XX International Conference
“Data Analytics and Management in Data
Intensive Domains” (DAMDID/RCDL’2018),
Moscow, Russia, October 9-12, 2018

226

mailto:first@author.email

The second objective is to pick the most useful features
out of all the available ones, reducing the amount of
computations of the forecasting model.

Finally, a proper forecasting model is to be chosen
and implemented. There are various approaches to time
series forecasting, from straightforward methods like
naive method to way more sophisticated ones like long-
short term recurrent neural network. The main
complication here is the trade-off between the forecast
quality and the ease of model implementation and
deployment.

The remaining part of the paper is organized as
follows. The preprocessing module architecture is
described in Section 2. Section 3 reviews missing data
imputation methods. Section 4 is devoted to time series
noise reduction. Section 5 briefly overviews data
normalization techniques. In section 6, some thoughts on
data quality assessment are combined. Section 7 is
devoted to time series feature engineering. The brief
overview of time series forecasting approaches is given
in section 8. Finally, the future directions of presented
work are given in section 9.

2 Preprocessing Module Architecture

The preprocessing module is a part of the system for
predictive maintenance, deployed to a Hadoop [29]
cluster in a cloud manner. The module is wrapped in
Docker [17] container and runs on a standalone node of
the cluster. One of the key requirements for the module
is the seamless integration into the architecture. The data
is retrieved from Apache Kafka message queue [2],
transformed by the preprocessing module and passed in
parallel to OpenTSDB [25] and Apache Hive [11] for
storage. To satisfy the requirements onto speed and
scalability the transformations are conducted onto
Apache Spark Streaming engine [27].
There are many stream data processing frameworks
including but not limited to Apache Storm [5], Apache
Flink [1], Apache Samza [4] and Kafka Streams [3].
Although Spark Streaming has latency issues and sliding
window processing may be tricky due to Spark inherent
batch-based streaming model, is has several advantages
which make Spark Streaming a safer choice.
First of all, Spark Streaming is a mature framework with
thorough documentation and huge community. As a
result of long-term popularity, there are plenty of open-
source tools for Spark Streaming, including solutions for
relatively painless integration with Kafka and mentioned
earlier database management systems [28, 11, 21].
Another advantage is the existence of pySpark [23] – an
API for Python, one of the biggest programming
languages at this moment. All other enumerated
frameworks require Scala, Clojure or Java knowledge,
which makes them less accessible.
One of the biggest downsides of Spark Streaming is
performance degradation on sudden bursts of input data.
However, in case of sensor data processing the input data
flow intensity remains nearly the same at all time
intervals, which mitigates the downside.

The data flow and module components are introduced

below in figure 1. The whole module consists of 4
transformation steps and the data quality assessment
step.

Figure 1 Components and data flow within the
preprocessing module

3 Missing Data Imputation
Sometimes due to a sensor malfunction, unstable internet
connection or other technical difficulties the data for
some points in time is missing. Simply ignoring those
gaps may be not the best strategy, because it can lead to
a loss of efficiency and unreliable results of the analysis.
Another approach is to try to impute the missing values
based on the available information.

3.1 Methods

The detailed overview of basic imputation methods and
their implementations can be found in imputeTS R
package documentation [19].

Some simple methods that are applicable not only to
time series: median imputation, mode imputation, mean
imputation, random imputation. These methods are fast
and very straight-forward, but lack accuracy.

227

Simple time series specific methods include LOCF
(last observation carried forward), NOCB (next
observation carried backward), interpolation (linear,
polynomial, Stineman) and moving average (simple,
weighted, exponential). All of them are rather fast and
can work in specific cases, but fall off when there is
seasonality in the data or large missing sub-sequences.

More sophisticated approaches like Structural Model
& Kalman Smoothing, ARIMA State Space
Representation & Kalman Smoothing [10] can be used
for seasonal data with complex patterns.

