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Abstract. In this paper we establish an upper bound for absolute value
of the determinant of rate matrix R used in matrix-geometric solution for
steady-state probabilities of a structured G/M/1-type Markov process.
This result, although being mostly theoretical, may be useful to establish
bounds for the geometrical decay of steady-state probabilities useful in
many practical problems.

1 Introduction

In this short paper we address a particular problem related to matrix-analytic
method (MAM) of stochastic simulation. The MAM is widely used to study
Markov processes of special structure, with many successful applications to
stochastic models of queueing systems [11,8]. Practical applications of MAM
cover many areas in modern computing and communication systems, such as
Internet of Things [7], high-performance [13] and distributed [4] computing sys-
tems.

The key component of the MAM analysis of a G/M/1-type system in station-
ary regime is obtaining a minimal nonnegative matrix R solving the following
matrix series equation

∞∑
i=0

RiA(i) = 0,

or (if motivated by the model) the following matrix polynomial equation of power
N > 2 which we focus our attention on:

P (R) :=

N∑
i=0

RiA(i) = 0. (1)

In general, the solution R may be obtained either numerically [2], or by invariant
subspaces approach [10], and finally, by spectral decomposition [6]. However,
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apart from componentwise non-negativity, not many properties of the key matrix
R are known in general [5].

In this paper we obtain an upper bound for the absolute value of determi-
nant of R in terms of determinants of the submatrices of infinitesimal generator
matrix of Markov process, considered to be known in advance from the model
properties. The corresponding theorem is proven in Section 2. In Section 3 we
discuss the applicability of this theoretical result to practical problems, and give
some conclusions.

2 Upper bound on the determinant of key matrix R

The system studied by MAM is usually modelled as a two-dimensional con-
tinuous time Markov chain {(X(t), Y (t)), t > 0} with countable state space
E := {(0, j), j = 1, . . . ,m0} ∪ {(i, j), i > 1, j = 1, . . . ,m}, where the so-called
phase Y (t) may take one of m (or m0 for boundary states) values and level X(t)
may be increased/decreased at each transition. The state space E can be parti-
tioned into levels with level n > 1 being the subset {(n, j), j = 1, . . . ,m} ⊂ E.
In many fields of interest, it is assumed that the level is increased by at most
one, and decreased by at most N−1 (we focus on the case N <∞) units at each
transition epoch. These models belong to the so-called structured G/M/1-type
Markov processes, extensively studied in [11], with the natural example of such a
process being the queue length process of an G/M/1 queue, embedded at arrival
epochs. The infinitesimal generator matrix of a structured G/M/1-type process
has the following block-multidiagonal representation

Q =



A0,0 A0,1 0 0 . . .
A1,0 A1,1 A(0) 0 . . .
A2,0 A(2) A(1) A(0) . . .
A3,0 A(3) A(2) A(1) . . .

...
...

...
...

. . .

0 A(N) A(N−1) A(N−2) . . .
0 0 A(N) A(N−1) . . .
...

...
...

...
. . .


, (2)

where A(i), i = 0, . . . , N are square matrices of order m, satisfying the balance
equation

A1 = 0, where A :=

N∑
i=0

A(i), (3)

1 (0) is the vector of ones (zeroes) of corresponding dimension, A0,0 is a square
matrix of order m0 and Ai,0, A0,1 are possibly rectangular matrices. (Recall that
for these type of processes the off-diagonal elements of matrix Q, i.e. the rates
of transitions of the chain, are nonnegative.)



The key component of the method is to obtain the steady-state probability
vector π = (πi,j), i, j ∈ E of the system states in the level-wise matrix-geometric
form [11] (for more details on the method see e.g. [3,8])

πk = πk−1R, k > 1, (4)

where πk = (πk,1, . . . , πk,m), and R is the minimal nonnegative (square matrix
of order m) solution of nonlinear matrix equation (1), provided the stability
condition holds [11]

αA(0)1 < α

N∑
k=2

(k − 1)A(k)1, (5)

where the stochastic vector α is the solution of the linear system{
αA = 0
α1 = 1.

(6)

It is relatively easy to see (we refer to e.g. [5]) that the matrices R and A(0) have
the same rank. Thus, we restrict the analysis to the case A(0) is nonsingular.

We define the generator function

G(ξ) =

N∑
i=0

ξiA(i).

