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Abstract. Ontology and schema matching is one of the most important tasks for data integration. We 
suggest to combine the different matchers with machine learning approach. The features are the outputs of 
lexical and semantic similarity functions. Naive Bayesian classifier, logistic regression and gradient tree 
boosting have been trained on these features. The proposed approach is tested on the OAEI 2017 benchmark 
“conference” with the various splits of the data on train and test sets. Experiments show that final combined 
model in element-level matching outperformed the single matchers. Results are compared with EditDistance 
matcher and WordNet matcher. 
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1 Introduction 
Data integration is now a very important problem, as the 
amount of data is growing very much. One of the most 
important steps in automatic data integration is the 
comparison of ontologies or schemas. This problem is 
traditionally solved manually or semi-automatically. 
Manual ontology or schema matching is very labor-
intensive, long in time and prone to errors. Therefore 
now the task is to maximally automate the process of 
comparing the circuit with the greatest accuracy.  

For schema matching and ontology matching 
element-level and structure-level matchers are used. 
Element-level matchers use information of elements of 
schema (name of columns, description). Structure-level 
matchers use information of structure (type similarity, 
key properties, hierarchy of elements). 

Recently, element-level matchers have been widely 
used lexical and semantic information. For  getting 
semantic information WordNet and Word2vec are used. 
Word2vec allow us to get a meaning of the word and we 
can use this for improving ontology and schema 
matching. So we can combine many lexical and semantic 
information into one similarity matrix and train a 
machine learning model for trying to solve ontology and 
schema matching problems. 

This work is performed as Master thesis. The main 
goal of this work is to propose a approach for solving 
ontology and schema matching problem with the greatest 
accuracy.  To achieve this goal we need to perform the 
following tasks: review related work, create the 
architecture of solution, select of information for 
matching and create experiments. We compared our 

approach on OAEI 2017 “conference” ontologies with 
single matchers: edit distance and WordNet. 

In Section 2 we reviewed related work and it's 
evolution. Section 3 describes the setup of the paper. In 
Section 4 presents our matching algorithm in detail. 
Section 5 shows the experiments and the analysis. We 
conclude this paper in Section 6. 

2 Related Work 
Schema matching and ontology matching are very 
similar. In this article, there is no difference for schema 
matching and ontology matching because we only work 
with the names of the entities. So we considered the 
works about schema matching and ontology matching 
together. In [1] a review of approaches for automatic 
schema matching are  conducted. They introduced the 
classification of matchers and concluded that it is 
impossible to create a fully automatic matching system, 
universal for all subject areas. One of the most important 
conclusions is that hybrid matching system is better than 
single system. Intuitively, this is obvious, since a hybrid 
matcher uses more information to make a decision. 

In [2] the ready-made solutions for automatic schema 
matching are compared and the concept of pre-match 
effort and post-match effort introduced. Pre-match effort 
is learning of the matcher, configuration of thresholds 
and weights. Post-match effort is correction and 
improvement of the match output. In the same year, in 
[3] the authors described their COMA system. The 
authors introduced new methods of post-match effort: 
reuse of matchings, aggregation of individual matchers. 
In [4] the Target-based Integration Query System (TIQS) 
are described. In [5] a new classification on matching 
dimensions are presented. A natural issue is uncertainty, 
In [6] uncertainty are considered, monotonicity and 
statistical monotonicity are introduced . All the above 
articles don't use machine learning for aggregation 
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results of matchers. 
In [7] Bayesian Networks are used for combining 

ontology matching. As the features lexical information 
(N-gram, Levenshtein, Dice Coefficient etc) were used. 
The best accuracy is 88%.  

In [8] the outputs from several single matchers are 
used and the authors trained on this data a multi-layer 
neural network.The authors used lexical information and 
the WordNet similarity. 

In [9] ontology matching problem in detail are 
described: applications, classifications of ontology 
matching techniques, evaluations and alignment. They 
suggest three dimensions of building correspondences: 
conceptual, extensional and semantic. 

