

Combining Lexical and Semantic Similarity Measures with
Machine Learning Approach for Ontology and Schema

Matching Problem

© Lev Bulygin
Lomonosov Moscow State University,

Moscow, Russia
buliginleo@yandex.ru

Abstract. Ontology and schema matching is one of the most important tasks for data integration. We
suggest to combine the different matchers with machine learning approach. The features are the outputs of
lexical and semantic similarity functions. Naive Bayesian classifier, logistic regression and gradient tree
boosting have been trained on these features. The proposed approach is tested on the OAEI 2017 benchmark
“conference” with the various splits of the data on train and test sets. Experiments show that final combined
model in element-level matching outperformed the single matchers. Results are compared with EditDistance
matcher and WordNet matcher.

Keywords: ontology matching, element-level matcher, lexical matcher, semantic matcher, word2vec,
word2net.

1 Introduction
Data integration is now a very important problem, as the
amount of data is growing very much. One of the most
important steps in automatic data integration is the
comparison of ontologies or schemas. This problem is
traditionally solved manually or semi-automatically.
Manual ontology or schema matching is very labor-
intensive, long in time and prone to errors. Therefore
now the task is to maximally automate the process of
comparing the circuit with the greatest accuracy.

For schema matching and ontology matching
element-level and structure-level matchers are used.
Element-level matchers use information of elements of
schema (name of columns, description). Structure-level
matchers use information of structure (type similarity,
key properties, hierarchy of elements).

Recently, element-level matchers have been widely
used lexical and semantic information. For getting
semantic information WordNet and Word2vec are used.
Word2vec allow us to get a meaning of the word and we
can use this for improving ontology and schema
matching. So we can combine many lexical and semantic
information into one similarity matrix and train a
machine learning model for trying to solve ontology and
schema matching problems.

This work is performed as Master thesis. The main
goal of this work is to propose a approach for solving
ontology and schema matching problem with the greatest
accuracy. To achieve this goal we need to perform the
following tasks: review related work, create the
architecture of solution, select of information for
matching and create experiments. We compared our

approach on OAEI 2017 “conference” ontologies with
single matchers: edit distance and WordNet.

In Section 2 we reviewed related work and it's
evolution. Section 3 describes the setup of the paper. In
Section 4 presents our matching algorithm in detail.
Section 5 shows the experiments and the analysis. We
conclude this paper in Section 6.

2 Related Work
Schema matching and ontology matching are very
similar. In this article, there is no difference for schema
matching and ontology matching because we only work
with the names of the entities. So we considered the
works about schema matching and ontology matching
together. In [1] a review of approaches for automatic
schema matching are conducted. They introduced the
classification of matchers and concluded that it is
impossible to create a fully automatic matching system,
universal for all subject areas. One of the most important
conclusions is that hybrid matching system is better than
single system. Intuitively, this is obvious, since a hybrid
matcher uses more information to make a decision.

In [2] the ready-made solutions for automatic schema
matching are compared and the concept of pre-match
effort and post-match effort introduced. Pre-match effort
is learning of the matcher, configuration of thresholds
and weights. Post-match effort is correction and
improvement of the match output. In the same year, in
[3] the authors described their COMA system. The
authors introduced new methods of post-match effort:
reuse of matchings, aggregation of individual matchers.
In [4] the Target-based Integration Query System (TIQS)
are described. In [5] a new classification on matching
dimensions are presented. A natural issue is uncertainty,
In [6] uncertainty are considered, monotonicity and
statistical monotonicity are introduced . All the above
articles don't use machine learning for aggregation

Proceedings of the XX International Conference
“Data Analytics and Management in Data Intensive
Domains” (DAMDID/RCDL’2018), Moscow, Russia,
October 9-12, 2018

245

mailto:buliginleo@yandex.ru

results of matchers.
In [7] Bayesian Networks are used for combining

ontology matching. As the features lexical information
(N-gram, Levenshtein, Dice Coefficient etc) were used.
The best accuracy is 88%.

