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Abstract. We develop a variance reduction technique to estimate a
small failure probability in an unreliable system with repairs. Since the
probability of failure is considered to be small, it is natural to use the
rare event simulation techniques in order to decrease the variance of the
the estimator. For degradation process we proposed a combined method
based on two approaches designed to rare events simulation: the standard
conditional Monte Carlo method and the splitting technique.

Keywords: Conditional Monte Carlo · variance reduction · failure prob-
ability · splitting method.

1 Introduction

In this work, we consider a variance reduction technique based on conditional
Monte-Carlo method, which is based on the expression of desired quantity as
conditional expectation given some auxiliary random variable. This method is
highly effective when we need to estimate a small probability of a rare event [8,7]
and allows to considerable reduce variance of the estimate by the appropriate
selection of an auxiliary variable.

In this work we apply a special case of this method based on an improved
algorithm for rare event simulation suggested [1] for variance reduction when we
deal with heavy-tailed distributions.

In this work we describe conditional Monte-Carlo method and illustrate it
by an application to estimation a degradation process containing a few steps, in
which a maintenance repair is applied to prevent a failure.

This problem has been addressed in [2], where we applied a standard splitting
method to speed-up estimation of the failure probability. This model is highly
motivated, and calculation of the failure probability and related stationary char-
acteristics is critically important to evaluate quality of service and reliability
of the system. It is worth mentioning that analytic methods as a rule are un-
available in the case of non-Markov processes and an effective simulation only
remains an effective tool for the required estimating.
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In this research, we present some simulation results to demonstrate an ef-
ficiency of the variance reduction approach from [1] applied to the setting de-
scribed above.

Now we shortly describe the model of the degradation process from [2], which
is a random process X := {X(t), t ≥ 0} with a finite state space

E = {0, 1, . . . , L, . . . ,M, . . . ,K;F}

describing the degradation stages of the system.

As it is illustrated in Fig. 1 the process starts in state X(0) = 0 and crosses
K − 1 intermediate degradation states. When the process reaches the state M
(it happens with probability 1), the following two scenarios are possible: i) the
process X visits state K, where repair is performed during random time UK ,
then the process returns to stage L; ii) an instantaneous failure occurs if during a
random time V (with given distribution) the process is still at some intermediate
stage j ∈ {M, . . . ,K − 1}.

Fig. 1. Realization of the degradation process with two types of cycle

As a result, the process X jumps to a complete failure state F . Then the
system again is ready for work after a repair random time UF , with a given
distribution. After repair, the process returns to initial state 0. We emphasize
that structure of the degradation process is very convenient to application of the
splitting method to speed-up estimation of the failure probability by simulation.
For more details on the accelerated estimation of rare events by splitting method
see [3,4,5,6].

Besides, in the work [2], we heavily exploit different regenerative structures
of the degradation process. In particular, we have used the regeneration instants
when the process hits the state M . Upon reaching state M , a failure may happen



during random period V ; otherwise, a preventive repair occurs during time

SM,K =

K−1∑
i=M

Ti,

where Ti is a random length of the i stage of degradation, with a given distribu-
tion. (Note that in general distribution of Ti may depend on the stage number
i.)

As a result, we obtain two types of regeneration cycles of the degradation
process X. Denote by YF the length of the regeneration cycle with a failure, and
let YNF be the length of cycle with no failure. Thus (unconditional) regeneration
cycle length Y is

Y = YF · I{V≤SM,K} + YNF · I{SM,K<V }. (1)

where IA denotes indicator function. The variable Y plays an important role in
the analysis of degradation process [2]. The main task is to find the probability
of instantaneous failure on the cycle

pF = P(SM,K ≥ V ). (2)

2 Conditional Monte Carlo for the failure probability
estimation

In this section we restrict ourselves to the particular case of homogeneous degra-
dation process when random variables Ti, i = 1, ...,K − 1, which are identically
distributed with the distribution function FT . In this framework one can apply
an alternative approach, known as Conditional Monte Carlo.

In a nutshell, the target probability is expressed as a conditional expectation
with respect to some auxiliary random variable. This method always leads to
variance reduction [8,7]. Unfortunately, it is often impossible, or at least very
difficult, to find a suitable conditioning quantity. Hopefully, in our setting it
turns out to be possible by the following approach suggested by [1]. To apply
this approach, we write the target probability as

pF = (K −M)E
[
FT (max(V − SM,K−1, RM,K−1))

]
, (3)

where FT = 1− F and

RM,K = max(TM , ..., TK−1); (4)

SM,K = TM + ...+ TK−1. (5)

Given the two sequences of samples

{T (i) = (T
(i)
M , ..., T

(i)
K−1), i = 1, ..., N},



{V (i), i = 1, ..., N},
we are able to define the required estimator of pF as follows

p̂F =
K −M
N

N∑
i=1

FT

(
max(V (i) − S(i)

M,K−1, R
(i)
M,K−1)

)
, (6)

where we use notation:

S
(i)
M,K = T

(i)
M + ...+ T

(i)
K−1,

R
(i)
M,K = max(T

(i)
M , ..., T

(i)
K−1).