In [10] Multiple Concept Similarity for ontology 
mapping are described. The author reduced the ontology 
mapping problem to the machine learning problem. They 
used lexical information (prefix, suffix, Edit distance, n-
gram), semantic information (WordNet) and special 
types of similarity called Word List similarity (a 
similarity for sentences). 

In [11] a machine-learning approach to ontology 
alignment problem are described. The authors used 
lexical information, semantic information (WordNet) 
and structural information for training Support Vector 
Machine, K-Nearest Neighbours, Decision Tree, 
AdaBoost models. The authors improves F-measure 
criterion  up to 99%. 

In [12] Bayeasian Networks are used for composition 
of matchers. The resulting model achieved  81% 
accuracy. The authors used the outputs of the lexical 
matchers, structure-level matchers, synonym matchers 
and instance-level matchers. 

In [13] all stages of ontology matching problem in 
detail are described: feature selection, methods of 
combining matchers and experiments. 

In [14] word2vec embeddings for ontology matching 
problem are used. Authors proposed the new algorithm of 
matching and sentence2vec algorithm. The results matcher 
are compared with various types of WordNet, EditDistance 
matchers. In [15] the combination of word2vec features and 
a neural network are used. One of the most important 
problems is that articles using machine learning can not be 
compared with each other because of the lack of a unified 
benchmark. The OAEI is not intended to use machine 
learning,  so the training dataset is chosen by the author of 
the article. 

At the moment, the most promising option is the 
using of machine learning to create a hybrid model with 
lexical, semantic and structure information. In this 
article, we want to connect many different single 
matchers to one hybrid matcher using machine learning. 
One of the newest features we used is Word2vec. So far 
we only used the single element-level matchers. 

All reviewed papers use widely the lexical 
information and WordNet distances. In this paper we 
used 29 similarity metrics from 17 various single 
element-level matchers. 

 
 

3 Problem Statement, Evaluation Metrics 
and Similarity Measures 

3.1 Problem Statement 

An ontology O is by a 3-tuple (C, P, I). C is the classes, 
denoting the concepts. P is the relations within the 
ontology. I is the instances of classes. The task of 
ontology matching is to find the alignment between 
entities in a source ontology 𝑂𝑂1 and a target ontology 𝑂𝑂2. 

An alignment is a set {(𝑒𝑒1, 𝑒𝑒2, 𝑐𝑐𝑒𝑒𝑛𝑛)|𝑒𝑒1 ∈ 𝑂𝑂1, 𝑒𝑒2 ∈
𝑂𝑂2}, where 𝑒𝑒1 is an entity in 𝑂𝑂1, 𝑒𝑒2 is an entity in 𝑂𝑂2, and 
𝑐𝑐𝑒𝑒𝑛𝑛 is the confidence of the correspondence. 

Our algorithm works only with names of entities 
without the structure information. The input of our 
algorithm is the two ontologies: source and target. The 
output of our algorithm is the alignment. 

3.2 Evaluation Metrics 

The effectiveness of ontology matching could 
measured by precision, recall and F-measure. 

𝑠𝑠𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑛𝑛 = |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴|

,                          (1) 

𝑟𝑟𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 = |𝐴𝐴∩𝐵𝐵|
|𝐵𝐵|

,                              (2) 

𝐹𝐹 − 𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑠𝑠𝑟𝑟𝑒𝑒 = 2⋅𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛⋅𝑟𝑟𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙
𝑝𝑝𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛+𝑟𝑟𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙

,    (3) 
 

where A is a predict alignment and B is a true 
alignment. 

3.3 Used Similarity Measures 

As features for machine learning we used the similarity 
measures. We extract from ontology the names of 
entities. Further we need to create sets of words from 
names for computing some similarity measures.  

Example. We have two names of entities: 
“early_paid_applicant” and “early-registered-
participant”. The sets are [“early”, “paid”, “applicant”] 
and [“early”, “registered”, “participant”]. 