However, sensor data has one unfortunate
characteristic – the gaps of missing data can be too long
for conventional methods to work properly. In this case,
the method proposed in [22] can be the appropriate
choice. The idea of the Dynamic Time Warping Based
Imputation is to find the most similar sub-sequence to the
sub-sequence before the missing values, then complete
the gap by the next sub-sequence of the most similar one.
The result is a very plausible gap imputation with a
drawback of a huge computational cost.

3.2 Metrics

Missing data imputation involves 2 types of quality
metrics based on the pattern of imputation.

For single value imputations, the metrics coincide
with the ones commonly used in time series forecasting
– RMSE (Root Mean Square Error)and MAPE (Mean
Absolute Percentage Error).

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ (𝑠𝑠�̂�𝚤−𝑠𝑠𝑖𝑖)2𝑖𝑖
𝑛𝑛

,

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 = 100%
𝑛𝑛

× ∑ �𝑠𝑠𝑖𝑖−𝑠𝑠�̂�𝚤
𝑠𝑠𝑖𝑖

�𝑖𝑖 ,
where yi is real value, ŷi is the forecasted value and n

is the number of forecasts.
However, different metrics are used for long gap

imputation. The most popular of them are similarity and
Dynamic Time Warping distance.

𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑎𝑎𝑟𝑟𝑖𝑖𝑡𝑡𝑦𝑦 =
1
𝑛𝑛

× ��
1

�1 + |𝑦𝑦𝑖𝑖 − 𝑦𝑦�̂�𝚤|
𝑚𝑚𝑎𝑎𝑥𝑥(𝑦𝑦�̂�𝚤) − 𝑚𝑚𝑖𝑖𝑛𝑛(𝑦𝑦�̂�𝚤)

�𝑖𝑖

�

DTW calculation algorithm can be found at [19]. It is
worth mentioning, that modern implementations often
have adjustments to speed up the calculations (for
example, DDTW [13]).

4 Noise Reduction

Similar to missing data points, sensor data is usually
contaminated with noise, which can be mistaken for
actual data pattern, which yet again leads to a loss of
efficiency and unreliable results of the analysis. The task
of noise reduction is to subtract the maximum amount of
noise from the initial data, leaving the maximum amount
of useful signal.

4.1 Methods

According to Chen et al. [6] noise reduction methods
can be divided into 2 categories: frequency domain
approaches and time domain approaches.

Frequency domain approaches are based on signal
decomposition into frequency components. The most
common approaches involve discrete/fast/short-time
Fourier transform either wavelet transform.

Most of the time domain approaches are based on
smoothing the signal of each given data point based on
the values of its neighbors.

The comparison of the basic noise reduction methods
can be found in the work of Köhler et al. [15]. The
conducted experiment involves the comparison of
moving average filter, exponential smoothing filter,
linear Fourier smoothing, nonlinear wavelet shrinkage
and simple nonlinear noise reduction in different
conditions.

The downside of the approaches listed above is that
they modify almost all the data values, most of which are
initially correct. Song et al. [26] proposed the first
constraint-based approach for cleaning stream data. The
idea is to sanity check the changes of values in time based
on subject area constraints. This method allows to detect
and repair large spike errors in data. The biggest
advantage of this method is the support of online
cleaning over streaming data.

However, this method can be used only for large
outlier detection. In some cases, even small errors can be
important and repairing only spike errors is insufficient.
Zhang et al. [30] proposed a novel statistical-based
cleaning by introducing the repairment likelihoods with
respect to speed changes. Several effective and
computationally efficient heuristics are also introduced
in this work.

4.2 Metrics

Most of the papers involve RMSE, defined earlier, as a
denoising quality metric. However, there are several less
popular ones, including the Symmetrical Visual Error
Measure, proposed in [18].

5 Data Normalization

Making sure that your data is of uniform scale is key
for many methods, including k-NN, linear models,
artificial neural networks and many more. Even
univariate time series data should be normalized because
it might be further used in combination with data of
different scale from other sources.