It has been shown in [1] that such an estimator has a bounded relative error
(under some limitations on initial distributions).

3 Implementation of the splitting method for the
degradation process

We also treat the degradation process as a regenerative process and consider
a modification of the splitting method [9] for speed-up estimation of failure
probability pF .

As in the case of the conditional Monte Carlo method, the key problem for
splitting is the randomness of the threshold value V . Note that the standard for-
mulation of the problem for the accelerated splitting method implies the presence
of a fixed threshold V , the excess of which is a rare event.

Fig. 2. The splitting moments

But, due to the specific structure of degradation process, the splitting tech-
nique is best suited (among the accelerated methods) to simulate regeneration



cycles in a degrading system and allows to estimate several characteristics si-
multaneously in one run of the program. More specifically, for a complete study
of the degradation system behavior, we also need to evaluate the average length
of regeneration cycle with and without failure; the mean (unconditional) cy-
cle length; the asymptotic reliability function. The splitting method will handle
this, whereas the conditional Monte Carlo method allows us to obtain the only
estimate for the probability pF .

Nevertheless, experiments have shown that it is necessary to focus attention
on the probability estimation problem, since it has the greatest relative error

RE[p̂F ] =

√
V ar[p̂F ]

E[p̂F ]
.

Since failure is possible only after going to stage M , then we will split the
process trajectory after stage M . The moment of splitting occurs at the time of
regeneration τi which corresponds to the moment of transition to stage M (see
Fig.2).

At each level we generate Ri copies of the random variables (r.v.) Ti, M ≤ i ≤
K−1. So, each original path generates D = RM · · ·RK−1 (dependent) subpaths
called group of cycles. The dependence is generated by the same pre-history of
realizations of SMK before splitting point at each stage.

Thus, we obtain D realizations of SMK for one group of cycles. The cycles
belonging to different groups are independent by construction. The total number
of groups is denoted by RM−1. The total number of the failures in the ith group
is

Ai =

i·D∑
j=(i−1)·D+1

I(j), i = 1, . . . , RM−1,

where indicator I(j) = 1 for the cycle with failure (I(j) = 0, otherwise), and the
groups are i.i.d.

The following convergence follows from the regenerative properties of the
sequence {I(j), j ≥ 1}:

p̂F =

∑RM−1

j=1 Aj

RM−1 ·D
→

E
∑D

j=1 I
(j)

D
= pF , RM−1 →∞. (7)

Further, for the alternative construction of this estimator, we can apply the
same algorithm as in section 2 using the formula (6).

4 Conclusions

In this paper, we consider a variance reduction technique developed in [1], and
combine it with simulation technique based on the splitting of the trajectories,
to accelerate estimation a small failure probability in a degradation process. We
verify this approach by some simulation experiments for Weibull and Pareto Ti
with uniform and exponential V .



ACKNOWLEDGEMENTS

The study was carried out under state order to the Karelian Research Centre of
the Russian Academy of Sciences (Institute of Applied Mathematical Research
KarRC RAS) and supported by the Russian Foundation for Basic Research,
projects 18-07-00187, 18-07-00147, 18-07-00156.

References

1. Asmussen, S., Kroese, D.P.: Improved algorithms for rare event simulation with
heavy tails. Advances in Applied Probability 38, 545–558 (2006)

2. Borodina, A.V., Efrosinin, D.V., Morozov, E.V.: Application of splitting to fail-
ure estimation in controllable degradation system. In: Communications in Com-
puter and Information Science. vol. 700, pp. 217–230. Springer International Pub-
lishing (2017). https://doi.org/10.1007/978-3-319-66836-9, http://www.springer.
com/gb/book/9783319668352

3. Garvels, M.: PhD Thesis. The splitting method in rare event simulation. The Uni-
versity of Twente, The Netherlands (2000)

4. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Splitting for rare event
simulation: analysis of simple cases. In: Proceedings of the 1996 Winter Simulation
Conference. pp. 302–308 (1996)

5. Heegaard, P.E.: A survey of speedup simulation techniques. In: Workshop tutorial
on Rare Event Simulation. Aachen, Germany. (1997)

6. Heidelberger, P.: Fast simulation of rare events in queueing and reliabil-
ity models. ACM Trans. Model. Comput. Simul. 5(1), 43–85 (Jan 1995).
https://doi.org/10.1145/203091.203094, http://doi.acm.org/10.1145/203091.

203094

7. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. John
Wiley & Sons (2011)

8. Ross, S.M.: Simulation. Elsevier (2006)
9. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo method. John

Wiley & Sons, Inc., New Jersey (2017)

https://doi.org/10.1007/978-3-319-66836-9
http://www.springer.com/gb/book/9783319668352
http://www.springer.com/gb/book/9783319668352
https://doi.org/10.1145/203091.203094
http://doi.acm.org/10.1145/203091.203094
http://doi.acm.org/10.1145/203091.203094

	A Variance Reduction Technique for the Failure Probability Estimation

