
Colorizing grayscale images using neural networks

Denis Sinanaj

Computer Science Department

Universiteti “Ismail Qemali”,

Vlore Albania

denissinanaj@gmail.com

Dezdemona Gjylapi

Computer Science Department

Universiteti “Ismail Qemali”,

Vlore Albania

dezdemona.gjyapi@univlora.edu.al

Abstract

Colorization of grayscale images has
become a new research area in the
recent years, thanks to the advent of
deep convolutional neural networks.
The automatic image coloring consists
in adding colors to a new grayscale
image without any user intervention.
The automatic image coloring suggests
that we cannot determine the colors
that are needed in an image, so it will
be done without any prior knowledge.
In this paper, the convolutional neural
network is used as a method for
colorizing grayscale natural images.
The model architecture is a
combination of a convex networking
architecture with Inception-ResNet-v2,
which assists the overall coloring
process by extracting high-level
features. The approach is tested on
machines using CPU and GPU. In
both cases the output image is very
close to reality, except in machines
using CPU it takes a lot of time for the
network to be trained.

1. Introduction

Neural networks are constantly on trend and are

considered as key points in many research areas.

Artificial neural networks have generated a lot of

optimism with respect to research in the Machine

Learning industry, thanks to very important results in

language recognition, computer vision and text

processing.

The purpose of this paper is to introduce neural

networks as a highly efficient technique in coloring

grayscale images.

There are many other methods that represent color

images, but they require the user's attention.

The method presented in this paper, is intended by the

user to make no action on the image.

Expectations from the use of neural networks in the

coloring grayscale images are:

 The method will be fast, giving the result in a few

minutes.

 The result will be very close to reality.

2. ANN

A Neural Artificial Network (ANN) is a computable

model inspired by the way biological neural networks

process information in the human brain. An ANN

consists of a number of simple and interconnected

processors, also called neurons, analogous to biological

neurons in the brain.

Each neuron receives a number of input signals through

its connections; however, it gives no more than one

output signal. The output signal is transmitted through

the neuron’s exit line [Neg05].

Developing an ANN comprises the definition of

[Gjy16]:

1 - the network architecture, which is defined by the

basic processing elements (i.e. neurons) and by the

way in which they are interconnected (i.e. layers);

2 - the NN Learning, which implies that a processing

unit is capable of changing its input or output

behavior as a result of changes in the environment,

mailto:denissinanaj@gmail.com
mailto:dezdemona.gjyapi@univlora.edu.al

i.e. to adjust the weights based on input vector

values;

3 - the data used for training, testing and validating the

neural network.

The basic unit of calculation in a neural network is the

neuron, often called a node or unit. It receives input

from some other nodes, either from an external source,

and calculates an output. Each input has a related

weight (w), which is determined based on its relative

importance to other inputs.

Figure 1: Perceptron

The output Y from the neuron is calculated by the

function f(x). The function f(x) is nonlinear and is called

the Activation Function. The purpose of the activation

function is to derive a nonlinear result in the output of a

neuron. This is important because most of the real data

in the world are not linear and we want neurons to learn

this non-linear data.

There are some activation functions that we may

encounter in practice:

Figure 2: Sigmoid function graph

The sigmoid function takes a real value as input and

transforms it between values 0 and 1 as shown in figure

2. It is very suitable for probability calculations.

Figure 3: Hyperbolic Tangent Function Graph

The hyperbolic tangent function, g(x)=tanh(x, which

takes a real input value and transforms it between

values -1 and , as shown in figure 3.

Figure 4: ReLU function graph

Rectified linear units function (ReLU), figure 4:

The advantage of ReLU is the speed of calculation. The

ReLU is extremely fast and is now widely used in most

layers and activation units.

3. Convolutional Neural networks

Convolutional Neural Networks (ConvNets or CNNs)

are a category of Neural Networks that have been very

effective in areas such as image recognition and

classification [Mor17]. They have also been successful

in identifying faces, objects, and traffic signs, but also

in the field of robots and autopilot machines.

3.1 Convolution layer

Convolution is a mathematical operation that is used in

the signal filtration process, to find patterns in signals,

etc. [Mor17]. In the convolutional layer, all neurons

apply the convolution operation to the inputs, so they

are called convolutional neurons. The most important

parameter in a convolutional neuron is the size of the

filter. Let’s say we have a layer with a filter size of 5 x

5 x 3. Also assume that the entry given to the

convolutional neuron is an image 32 x 32 with 3

channels.