The most well-known and widely used are min-max
normalization and z-score normalization. Min-max
implies that you know the minimum and the maximum
values in your dataset beforehand, which is often not the
case. Z-score is more robust but performs poorly om non-
stationary time series.

ŷ𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑠𝑠−𝑚𝑚𝑖𝑖𝑛𝑛(𝑌𝑌)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌)−𝑚𝑚𝑖𝑖𝑛𝑛(𝑌𝑌)

,

ŷ𝑧𝑧−𝑠𝑠𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒 = 𝑠𝑠−𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛(𝑌𝑌)
𝑠𝑠𝑡𝑡𝑑𝑑(𝑌𝑌)

,
where ŷ is a value after normalization, y is a value

prior normalization and Y is the set of values being
normalized.

Some less popular methods are decimal scaling
normalization, which holds all the drawbacks of min-

228

max normalization, sigmoid normalization, which is
actively used in neural networks and tanh estimators,
which roughly can be described as a hyperbolic tangent
of the z-score normalization.

ŷ𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑚𝑚𝑚𝑚𝑙𝑙 = 𝑠𝑠
10𝑐𝑐,

where d is the order of values in the set.
ŷ𝑠𝑠𝑖𝑖𝑔𝑔𝑚𝑚𝑡𝑡𝑖𝑖𝑑𝑑 = 1

1+𝑒𝑒𝑦𝑦,

ŷ𝑡𝑡𝑚𝑚𝑛𝑛ℎ = 0.5 ∗ �𝑡𝑡𝑎𝑎𝑛𝑛ℎ �0.01∗�𝑠𝑠−𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛(𝑌𝑌)�
𝑠𝑠𝑡𝑡𝑑𝑑(𝑌𝑌)

� + 1�.
According to the experiment, conducted in [20], there

is no optimal time series normalization method and one
should choose the appropriate method based on the data
patterns. Regarding sensor data, the mean and standard
deviation remain approximately the same throughout
time, which makes z-score normalization a reasonable
choice.

6 Data Quality Assessment
Data Quality Assessment (DQA) is the scientific and
statistical evaluation of data to determine if data obtained
from environmental data operations are of the right type,
quality, and quantity to support their intended use [8].

There is a comprehensive work on time series data
quality assessment done in [9], which shows that there
are dozens of different metrics that can be used to
measure the quality of data. Obviously, using all of them
is excessive and computationally inefficient, so only a
few are to be chosen. However, there is no common view
on which metrics are better. The simple yet effective
strategy might be to look onto the most popular ones:
• event data loss (gaps in the data);
• values out of range (values out of sane interval for

the domain);
• value spikes (improbable sudden changes);
• wrong timestamps;
• rounded measurement value (not desirable level of

detail);
• signal noise (slightly inaccurate measurements).

The assessment is to be done for both data prior and
after preprocessing to acquire an evaluation of
preprocessing module effectiveness. It is also worth
keeping in mind, that initially clean data is different to
the data, that was made “clean” during preprocessing due
to approximations and inevitable errors of the methods
involved on each step.

7 Feature Engineering

Feature engineering is, probably, the most peculiar step
of data processing, as it depends on the initial data type,
its origin, quantity, quality, the desired output of the
forecasting model and even the nature of the model itself.
As it was already mentioned, sensor data can be
represented in a form of univariate time series. The
conventional approaches to time series feature
engineering can be divided into 3 categories: timestamp
features, statistical features, and spectral features. The
feature extraction step is usually followed by a
dimensionality reduction step.

It is worth mentioning, that there are automatic time
series feature engineering tools such as tsfresh [7], which
achieve decent results with almost no effort required.

7.1 Timestamp Features

The idea of this approach is to extract the features from
the timestamp of each observation. The most commonly
used features are:
• minutes elapsed for the day;
• hour of the day;
• day of the month;
• weekend or not;
• season of the year;
• public holiday or not.