In [8] the outputs from several single matchers are
used and the authors trained on this data a multi-layer
neural network.The authors used lexical information and
the WordNet similarity.

In [9] ontology matching problem in detail are
described: applications, classifications of ontology
matching techniques, evaluations and alignment. They
suggest three dimensions of building correspondences:
conceptual, extensional and semantic.

In [10] Multiple Concept Similarity for ontology
mapping are described. The author reduced the ontology
mapping problem to the machine learning problem. They
used lexical information (prefix, suffix, Edit distance, n-
gram), semantic information (WordNet) and special
types of similarity called Word List similarity (a
similarity for sentences).

In [11] a machine-learning approach to ontology
alignment problem are described. The authors used
lexical information, semantic information (WordNet)
and structural information for training Support Vector
Machine, K-Nearest Neighbours, Decision Tree,
AdaBoost models. The authors improves F-measure
criterion up to 99%.

In [12] Bayeasian Networks are used for composition
of matchers. The resulting model achieved 81%
accuracy. The authors used the outputs of the lexical
matchers, structure-level matchers, synonym matchers
and instance-level matchers.

In [13] all stages of ontology matching problem in
detail are described: feature selection, methods of
combining matchers and experiments.

In [14] word2vec embeddings for ontology matching
problem are used. Authors proposed the new algorithm of
matching and sentence2vec algorithm. The results matcher
are compared with various types of WordNet, EditDistance
matchers. In [15] the combination of word2vec features and
a neural network are used. One of the most important
problems is that articles using machine learning can not be
compared with each other because of the lack of a unified
benchmark. The OAEI is not intended to use machine
learning, so the training dataset is chosen by the author of
the article.

At the moment, the most promising option is the
using of machine learning to create a hybrid model with
lexical, semantic and structure information. In this
article, we want to connect many different single
matchers to one hybrid matcher using machine learning.
One of the newest features we used is Word2vec. So far
we only used the single element-level matchers.

All reviewed papers use widely the lexical
information and WordNet distances. In this paper we
used 29 similarity metrics from 17 various single
element-level matchers.

3 Problem Statement, Evaluation Metrics
and Similarity Measures

3.1 Problem Statement

An ontology O is by a 3-tuple (C, P, I). C is the classes,
denoting the concepts. P is the relations within the
ontology. I is the instances of classes. The task of
ontology matching is to find the alignment between
entities in a source ontology 𝑂𝑂1 and a target ontology 𝑂𝑂2.

An alignment is a set {(𝑒𝑒1, 𝑒𝑒2, 𝑐𝑐𝑒𝑒𝑛𝑛)|𝑒𝑒1 ∈ 𝑂𝑂1, 𝑒𝑒2 ∈
𝑂𝑂2}, where 𝑒𝑒1 is an entity in 𝑂𝑂1, 𝑒𝑒2 is an entity in 𝑂𝑂2, and
𝑐𝑐𝑒𝑒𝑛𝑛 is the confidence of the correspondence.

Our algorithm works only with names of entities
without the structure information. The input of our
algorithm is the two ontologies: source and target. The
output of our algorithm is the alignment.

3.2 Evaluation Metrics

The effectiveness of ontology matching could
measured by precision, recall and F-measure.

𝑠𝑠𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛 = |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴|

, (1)

𝑟𝑟𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 = |𝐴𝐴∩𝐵𝐵|
|𝐵𝐵|

, (2)

𝐹𝐹 − 𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑒𝑒 = 2⋅𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛⋅𝑟𝑟𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙
𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛+𝑟𝑟𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙

, (3)

where A is a predict alignment and B is a true
alignment.

3.3 Used Similarity Measures

As features for machine learning we used the similarity
measures. We extract from ontology the names of
entities. Further we need to create sets of words from
names for computing some similarity measures.

Example. We have two names of entities:
“early_paid_applicant” and “early-registered-
participant”. The sets are [“early”, “paid”, “applicant”]
and [“early”, “registered”, “participant”].

