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Abstract

In this work, we use the LSTM version of Re-
current Neural Networks, to predict the price
of Bitcoin. In order to develop a better un-
derstanding on its price influencers and the
general vision of this brilliant innovation, we
first give a brief perspective on Bitcoin and
its economics. Then we describe the dataset,
which is comprised of data from stock mar-
ket indices, sentiment, blockchain and Coin-
marketcap1. Further on this investigation, we
show the usage of LSTM architecture with the
aforementioned time series. To conclude, we
outline the results of predicting Bitcoin price
for 30 and 60 days ahead.

1 Introduction

With the advent of Bitcoin 10 years ago the world
of economics, albeit in small scale, has and is ex-
periencing a revolution. Bitcoin introduced itself as
the system that solved the Double Spend problem
[Nakamoto2008], a prevalent issue with inherent Dig-
ital Cash systems. Nevertheless, the impact during
coming years was greater. Distributed Ledger Tech-
nologies (DLT), Smart Contracts, Cryptocurrencies,
etc. all stemmed from this very ”Bitcoin idea”. This is
attributed, to the unique decentralization mixed with
intuitive incentive. On the other end of the spectrum,
with data being regarded as the oil of nowadays, along
with the tremendous increases in hardware efficiency,
Machine Learning is increasingly being utilized. As a
result, we are inclined in attempting to predict the Bit-
coin price, despite of the dynamic nature present not
only in Bitcoin exchanges (Fig. 1), but in financial
markets in general.

1Coinmarketcap takes the average of every exchange that
trades Bitcoin

2 Bitcoin Price

Many endorse Bitcoin, while other are sceptic. Re-
gardless, the price of Bitcoin is a topic discussed from
an economic angle, computer science, financial, and
psychological perspective. In the time of writing this
article, the price seems to be getting stable. In some
way, this may be normal given that many investors are
waiting to see regulations, the scaling problems is not
seeing any improvement, the fact that the first hype
around 2017 is now over and it is normal for a market
to get stable for some time. Nevertheless, given the
features of Bitcoin like:

• Tax free

• Unforgeable

• Bordless and unbound from distance

• Decentralized

• Verifiable and secure

• Normally, negligible transaction fees

• Cannot be counterfeited

It is a plausible solution for countries with developing
economies and financial systems to improve their eco-
nomical position, while struggling to access the best
technology of its time. However, for a country to have
an aptitude towards this monetary system, a tech-
savvy population should be present to adopt the sys-
tem, along with regulations from financial institutions
that support it. Both of these are absent for the mo-
ment, but the future prospect is very potent. Another
factor why we believe Bitcoin should be studied, is the
fast paced advancements in technology (Fig. 1), that
favour Bitcoin, considering its qualities as a software
and a decentralized system, which can not be beaten
by banking systems, or a likes.



Figure 1: 5 tech companies together are worth more
than 282 other companies, by market capitalization.
Source: [Batnick2018]

2.1 Bitcoin Deflation

Bitcoin’s supply is predetermined by design, and rep-
resented by this geometric series:

Sn =
a (1 − rn)

1 − r
= 210000 × 50 (1 − 0.5)

1 − 0.5
≈ 21 × 106.

(1)

As it is clearly stated in Bitcoin’s wiki
[BitcoinWiki2017], the decrease of supply, resem-
bles the rate at which commodities like gold are
mined. This makes many consider Bitcoin as defla-
tionary, but this currency is infinitely divisible, not
only because 1 BTC = 108 satoshis2, and in turn, no
one would run out that fast of every satoshi, but also
because the protocol could be updated allowing for
satoshis to be more divisible (have more zeros). As a
result, deflation, does not have to occur.

2.2 Bitcoin Inflation

Bitcoin is not debt based, and no artificial money
can be issued. Additionally, because of the fixed sup-
ply mentioned above no more Bitcoins than predicted
can be created, unlike the economy system of today.
Bitcoin’s deflationary attribute, stems from imitating
gold, in that a currency must be scarce (or with a fi-
nite supply in case of BTC), consequently, no one can
increase the supply and inflate the value of goods.