It is easy to show that

G(ξ) = (ξI −R)J(ξ,R), (7)

where

J(ξ,R) :=

N−1∑
i=0

ξiEi, (8)

and

Ei =

N∑
j=i+1

Rj−i−1A(j). (9)

The derivation of (7) follows the Residual Theorem [9].
It follows from (3) that G(1)1 = 0. It is known, that in a stable system the

spectrum sp(R) < 1 (i.e. the largest modulus eigenvalue, being simple, real and
nonnegative, see e.g. [8]), and I − R is nonsingular (which easily follows from
diagonal dominance), hence it follows from (7) that

J(1, R)1 = 0. (10)

Consider now J(1, R). It is easy to obtain from (8) that

J(1, R) = E0 +K(R), (11)



where

K(R) :=

N−1∑
i=1

Ei. (12)

We conventionally set 00 = 1 in E0.
Now consider G(0). By definition, G(0) = A(0). However, noting that (8)

provides J(0, R) = E0, we obtain from (7) (and also can see directly from (1))
that

A(0) = −RE0. (13)

Thus, since A(0) is nonsingular, then E0 is nonsingular. Moreover, it follows
from (9) that −E0 = −A(1) −

∑N
i=2R

i−1A(i), that is, −E0 has positive di-
agonal elements and nonpositive off-diagonal elements. This means that E0 is
the so-called M-matrix [12]. Hence, it is known that (−E0)−1 is by definition a
nonnegative matrix (the proof of this M-matrix definition equivalence is given
in [12]). Moreover, since K(R) is also nonnegative, then it follows from (10)
and (11) that

(−E0)−1K(R)1 = 1,

that is, the matrix (−E0)−1K(R) is stochastic. Hence∣∣det
[
(−E0)−1K(R)

]∣∣ 6 1.

It now follows from (12) and (9) that

K(R) >
N∑
i=2

A(i),

since for i = 1, . . . , N − 1, the matrices Rj−i−1A(j), j > i + 2, are nonnegative.
Thus, the matrix (−E0)−1

∑N
i=2A

(i) is nonnegative and substochastic, which
provides ∣∣∣∣∣det

[
(−E0)−1

N∑
i=2

A(i)

]∣∣∣∣∣ 6 1.

(Note that if X is substochastic, i.e. X1 6 1, then it is easy to show, that
detX 6 1 e.g. by considering a stochastic matrix XD, where D = diag(d) is
diagonal matrix with d > 1.) Thus

|det

N∑
i=2

A(i)| 6 |detE0|.

Recalling (13), it follows that

|detA(0)| = |detR||detE0| > |detR|

∣∣∣∣∣det

N∑
i=2

A(i)

∣∣∣∣∣ .
We have completed the proof of the following



Theorem 1. If the minimal nonnegative solution R of (1) is nonsingular, then

|detR| 6

∣∣∣∣∣ detA(0)

det
∑N

i=2A
(i)

∣∣∣∣∣ . (14)

3 Discussion

We stress that the upper bound for absolute value of the determinant |detR|
is given in terms of the matrices A(i), i = 0, . . . , N known in advance. Note also
that it immediately follows from sp(R) < 1 that |detR| < 1. Thus, for practical
purpose, one of these bounds may be used.

Let η = sp(R) be the spectrum of R. Then it is easy to see that η 6 |detR|,
which, together with (14), provides an upper bound for the spectrum. In par-
ticular we note that for a classical M/M/1 system, the inequality (14) becomes
equality ρ = λ/µ, where ρ is the server load, λ is an arrival intensity, and µ is
the service rate.

Let now |θ| be the absolute value of minimal (possibly complex) eigenvalue
of rate matrix R. Then |detR| > |θ|m, where, recall, m is the size of square
matrix R. Thus it follows from (14) that

|θ| 6

∣∣∣∣∣ detA(0)

det
∑N

i=2A
(i)

∣∣∣∣∣
1/m

.

This inequality may be used as an additional constraint when searching for θ
numerically (some numerical methods of obtaining minimal eigenvalue, however,
in M-matrix, can be found in [1]). Finally we note that the marginal probability
of a level i > 0, πi1, is known to asymptotically decrease approximately as ηi for
i large. Then the upper bound (14) together with η < |detR| may be used to
obtain a rough approximation for the level B such that πB1 < ε for given small
constant ε. However, we leave a detailed study of these practical applications for
future research.
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