Metrics based on lexical information from names of

entities:
• N-gram [11]. Let ngram(S, N) be the set of

substrings of string S of length N. The n-gram
similarity for two strings S and T:

𝑛𝑛𝑘𝑘𝑟𝑟𝑎𝑎𝑚𝑚(𝑆𝑆, 𝑇𝑇) = |𝑛𝑛𝑔𝑔𝑟𝑟𝑚𝑚𝑚𝑚(𝑆𝑆,𝑁𝑁)∩𝑛𝑛𝑔𝑔𝑟𝑟𝑚𝑚𝑚𝑚(𝑇𝑇,𝑁𝑁)|
𝑚𝑚𝑖𝑖𝑛𝑛(|𝑆𝑆|,|𝑇𝑇|)−𝑁𝑁+1

 (4)

• Dice coefficient [11]. The Dice similarity score is
defined as twice the shared information
(intersection) divided by sum of cardinalities. For
two sets X and Y, the Dice similarity score is:

𝑑𝑑𝑖𝑖𝑐𝑐𝑒𝑒(𝑋𝑋, 𝑌𝑌) = 2∗|𝑋𝑋∩𝑌𝑌|
|𝑋𝑋|+|𝑌𝑌|

 (5)

• Jaccard similarity [11]. For two sets X and Y, the
Jaccard similarity score is:

𝑗𝑗𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑟𝑟𝑑𝑑(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
|𝑋𝑋∪𝑌𝑌|

 (6)

• Jaro measure [11]. The Jaro measure is a type of edit
distance, developed mainly to compare short strings,
such as first and last names.

246

• Substring similarity [11]. For longest substring T of
two strings X and Y substring similarity is:

𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑛𝑛𝑘𝑘(𝑋𝑋, 𝑌𝑌) = 2∗|𝑇𝑇|
|𝑋𝑋|+|𝑌𝑌|

 (7)

• Monge-Elkan [11]. Token-based and internal
similarity function for tokens:

𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 1
|𝑚𝑚|

∑
𝑖𝑖=1

|𝑚𝑚|
𝑚𝑚𝑎𝑎𝑥𝑥𝑗𝑗=1,|𝑠𝑠|𝑠𝑠𝑖𝑖𝑚𝑚′(𝑥𝑥[𝑖𝑖], 𝑦𝑦[𝑗𝑗])

(8)
• Smith-Waterman [11]. The Smith-Waterman

algorithm performs local sequence alignment; that
is, for determining similar regions between two
strings.

• Needleman-Wunsch [11]. The Needleman-Wunsch
distance generalizes the Levenshtein distance and
considers global alignment between two strings.
Specifically, it is computed by assigning a score to
each alignment between the two input strings and
choosing the score of the best alignment, that is, the
maximal score.

• Affine gap [17]. Returns the affine gap score
between two strings. The affine gap measure is an
extension of the Needleman-Wunsch measure that
handles the longer gaps more gracefully.

• Bag distance. The number of common symbols in
two strings.

• Cosine similarity [11]. For two sets X and Y:

𝑐𝑐𝑒𝑒𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
�|𝑋𝑋|⋅|𝑌𝑌|

 (9)

• Partial Ratio. Given two strings X and Y, let the
shorter string (X) be of length m. It finds the fuzzy
wuzzy ratio similarity measure between the shorter
string and every substring of length m of the longer
string, and returns the maximum of those similarity
measures.

• Soft TFIDF [21]. A variant of TF-IDF that considers
words equal based on Jaro Winkler rather than exact
match.

• Editex. Editex is a phonetic distance measure that
combines the properties of edit distances with the
letter-grouping strategy used by Soundex and
Phonix.

• Generalized Jaccard. This similarity measure is
softened version of the Jaccard measure. The
Jaccard measure is promising candidate for tokens
which exactly match across the sets.

• JaroWinkler. The Jaro-Winkler measure is designed
to capture cases where two strings have a low Jaro
score, but share a prefix and thus are likely to match.

• Levenshtein distance [11]. Levenshtein distance
computes the minimum cost of transforming one
string into the other.