Nonetheless, the bitcoin has also its dark side which
sometimes makes users quite sceptical on its poses-
sion and usage. Several of these problems have been
reported (and may not be limited to) by Kaspersky
Lab [Kaspersky2017]. We may include the facts that:
blockchain nodes do exactly the same thing (no paral-
leling, no synergy, no mutual assitance), growing size

2Satoshi is the smallest unit of Bitcoin currency

of storage used (currently 100 GB for the Bitcoin for
each high-grade Bitcoin network client), transaction
confirmation needs 10 50 minutes, etc.

While we will try to build a predictive model for
the Bitcoin prospect value calculation, we are aware
in advance that price may differ greatly because of
internal and external factors to Bitcoin. By internal
factors we are presuming factors inside the Bitcoin se-
curity (some breach). By external we are referring to
agents which influence indirectly the price of Bitcoin
(exchange closures, replacing cryptocurrencies, spec-
ulation markets, the fact that as its believed widely
over 80% of Bitcoins in circulation is concentrated in
a limited number of investors etc.)

Anyway, we shall compare our results to other mod-
els built for cryptocurrency prediction. Lets not forget
that in the first month of 2018 there were models which
predicted that Bitcoin would surpass the 100,000.00
USD per Bitcoin till the end of the year, while we are
barely reaching the 7,000.00 USD value just 2 months
before the end of the year.

Figure 2: Bitcoin’s steep price movements.

3 Data preprocessing

3.1 Data gathering

Daily data of four channels are considered since 2013.
First, the Bitcoin price history, which is extracted from
Coinmarketcap through its open API. Secondly, data
from Blockchain is gathered, in particular we choose
the average block size, the number of user addresses,
number of transactions, and the miners revenue. We
found it counter intuitive to have some Blockchain
data, given the incessant scaling problem, on the other
hand, the number of accounts, by definition is related
to the price movements, since an increase in the num-
ber of accounts, either means more transactions oc-



curring (presumably for exchanging with different par-
ties and not just transferring Bitcoins to another ad-
dress), or it is a sign of more users joining the network.
Thirdly, for the sentiment data we obtain the Interest
over time for the word ’Bitcoin’ using PyTrends li-
brary. Lastly, two indices are considered, that of S&P
500 and Dow and Jones. Both are retrieved through
Yahoo Finance API. All in all, these make for 12 fea-
tures. The Pearson correlation between the attributes
is shown in Figure 2. Clearly, some attributes are not
too correlated, for example, the financial indices are
relevant with each other, but not with any of bitcoin-
related attributes. Also, we see how Google Trends
are related to Bitcoin transactions.

Figure 3: Pearson correlation, 1.0 means the highest
correlation

3.2 Data cleansing

From exchange data we consider relevant only the Vol-
ume, Close, Open, High prices and Market capitaliza-
tion. For all data sets if NaN values are found to be
existent, they are replaced with the mean of the re-
spective attribute. After this, all datasets are merged
into one, along the time dimension. Judging from Bit-
coin price movements during the period from 2013 un-
til 2014, we considered best to get rid of data points
before 2014, hence the data which will be passed to the
neural network lies from 2014 until September 2018.

3.3 Data normalization

Deciding on the method for normalizing a time series,
especially financial ones is never easy. What’s more,
as a rule of thumb a neural network should load data
that take relatively large values, or data that is het-
erogeneous (referring to time-series that have different
scales, like exchange price, with Google Trends). Do-

ing so can trigger large gradient updates that will pre-
vent the network from converging. To make learning
easier for the network, data should have the following
characteristics [Geron2017]:

• Take small values - Typically, most values should
be in the range 0-1 range

• Be homogeneous - That is, all features should take
values at roughly the same range.