Talking about sensor data, some examples of useful
timestamp features are:
• time since the last maintenance;
• age of equipment;
• time since the last failure;
• operating time of equipment.

Using just these features alone for predictions will
likely result in a poor model. However, in combination
with other features, they can boost the quality of
forecasts.

7.2 Statistical Features

This approach involves sliding through a time series with
the window of a given width and calculating statistics for
each iteration. The most common statistical features are
the mean of the previous few values, the median, the
mode, the minimal value, the maximum value, the
standard deviation and many more. In addition to
calculated statistics, we can also use the lagged values of
a time series as features.

The biggest challenge of this approach is that the
window can be of any width and there is no general
algorithm to choose it. Usually, the researchers just try
out several values of the width and choose the one that
performs best. However, if there is a seasonal pattern in
data, it is worth making the width of the window not less
than the period of the seasons.

7.3 Spectral Features

Different variations of Fourier transform and wavelet
transform are used to extract spectral features from a
nonstationary signal. The basic idea behind those
methods is to decompose a given time series into a sum
of several basic functions, providing a different
representation of the initial signal. The biggest drawback
of those methods is that they are relatively
computationally expensive.

7.4 Dimensionality Reduction

Feature extraction provides many features, some of
which can be useless or strongly correlated with each
other. Excessive features not only add unnecessary
computations but also can decrease the quality of the
model. Thus, several dimensionality reduction methods
were introduced to minimize the number of features, at

229

the same time keeping the maximum amount of
information. The most common ones are principal
component analysis, independent component analysis
and partial least squares regression.

8 Remaining Lifetime Forecasting

There is a variety of methods, that can be used for time
series forecasting. Each of them has advantages and
drawbacks and can be viable in certain circumstances.

First of all, there are some basic methods such as
average method, naive method, seasonal naive method,
and drift method, which are very simple yet can be
effective when the data pattern is easy.

Secondly, linear regression models can be used for
forecasting. In the simplest case, the regression model
allows for a linear relationship between the forecast
variable and some predictor variables. The biggest
downside is inherent linearity, while real-world data is
mostly non-linear.

The most common approach is to use stochastic
models – ARMA, ARIMA, SARIMAX, etc. One of the
biggest drawbacks of those models is that they require
fine-tuning of several hyperparameters, which is
computationally expensive and not intuitive.

One of the recently popular approaches is to use
decision trees. Random forests and gradient boosting
methods, which are so widely used in machine learning
competitions, can also be used for time series
forecasting.

Artificial neural networks approach for time series
forecasting gained immense popularity in last few years.
Their modifications – recurrent neural networks (RNNs)
and long short-term memory networks (LSTMs) are
especially effective for this task due to their “memory”
component. Although neural networks tend to be the most
accurate forecasting method when tuned properly and given
enough data, they might be computationally too costly for
the considered conditions.

9 Conclusion

In this study, the overview of sensor data preprocessing
steps, methods, and common metrics is held. Some
thoughts on sensor data quality assessment are given.
The architecture of a fast, scalable preprocessing module
is proposed. A brief overview of time series feature
engineering techniques and forecasting methods is given.
The future goals of the ongoing work are to implement
the designed preprocessing module on Spark Streaming
engine, integrate it into the existing predictive
maintenance pipeline, implement the feature engineering
step and to develop a remaining lifetime forecasting
model.
Acknowledgments. This work is supervised by Dmitriy
Kovalev, Institute of Informatics Problems, Federal
Research Center “Computer Science and Control” of the
Russian Academy of Sciences.
The research is financially supported by Ministry of
Education and Science of the Russian Federation
(project’s unique identifier RFMEFI60717X0176).