• Partial Token Sort. For two strings X and Y, the
score is obtained by splitting the two strings into
tokens and then sorting the tokens. The score is then
the fuzzy wuzzy partial ratio raw score of the
transformed strings.

• Ratio. For two strings X, Y:

𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒 = 𝑟𝑟𝑒𝑒𝑠𝑠𝑛𝑛𝑑𝑑(2.0 ⋅ 𝑀𝑀
𝑇𝑇

⋅ 100), (10)
• where T is the total number of characters in both

strings, and M is the number of matches in the two
strings X and Y.

• Soundex [6]. Phonetic measure such as soundex
match string based on their sound. These measures
have been especially effective in matching names,
since names are often spelled in different ways that
sound the same.

• Token Sort. Fuzzy Wuzzy token sort ratio raw
raw_score is a measure of the strings similarity as an
int in the range [0, 100]. For two strings X and Y,
the score is obtained by splitting the two strings into
tokens and then sorting the tokens. The score is then
the fuzzy wuzzy ratio raw score of the transformed
strings.

• Tversky Index. For sets X and Y:

𝑇𝑇𝐼𝐼(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
|𝑋𝑋∩𝑌𝑌|+𝛼𝛼|𝑋𝑋−𝑌𝑌|+𝜂𝜂|𝑌𝑌−𝑋𝑋|

 , (11)

• where 𝛼𝛼, 𝜂𝜂 > 0.
• Overlap coefficient. For sets X and Y:

𝑂𝑂𝐶𝐶(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
𝑚𝑚𝑖𝑖𝑛𝑛(|𝑋𝑋|,|𝑌𝑌|)

 (12)

Metrics based on semantic information from names

of entities:
• WordNet similarity. Best score of similarity between

synonyms of one word with synonyms of other
word. We use a sentence similarity algorithm from
[14].

• Word2vec and Sentence2vec similarity. Word2vec
is a model that are used to produce word
embeddings. We used word2vec model trained by
the texts of Google News. The dimensionality of
these vectors is 300. We used sentence2vec
algorithm from [14].

4 Proposed Matching Algorithm
The input of the matching system is the two

ontologies. For each ontology the system extracts the
names of the entities. Further it generate all possible pairs
of the names of the ontology with the names of the other
ontology. For all pairs system computes the all similarity
measures. All outputs of the similarity measures are
concatenated into the one similarity matrix. The
computed features are used as input to a machine
learning model.

Program 1 Element-level matching algorithm
Input: Ontology1, Ontology2 - input ontologies
or schemas, THRESHOLD - threshold for create
matching between elements
Output: alignment - output alignment for
Ontology1 and Ontology2
for Entity1 ∈ Ontology1 do
 for Entity2 ∈ Ontology2 do
 Name1 ← get_name(Entity1)
 Name2 ← get_name(Entity2)
 Features ← get_features(Name1, Name2)

247

 Match ← predict_match(Features)
 if Match > THRESHOLD then
 alignment.append((Name1,Name2))
 end if
 end for
end for
return alignment

Program 2 Creating dataset and training a machine
learning model
Input: TrueAlignments - set of true alignments,
TrainAlignments - set of train pairs

Output: Model - trained model for predict
matching

for Ontology1, Ontology2 in TrueAlignments do
 for Entity1 ∈ Ontology1 do
 for Entity2 ∈ Ontology2 do
 if (Entity1, Entity2) ∈ TrainAlignments
 then
 add_to_train(Entity1, Entity2, 1)
 else
 add_to_train(Entity1, Entity2, 0)
 end if
 end for
 end for
end for
Model.train()
return Model

For training a machine learning model we need the
ontologies and the alignments. We split the alignments
on the training alignments and testing alignments.
Further we train a machine learning model on the
features from train alignments. Then we can evaluate F-
measure on testing alignment.

5 Preliminaries and Results

5.1 Collection of Data

The experiments were conducted at the dataset
“conference” from OAEI 2017. The dataset consists 16
ontologies from the same domain (conference
organisation) and 21 true ontology matchings. This
dataset is convenient for machine learning because all
ontologies are from the same domain and this dataset has
the several true matchings between ontologies.