The most common normalization methods used
during data transformation include:

• Min-Max Scaling , where the data inputs are
mapped on a number from 0 to 1:

x′ =
x−min(X)

max(X) −min(X)
(2)

• Mean Normalization , which makes data to
have a values between -1 and 1 with a mean of
0:

x′ =
x−mean(X)

max(X) −min(X)
(3)

• Z-Score (Standardization), where the features
are redistributed with their mean of 0 and stan-
dard deviation of 1:

x′ =
x−mean(x)

ρ
(4)

For our problem, we use Min-Max Scaling and ad-
just features on a scale from 0 to 1 given that most
of our time-series have a peek, therefore we might ar-
gue we know the maximum of the series, in which case
Min-Max Scaling does a good job.

4 Machine Learning Pipeline

In this section we describe how to make time series
data adaptable for supervised machine learning prob-
lems. The price prediction is treated as regression
rather than classification, and we show how LSTM can
be used in such cases. We then, discuss hyperparame-
ters.

4.1 Software used

For Deep Learning backend system we choose Tensor-
flow, and Keras as the front-end layer of building neu-
ral networks fast. Pandas is used extensively for data
related tasks, Numpy is utilized for matrix/vector op-
erations and for storing training and test data sets,
Scikit-learn (also known as: sklearn) is used for per-
forming the min-max normalization. Lastly, Plotly is
used for displaying the charts.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/getting-started
http://pandas.pydata.org/pandas-docs/stable/
http://www.numpy.org/
scikit-learn.org
https://plot.ly/


4.2 Time series data

Normally a time series is a sequence of numbers along
time. LSTM for sequence prediction acts as a super-
vised algorithm unlike its autoencoder version. As
such, the overall dataset should be split into inputs
and outputs. Moreover, LSTM is great in comparison
with classic statistics linear models, since it can easier
handle multiple input forecasting problems. In our ap-
proach, the LSTM will use previous data to predict 30
days ahead of closing price. First, we should decide on
how many previous days one forecast will have access
to. This number we refer as the window size. We have
opted for 35 days in case of monthly prediction, and
65 days in that of 2 months prediction, therefore the
input data set will be a tensor comprising of matrices
with dimension 35x12/65x12 respectively, such that we
have 12 features, and 35 rows in each window. So the
first window will consist of 0 to the 34 row (python is
zero indexed), the second from 1 to 35 and so on. An-
other reason for choosing this window length is that a
small window leaves out patterns which may appear in
a longer sequence. The output data takes into account
not only the window size but also the prediction range
which in our case is 30 days. The output dataset starts
from row 35 up until the end, and is made of chunks
of length 30. The prediction range also determines the
output size for the LSTM network.

4.3 Split into training and test data

This step is one of the most important, especially in
the case of Bitcoin. We first wanted to predict the
year ahead, but this would mean, that data from 1
Jan 2018 until September 2018 would be used for test-
ing, the downside of this, is of course the steep slope
in 2017, which would make the neural network learn
this pattern as by the last input, and the prediction of
year 2018 would not be very logical. Thus we go for
training data from 2014-01-01 until 2018-07-05, this
leaves us with approximately 2 months for prediction,
while we predict for two months, the data set is split
a bit earlier to leave room for 2 months: 2018-06-01.
Each training set and test set is composed of input and
output features.

4.4 Turn data into tensors

LSTM expects that the input is given in the form of
a 3 dimensional vector of float values. A key feature
of tensors is their shape, which in Python is a tuple
of integers representing the dimensions of it along the
3 axis. For instance, in our testing data of Bitcoin,
the shape of training inputs is: (1611, 35, 12), so we
have 1611 samples, a window size (timestep) of 35 val-
ues, and 12 features. In overall the idea is simple, in
that we separate the data into chunks of 35, and push

these small windows of data into a numpy array. Each
window is a 35x12 matrix, so all windows will create
the tensor. Furthermore, in LSTM the input layer is
by design, specified from the input shape argument on
the first hidden, the these three dimensions of input
shape:

• Samples

• Window size

• Number of features

4.5 LSTM implementation

4.5.1 LSTM internals

A chief feature of feedforward Networks, is that they
don’t retain any memory. So each input is processed
independently, with no state being saved between in-
puts. Given that we are dealing with time series where
information from previous Bitcoin price are needed, we
should maintain some information to predict the fu-
ture. An architecture providing this is the Recurrent
neural network (RNN) which along with the output
has a self-directing loop. So the window we provide
as input gets processed in a sequence rather than in
a single step. However, when the time step (size of
window) is large (which is often the case) the gra-
dient gets too small/large, which leads to the phe-
nomenon known as vanishing/exploding gradient re-
spectively [Chollet2017]. This problem occurs while
the optimizer backpropagates, and will make the al-
gorithm run, while the weights almost do not change
at all. RNN variations mitigate the problem, namely
LSTM and GRU (Fig. 2).

The LSTM layer adds some cells that carry infor-
mation across many timesteps (Fig. 2). The cell state
is the horizontal line from Ct−1 to Ct, and its impor-
tance lies in holding the long-term or short term mem-
ory. The output of LSTM is modulated by the state
of these cells. And this is important when it comes
to predict based on historic context, rather than only
the last input. LSTM networks manage to remember
inputs by making use of a loop. These loops are ab-
sent in RNN. On the other hand, as more time passes,
the less likely it becomes that the next output depends
on a very old input, therefore forgetting is necessary.
LSTM achieves this by learning when to remember
and when to forget, through their forget-gates. We
mention them shortly to not consider LSTM just as a
black box model [Olah2015].

• Forget gate: ft = σ(WfSt−1 +WfSt)

• Input gate: it = σ(WiSt−1 +WiSt)

• Output gate: ot = σ(WoSt−1 +WoSt)



Figure 4: LSTM cell

• Intermediate Cell State: C̃ = tanh(WcSt−1 +
WcXt)

• Cell state (memory for next input): ct = (it∗C̃t)+
(ft ∗ ct−1)

• Calculating new state: ht = ot ∗ tanh(ct)

As it can be seen from the equations, each gate has
different sets of weights. In the last equation, the in-
put gate and intermediate cell state are added with
the old cell state and the forget gate. Output of this
operation is then used to calculate the new state. So,
this advanced cell with four interacting layers instead
of just one tanh layer in RNN, make LSTM perfect for
sequence prediction.

4.6 Hyperparameters

4.6.1 Optimizer

While Stochastic Gradient Descent is used in many
Neural Network problems, it has the problem of con-
verging to a local minimum. This of course presents a
problem considering Bitcoin price. Some other nice op-
timizers are variations of adaptive learning algorithms,
like Adam, Adagrad, and RMSProp. Adam was found
to work slightly better than the rest, and that’s why
we go for it. (All of these come packed with Keras.)

4.6.2 Loss function

The performance measure for regression problems, will
typically be either RMSE (Root Mean Square Error)
or MAE (Mean Absolute Error).

• RMSE(X, h) =

√
1
nΣn

i=1

(
h(xi) − yi

)2
• MAE(X, h) = 1

nΣn
i=1

∣∣∣(h(xi) − yi
)∣∣∣

RMSE is generally used when distribution resembles
a bell-shaped curve, but given the Bitcoin price spikes
we chose to go MAE, since it deals better with outliers.

4.6.3 Activation function

The choice for activation function was not very diffi-
cult. The most popular are sigmoid, tanh, and ReLu.
Sigmoid suffers from vanishing gradient, therefore al-
most no signal flows from the neuron to its weight,
moreover it is not centered around zero, as a result
the gradient might be to high or to low a number. By
contrast, tanh makes the output zero centered, and in
practice is almost always preferred to sigmoid. ReLu
is also widely used, and since it was invented later, it
should be better. Nevertheless, for predicting Bitcoin
price that was not the case, and we chose tanh due to
better results.