 
Metrics based on lexical information from names of 

entities: 
• N-gram [11].  Let ngram(S, N) be the set of 

substrings of string S of length N. The n-gram 
similarity for two strings S and T: 

𝑛𝑛𝑘𝑘𝑟𝑟𝑎𝑎𝑚𝑚(𝑆𝑆, 𝑇𝑇) = |𝑛𝑛𝑔𝑔𝑟𝑟𝑚𝑚𝑚𝑚(𝑆𝑆,𝑁𝑁)∩𝑛𝑛𝑔𝑔𝑟𝑟𝑚𝑚𝑚𝑚(𝑇𝑇,𝑁𝑁)|
𝑚𝑚𝑖𝑖𝑛𝑛(|𝑆𝑆|,|𝑇𝑇|)−𝑁𝑁+1

     (4) 

• Dice coefficient [11]. The Dice similarity score is 
defined as twice the shared information 
(intersection) divided by sum of cardinalities. For 
two sets X and Y, the Dice similarity score is: 

𝑑𝑑𝑖𝑖𝑐𝑐𝑒𝑒(𝑋𝑋, 𝑌𝑌) = 2∗|𝑋𝑋∩𝑌𝑌|
|𝑋𝑋|+|𝑌𝑌|

               (5) 

• Jaccard similarity [11]. For two sets X and Y, the 
Jaccard similarity score is: 

𝑗𝑗𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑟𝑟𝑑𝑑(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
|𝑋𝑋∪𝑌𝑌|

             (6) 

• Jaro measure [11]. The Jaro measure is a type of edit 
distance, developed mainly to compare short strings, 
such as first and last names. 
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• Substring similarity [11]. For longest substring T of 
two strings X and Y substring similarity is: 

𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑛𝑛𝑘𝑘(𝑋𝑋, 𝑌𝑌) = 2∗|𝑇𝑇|
|𝑋𝑋|+|𝑌𝑌|

            (7) 

• Monge-Elkan [11]. Token-based and internal 
similarity function for tokens: 

𝑠𝑠𝑖𝑖𝑚𝑚𝑀𝑀𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 1
|𝑚𝑚|

∑
𝑖𝑖=1

|𝑚𝑚|
𝑚𝑚𝑎𝑎𝑥𝑥𝑗𝑗=1,|𝑠𝑠|𝑠𝑠𝑖𝑖𝑚𝑚′(𝑥𝑥[𝑖𝑖], 𝑦𝑦[𝑗𝑗])     

(8)  
• Smith-Waterman [11]. The Smith-Waterman 

algorithm performs local sequence alignment; that 
is, for determining similar regions between two 
strings. 

• Needleman-Wunsch [11]. The Needleman-Wunsch 
distance generalizes the Levenshtein distance and 
considers global alignment between two strings. 
Specifically, it is computed by assigning a score to 
each alignment between the two input strings and 
choosing the score of the best alignment, that is, the 
maximal score. 

• Affine gap [17]. Returns the affine gap score 
between two strings. The affine gap measure is an 
extension of the Needleman-Wunsch measure that 
handles the longer gaps more gracefully.  

• Bag distance. The number of common symbols in 
two strings. 

• Cosine similarity [11]. For two sets X and Y: 

𝑐𝑐𝑒𝑒𝑠𝑠𝑖𝑖𝑛𝑛𝑒𝑒(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
�|𝑋𝑋|⋅|𝑌𝑌|

          (9) 

• Partial Ratio. Given two strings X and Y, let the 
shorter string (X) be of length m. It finds the fuzzy 
wuzzy ratio similarity measure between the shorter 
string and every substring of length m of the longer 
string, and returns the maximum of those similarity 
measures. 

• Soft TFIDF [21]. A variant of TF-IDF that considers 
words equal based on Jaro Winkler rather than exact 
match. 

• Editex. Editex is a phonetic distance measure that 
combines the properties of edit distances with the 
letter-grouping strategy used by Soundex and 
Phonix. 

• Generalized Jaccard. This similarity measure is 
softened version of the Jaccard measure. The 
Jaccard measure is promising candidate for tokens 
which exactly match across the sets.  

• JaroWinkler. The Jaro-Winkler measure is designed 
to capture cases where two strings have a low Jaro 
score, but share a prefix and thus are likely to match. 