We get entities from ontologies with parsing code on
Python and get array of tuples: (entity1, entity2, match),
where entity1, entity2 - string names of entities, match -
bool variable, 1 means that the entities are matched, 0
means that the entities are not matched. We generated 29
similarity measures from 3.3 with Python packages:
py_stringmatching24, fuzzycomp25, gensim26.

The final dataset is very unbalanced: 391 572
negative samples and 305 positive samples. After
generating features we split data randomly on train and
test datasets in equal proportions. In Table 1 are
described our split.

24 https://github.com/kvpradap/py_stringmatching
25 https://github.com/fuzzycode/fuzzycomp
26 https://github.com/RaRe-Technologies/gensim
27 http://scikit-
learn.org/stable/modules/generated/sklearn.naive_bayes

Table 1 Our split of dataset “conference” from OAEI
2017 benchmark

Train pairs Test pairs

Iasted, Sigkdd
Cmt, Confof
Confof, Edas
Edas, Iasted

Confof, Ekaw
Cmt, Iasted

Edas, Sigkdd
Confof, Sigkdd

Conference, Confof
Cmt, Edas

Conference, Ekaw
Ekaw, Sigkdd
Cmt, Sigkdd
Cmt, Ekaw

Ekaw, Iasted
Edas, Ekaw

Conference, Iasted
Conference, Sigkdd
Conference, Edas

Confof, Iasted
Cmt, Conference

5.2 Experiments

As a baseline solution we take EditDistance and
WordNet matchers. For every matcher we select
threshold with the best F-measure on the test dataset. As
the machine learning models we chose Naive Bayes
Classifier27, Logistic regression28 as the simple models
and Gradient boosting29 as the complex model.

Table 2 The results on test dataset

Method Precision,
% Recall, % F-

measure, %

EditDistance 50 35.8 41.7

WordNet 9.1 38.2 14.7

Naive Bayes
Classifier 2.13 80.08 4.15

Logistic
regression 75.58 40.12 52.41

XGBoost 69.15 45.67 55.01

We can see on Table 2 that XGBoost is the model

with best F-measure 55.01%. The worst model is Naive
Bayes Classifiers with F-measure 4.15%. EditDistance is
better than WordNet by 27%. For getting more stable
results we splitted the datasets randomly on training and
testing pairs 20 times and averaged the results. The
results are show on Table 3. We can see that XGBoost
are remained the best model.

.GaussianNB.html
28 http://scikit-
learn.org/stable/modules/generated/sklearn.linear_mode
l.LogisticRegression.html
29 https://github.com/dmlc/xgboost

248

https://github.com/kvpradap/py_stringmatching
https://github.com/fuzzycode/fuzzycomp
https://github.com/RaRe-Technologies/gensim
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://github.com/dmlc/xgboost

Table 3 The averaged results on 20 various random
splits on train and test datasets

Method Precision,
% Recall, % F-

measure, %

EditDistance 47.31 39.2 42.82

WordNet 11.87 41.69 18.35

Naive Bayes
Classifier 2.63 81.49 5.10

Logistic
regression 74.98 43.43 54.95

XGBoost 72.72 47.51 57.29

6 Conclusions
In this paper, we combined the lexical and semantic
similarity measures into one hybrid model. The
experiments show that hybrid model is better than single
matchers.

In future work we want to run our solution on other
benchmarks. We must add the structure-level and
instance-level features because in our dataset there are
examples in which the names of entities are exactly the
same but they are not matched.

Acknowledgments. This work is supervised by Sergey
Stupnikov, Institute of Informatics Problems, Federal
Research Center “Computer Science and Control“ of the
Russian Academy of Sciences”.