4.6.4 Dropout Rate

Regularization is the technique for constraining the
weights of the network. While in simple neural net-
works, l1 and l2 regularization is used, in multi layer
networks, drop out regularization takes place. It ran-
domly sets some input units to 0 in order to prevent
overfitting. Hence, its value represents the percentage
of disabled neurons in the preceding layer and ranges
from 0 to 1. We have tried 0.25 and 0.3 and lastly we
decided for 0.3.

4.6.5 Number of Neurons in hidden layers

We opted for 10 neurons in the hidden layers, it actu-
ally costs a lot to have more neurons, as the training
process will last longer. Also, trying a larger number
did not give improved results.

4.6.6 Epochs

Rather arbitrarily, we decided for 100 epochs, after
trying other values, like 50, or 20. As with the number
of hidden layer neurons, the more epochs, the more
time it takes for training to finish, since one epoch is
a full iteration over the training data. Also, it may
overfit the model.

4.6.7 Batch Size

We decided to feed the network, with batches of 120
data (again this number is a guess).



4.6.8 Architecture of Network

We used the Sequential API of Keras, rather than the
functional one. The overall architecture is as follows:

• 1 LSTM Layer: The LSTM layer is the inner
one, and all the gates, mentioned at the very be-
ginning are already implemented by Keras, with
a default activation of hard-sigmoid [Keras2015].
The LSTM parameters are the number of neurons,
and the input shape as discussed above.

• 1 Dropout Layer: Typically this is used before
the Dense layer. As for Keras, a dropout can be
added after any hidden layer, in our case it is after
the LSTM.

• 1 Dense Layer: This is the regular fully con-
nected layer.

• 1 Activation Layer: Because we are solving a
regression problem, the last layer should give the
linear combination of the activations of the previ-
ous layer with the weight vectors. Therefore, this
activation is a linear one. Alternatively, it could
be passed as a parameter to the previous Dense
layer.

5 Results and Analysis

In this section we show the results of our LSTM model.
It was noted during training that the higher the batch
size (200) (Fig. 7, 8) the worst the prediction on the
test set. Of course this is no wonder, since the more
training, the more prone to overfitting the model be-
comes . While it is difficult to predict the price of Bit-
coin, we see that features are critical to the algorithm,
future work includes trying out the Gated Recurrent
Unit version of RNN, as well as tuning, on existing
hyper-parameters. Below we show the loss from the
Mean Absolute Error function, when using the model
to predict the training and test data.

6 Conclusions

All in all, predicting a price-related variable is difficult
given the multitude of forces impacting the market.
Add to that, the fact that prices are by a large extent
depended on future prospect rather than historic data.
However, using deep neural networks, has provided us
with a better understanding of Bitcoin, and LSTM ar-
chitecture. The work in progress, includes implement-
ing hyperparameter tuning, in order to get a more ac-
curate network architecture. Also, other features can
be considered (although from our experiments with
Bitcoin, more features have not always led to better re-
sults). Microeconomic factors might be included in the
model for a better predictive result. Anyway, maybe

Figure 5: Error loss during training

the data we gathered for Bitcoin, even though has been
collected through years, might have become interest-
ing, producing historic interpretation only in the last
couple of years. Furthermore, a breakthtrough evolu-
tion in peer-to-peer transactions is ongoing and trans-
forming the landscape of payment services. While it
seems all doubts have not been settled, time might be
perfect to act. We think its difficult to give a mature
thought on Bitcoin for the future.
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Results Visualization

Figure 6: Bitcoin Prediction on Training Set

Figure 7: Bitcoin Prediction on Test Set, Batch Size 100



Figure 8: Bitcoin Prediction on Test Set, with a batch size of 200. Loss is greater than with batch 50

Figure 9: Bitcoin Prediction on Test Set, 60 days prediction
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