References
[1] Apache Flink. https://flink.apache.org/
[2] Apache Kafka. https://kafka.apache.org/
[3] Apache Kafka Streams Documentation.

https://kafka.apache.org/documentation/streams/
[4] Apache Samza. http://samza.apache.org/
[5] Apache Storm. https://storm.apache.org/
[6] Chen, Mithal, Vangala, Brugere, Boriah, Kumar: A

study of time series noise reduction techniques in the
context of land cover change detection. NASA
Conference on Intelligent Data Understanding
(2011)

[7] Christ M., Kempa-Liehrb A., Feindt M.: Distributed
and Parallel Time Series Feature Extraction for
Industrial Big Data Applications. ACML Workshop
on Learning on Big Data (2016)

[8] Gitzel R.: Data Quality in Time Series Data An
Experience Report. CBI Industrial Track (2016)

[9] Guidance for Data Quality Assessment: Practical
Methods for Data Analysis. EPA (2000)

[10] Harvey A.: Forecasting, structural time series
models and the Kalman filter. Cambridge university
press (1990)

[11] Hive on Spark: Getting Started.
https://cwiki.apache.org/confluence/display/Hive/H
ive+on+Spark%3A+Getting+Started

[12] Huai Y., Chauhan A., Gates A., Hagleitner G.,
Hanson E.N., O’Malley O., Pandey J., Yuan Y., Lee
R., Zhang X.: Major technical advancements in
Apache Hive. ACM SIGMOD international
conference on management of data (2014)

[13] Keogh, E., Pazzani, M.: Derivative Dynamic Time
Warping. First SIAM International Conference on
Data Mining (2001)

[14] Kovalev D., Shanin I., Stupnikov S., Zakharov V.:
Data Mining Methods and Techniques for Fault
Detection and Predictive Maintenance in Housing
and Utility Infrastructure. Engineering Technologies
and Computer Science (2018)

[15] Köhler, Torsten, Lorenz: A comparison of denoising
methods for one dimensional time series. Zentrum
für Technomathematik (2005)

[16] Marron J. S., Tsybakov A. B.: Visual error criteria
for qualitative smoothing. Journal of the American
Statistical Association (1995)

[17] Merkel D.: Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
J., vol. 2014 (2014)

[18] Mobley K.: An Introduction to Predictive
Maintenance — 2nd edition (2002)

[19] Moritz S., Sardá A., Bartz-Beielstein T., Zaefferer
M., Stork J: Comparison of different Methods for
Univariate Time Series Imputation in R. CoRR
abs/1510.03924 (2015)

[20]Nayak S., Misra B., Behera H.: Impact of Data
Normalization on Stock Index Forecasting.
International Journal of Computer Information

230

Systems and Industrial Management Applications
(2014)

[21]OpenTSDB 2.3 documentation | HTTP API.
http://opentsdb.net/docs/build/html/api_http/put.ht
ml

[22]Phan T., Poisson Caillault E., Lefebvre A., Bigand
A.: Dynamic time warping-based imputation for
univariate time series data. Pattern Recognition
Letters (2017)

[23]pySpark Package Documentation.
http://spark.apache.org/docs/2.1.0/api/python/pyspa
rk.html

[24] Sakoe, Chiba: Dynamic Programming Algorithm
Optimization for Spoken Word Recognition. IEEE
Transactions on Acoustics, Speech and Signal
Processing (1978)

[25] Sigoure B.: OpenTSDB: The distributed, scalable
time series database. OSCON, vol. 11 (2010)

[26] Song S., Zhang A., Wang J., Yu P.: SCREEN:
Stream Data Cleaning under Speed Constraints.
ACM SIGMOD international conference on
management of data (2015)

[27] Spark Streaming Programming Guide.
https://spark.apache.org/docs/latest/streaming-
programming-guide.html

[28] Spark Streaming + Kafka Integration Guide.
https://spark.apache.org/docs/2.2.0/streaming-
kafka-integration.html

[29] White T.: Hadoop: The Definitive Guide. O'Reilly
Media; Forth Edition (2012)

[30] Zhang A., Song S., Wang J.: Sequential Data
Cleaning: A Statistical Approach. ACM SIGMOD
international conference on management of data
(2016)

231