• Levenshtein distance [11]. Levenshtein distance 
computes the minimum cost of transforming one 
string into the other. 

• Partial Token Sort. For two strings X and Y, the 
score is obtained by splitting the two strings into 
tokens and then sorting the tokens. The score is then 
the fuzzy wuzzy partial ratio raw score of the 
transformed strings. 

• Ratio. For two strings X, Y: 

𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒 = 𝑟𝑟𝑒𝑒𝑠𝑠𝑛𝑛𝑑𝑑(2.0 ⋅ 𝑀𝑀
𝑇𝑇

⋅ 100),        (10) 
• where T is the total number of characters in both 

strings, and M is the number of matches in the two 
strings X and Y. 

• Soundex [6]. Phonetic measure such as soundex 
match string based on their sound. These measures 
have been especially effective in matching names, 
since names are often spelled in different ways that 
sound the same. 

• Token Sort. Fuzzy Wuzzy token sort ratio raw 
raw_score is a measure of the strings similarity as an 
int in the range [0, 100]. For two strings X and Y, 
the score is obtained by splitting the two strings into 
tokens and then sorting the tokens. The score is then 
the fuzzy wuzzy ratio raw score of the transformed 
strings. 

• Tversky Index. For sets X and Y: 

𝑇𝑇𝐼𝐼(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
|𝑋𝑋∩𝑌𝑌|+𝛼𝛼|𝑋𝑋−𝑌𝑌|+𝜂𝜂|𝑌𝑌−𝑋𝑋|

 ,   (11) 

•  where 𝛼𝛼, 𝜂𝜂 > 0. 
• Overlap coefficient. For sets X and Y: 

𝑂𝑂𝐶𝐶(𝑋𝑋, 𝑌𝑌) = |𝑋𝑋∩𝑌𝑌|
𝑚𝑚𝑖𝑖𝑛𝑛(|𝑋𝑋|,|𝑌𝑌|)

             (12) 
 
Metrics based on semantic information from names 

of entities: 
• WordNet similarity. Best score of similarity between 

synonyms of one word with synonyms of other 
word. We use a sentence similarity algorithm from 
[14]. 

• Word2vec and Sentence2vec similarity. Word2vec 
is a model that are used to produce word 
embeddings. We used word2vec model trained by 
the texts of Google News. The dimensionality of 
these vectors is 300. We used sentence2vec 
algorithm from [14]. 

4 Proposed Matching Algorithm 
The input of the matching system is the two 

ontologies. For each ontology the system extracts the 
names of the entities. Further it generate all possible pairs 
of the names of the ontology with the names of the other 
ontology. For all pairs system computes the all similarity 
measures. All outputs of the similarity measures are 
concatenated into the one similarity matrix. The 
computed features are used as input to a machine 
learning model. 

Program 1 Element-level matching algorithm 
Input: Ontology1, Ontology2 - input ontologies 
or schemas, THRESHOLD - threshold for create 
matching between elements 
Output: alignment - output alignment for 
Ontology1 and Ontology2 
for Entity1 ∈ Ontology1 do 
  for Entity2 ∈ Ontology2 do 
    Name1 ← get_name(Entity1) 
    Name2 ← get_name(Entity2) 
    Features ← get_features(Name1, Name2) 
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    Match ← predict_match(Features) 
    if Match > THRESHOLD then 
      alignment.append((Name1,Name2)) 
    end if 
  end for 
end for 
return alignment  

Program 2 Creating dataset and training a machine 
learning model 
Input: TrueAlignments - set of true alignments, 
TrainAlignments - set of train pairs 
 
Output: Model - trained model for predict 
matching 
 
for Ontology1, Ontology2 in TrueAlignments do 
  for Entity1 ∈ Ontology1 do 
    for Entity2 ∈ Ontology2 do 
      if (Entity1, Entity2) ∈ TrainAlignments                  
   then 
        add_to_train(Entity1, Entity2, 1) 
      else 
        add_to_train(Entity1, Entity2, 0) 
      end if 
    end for 
  end for 
end for 
Model.train() 
return Model  

For training a machine learning model we need the 
ontologies and the alignments. We split the alignments 
on the training alignments and testing alignments. 
Further we train a machine learning model on the 
features from train alignments. Then we can evaluate F-
measure on testing alignment. 