References
[1] Rahm, E., Bernstein, A.: A survey of approaches

to automatic schema matching. In: The
International Journal on Very Large Data Bases,
vol. 10, issue 4, pp. 334-350 (2001). doi:
10.1007/s007780100057

[2] Do, H., Melnik, S., Rahm, E.: Comparison of
Schema Matching Evaluations. In: Revised
Papers from the NODe 2002 Web and Database-
Related Workshops on Web, Web-Services, and
Database Systems, pp. 221-237 (2002). doi:
10.1007/3-540-36560-5_17

[3] Do, H., Rahm, E.: COMA: a system for flexible
combination of schema matching approaches. In:
VLDB '02 Proceedings of the 28th international
conference on Very Large Data Bases, pp. 610-
621 (2002). doi: 10.1016/B978-155860869-
6/50060-3

[4] L. Xu, D. Embley.: Automating Schema
Mapping for Data Integration. (2003).
http://www.deg.byu.edu/papers/AutomatingSche
maMatching.journal.pdf

[5] Shvaiko, P., Euzenat, J.: A Survey of Schema-
Based Matching Approaches. In: Journal on Data

Semantics IV, pp. 146-171 (2005). doi:
10.1007/11603412_5

[6] Gal, A.: Why is Schema Matching Tough and
What Can We Do About It? In: ACM SIGMOD
Record, vol. 35, issue 4, pp. 2-5 (2006). doi:
10.1145/1228268.1228269

[7] Svab, O., Svatek, V.: Combining Ontology
Mapping Methods Using Bayesian Networks. In:
OM'06 Proceedings of the 1st International
Conference on Ontology Matching, vol. 225, pp.
206-210.

[8] Hariri, B., Abolhassani, H., Sayyadi, H.: A
Neural-Networks-Based Approach for Ontology
Alignment. (2006).
https://www.jstage.jst.go.jp/article/softscis/2006/
0/2006_0_1248/_article

[9] Euzenat, J., Shvaiko, P.: Ontology Matching.
Springer-Verlag Berlin Heidelberg, Berlin
(2007). doi: 10.1007/978-3-642-38721-0

[10] Ichise, R.: Machine Learning Approach for
Ontology Mapping Using Multiple Concept
Similarity Measures. In: Seventh IEEE/ACIS
International Conference on Computer and
Information Science, (2008). doi:
10.1109/ICIS.2008.51

[11] Nezhadi, A., Shadgar, B., Osareh, A.: Ontology
Alignment Using Machine Learning Techniques.
In: International Journal of Computer Science &
Information Technology, vol. 3, pp. 139-150
(2011). doi: 10.5121/ijcsit.2011.3210

[12] Nikovsi, D., Esenther, A., Ye, X., Shiba, M.,
Takayama, S.: Bayesian Networks for Matcher
Composition in Automatic Schema Matching.
In: Mitsubishi Electric Research Laboratories
(2011). doi: 10.1.1.644.2168

[13] Ngo, D.: Enhancing Ontology Matching by
Using Machine Learning, Graph Matching and
Information Retrieval Techniques. In: University
Montpellier II - Sciences et Techniques du
Languedoc (2012). doi: 10.1.1.302.587

[14] Zhang, Y., Wang, X., Lai, S., He, S., Liu, K.,
Zhao, J., Lv, X.: Ontology Matching with Word
Embeddings. In: Chinese Computational
Linguistics and Natural Language Processing
Based on Naturally Annotated Big Data, pp 34-
45 (2014). doi: 10.1007/978-3-319-12277-9_4

[15] Jayawardana, V., Lakmal, D., Silva, N., Perera,
A., Sugathadasa, K., Ayesha, B.: Deriving a
Representative Vefctor for Ontology Classes
with Instance Word Vector Embeddings. In:
2017 Seventh International Conference on
Innovative Computing Technology (INTECH),
(2017). doi: 10.1109/INTECH.2017.8102426

249

http://www.deg.byu.edu/papers/AutomatingSchemaMatching.journal.pdf
http://www.deg.byu.edu/papers/AutomatingSchemaMatching.journal.pdf
https://www.jstage.jst.go.jp/article/softscis/2006/0/2006_0_1248/_article
https://www.jstage.jst.go.jp/article/softscis/2006/0/2006_0_1248/_article