5 Preliminaries and Results 

5.1 Collection of Data 

The experiments were conducted at the dataset 
“conference” from OAEI 2017. The dataset consists 16 
ontologies from the same domain (conference 
organisation) and 21 true ontology matchings. This 
dataset is convenient for machine learning because all 
ontologies are from the same domain and this dataset has 
the several true matchings between ontologies. 

We get entities from ontologies with parsing code on 
Python and get array of tuples: (entity1, entity2, match), 
where entity1, entity2 - string names of entities, match - 
bool variable, 1 means that the entities are matched, 0 
means that the entities are not matched. We generated 29 
similarity measures from 3.3 with Python packages: 
py_stringmatching24, fuzzycomp25, gensim26. 

The final dataset is very unbalanced: 391 572 
negative samples and 305 positive samples. After 
generating features we split data randomly on train and 
test datasets in equal proportions. In Table 1 are 
described our split. 
                                                           
24 https://github.com/kvpradap/py_stringmatching  
25 https://github.com/fuzzycode/fuzzycomp  
26 https://github.com/RaRe-Technologies/gensim  
27 http://scikit-
learn.org/stable/modules/generated/sklearn.naive_bayes

Table 1 Our split of dataset “conference” from OAEI 
2017 benchmark 

Train pairs Test pairs 

Iasted, Sigkdd 
Cmt, Confof 
Confof, Edas 
Edas, Iasted 

Confof, Ekaw 
Cmt, Iasted 

Edas, Sigkdd 
Confof, Sigkdd 

Conference, Confof 
Cmt, Edas 

Conference, Ekaw 
Ekaw, Sigkdd 
Cmt, Sigkdd 
Cmt, Ekaw 

Ekaw, Iasted 
Edas, Ekaw 

Conference, Iasted 
Conference, Sigkdd 
Conference, Edas 

Confof, Iasted 
Cmt, Conference 

 

5.2 Experiments 

As a baseline solution we take EditDistance and 
WordNet matchers. For every matcher we select 
threshold with the best F-measure on the test dataset. As 
the machine learning models we chose Naive Bayes 
Classifier27, Logistic regression28 as the simple models 
and Gradient boosting29 as the complex model. 

Table 2 The results on test dataset 

Method Precision, 
% Recall, % F-

measure, % 

EditDistance 50 35.8 41.7 

WordNet 9.1 38.2 14.7 

Naive Bayes 
Classifier 2.13 80.08 4.15 

Logistic 
regression 75.58 40.12 52.41 

XGBoost 69.15 45.67 55.01 

 
 
We can see on Table 2 that XGBoost is the model 

with best F-measure 55.01%. The worst model is Naive 
Bayes Classifiers with F-measure 4.15%. EditDistance is 
better than WordNet by  27%. For getting more stable 
results we splitted the datasets randomly on training and 
testing pairs 20 times and averaged the results. The 
results are show on Table 3. We can see that XGBoost 
are remained the best model. 

.GaussianNB.html  
28 http://scikit-
learn.org/stable/modules/generated/sklearn.linear_mode
l.LogisticRegression.html  
29 https://github.com/dmlc/xgboost  
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Table 3  The averaged results on 20 various random 
splits on train and test datasets 

Method Precision, 
% Recall, % F-

measure, % 

EditDistance 47.31 39.2 42.82 

WordNet 11.87 41.69 18.35 

Naive Bayes 
Classifier 2.63 81.49 5.10 

Logistic 
regression 74.98 43.43 54.95 

XGBoost 72.72 47.51 57.29 

 

6 Conclusions 
In this paper, we combined the lexical and semantic 
similarity measures into one hybrid model. The 
experiments show that hybrid model is better than single 
matchers. 

In future work we want to run our solution on other 
benchmarks. We must add the structure-level and 
instance-level features because in our dataset there are 
examples in which the names of entities are exactly the 
same but they are not matched.  
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