Figure 5: Image and Selected Filter

We used one of the 5x5x3 parts out of the image and

calculated the convolution (point product) with our

filter (w). This operation gives as a result a single

number as output. We will also add bias (b) to this

output.

In order to calculate the product of the points, it is

mandatory for the filter third size to be the same as the

number of channels in the input. I.e. when we do the

calculation, the point product is a multiplication of the

5 x 5 x 3 matrix with filter size of 5 x 5 x 3.

Figure 6: Convolution application scheme

In this case, we moved to our image with 1 pixel per

step. In some cases, it can be exceeded by more than 1

pixel. This number is called a big step (stride). The

stride controls how the filter convolves around the

input volume.

From the figure above, after each convolution, the

output decreases in size (as in this case we are going

from 32 x 32 to 28 x 28). In a multi layered deep neural

network, output will become too small in this way,

which does not work very well.

A standard practice is to add zeros to the input layer

boundary so that the output has the same size as the

input layer.

Let’s say we have an input of size N * N, the filter size

is F, we are using S as the stride and the input has no

padding, then the output size will be:

(N-F + 2P) / S + 1

3.2 Pooling Layer

Spatial pooling (also called downsampling) reduces the

dimension of each map of features, but saves the most

important information.

Spatial pooling can be of different types: Maximum

(Max), (Average) Average, (Sum) Sum etc.

In the case of Max Pooling, we define a space (for

example, a window 2 × 2) and we get the largest

element from the corrected feature map within that

window.

Instead of getting the biggest element, we can also get

the average (Average Pooling) or the sum (Sum

Pooling) of all elements in that window.

In practice, Max Pooling has been shown to work

better.

Figure 7: Pooling using 2x2 Filter and a stride of 2.

Source: [Kar18]

The figure 7 shows the Max Pooling operation on a

mapping obtained by applying the ReLU + convolution

operation, using a 2x2 filter.

ReLU is an elementwise operation (applied to the

pixel) and replaces all negative pixel values in the

feature map with zero. The purpose of the ReLU is to

introduce non-linearity in our convolutional network, as

most of the real-world data we would like to be learned

by our network should be non-linear (Convolution is a

linear operation – multiplication and matrix addition

element for element, so by introducing a non-linear

function such as ReLU we included nonlinearity).

The ReLU operation can be clearly understood from

the below figure.

Figure 8: ReLU Operation. Source: [Kar16]

Other non-linear functions such as tanh or sigmoid can

also be used instead of ReLU, but ReLU performs

better in most situations [Sze16].

If the input is of size w1 * h1 * d1 and the filter size is f

* f with step S. Then output sizes w2 * h2 * d2 will be:

w2 = (w1-f) / S +1

h2 = (h1-f) / S +1

d2 = d1

 The most common union is done with a size filter of

2 * 2 with a step of 2. As can be calculated with the

formula above, pooling essentially reduces the input

size by 50%, and makes the number of parameters and

network calculations more manageable.

It makes the network unchanged by small

transformations, distortions and translations in the input

image (a small distortion in data will not change

pooling output – since we get the maximum / average

value in a local space).

It also helps us reach an almost unchanged view of our

image. This is very important because we can discover

objects in an image no matter where they are.

3.3 The Convolutionary Network Elementary

Blocks

Figure 9: The convolutional neural network blocks

Source: [Kar16]

Above we have seen the Convolution, ReLU and

Pooling. It is important to understand that these layers

are the basic blocks of each convolutional neural

network. As shown in Figure 9, we have two sets of

Convolution, ReLU, and Pooling layers – the second

Convolution layer converts to First Pooling Layer

output using six filters to produce six feature maps.

Then the ReLU is individually implemented in all these

six featured mappings that are also followed by the

Max Pooling operation.

Together, these layers extract useful features from

images and place non-linearity on our network.

3.4 Fully connected layer

If each neuron on one layer receives input from all

neurons from the previous layer, then this layer is

called a fully-connected layer. The production of this

layer is calculated by multiplying the matrix followed

by the bias offset.

Output from the convolutional layers and the

pooling layer presents high-quality image input

features. The purpose of the fully-connected layer is to

use these attributes for classifying the image of entry

into different classes based on the data set of training.

In addition to the classification, the addition of a

fully-connected layer is also an easy way to learn non-

linear combinations of these characteristics. Most of the

features from convolutional and pooling layers can be

good for the task of classification, but combinations of

these characteristics may be even better.

4. Architecture

Following all the above aspects of convolutional

networks a method proposed for colorization is

represented by using this network and his classification

capabilities.

The model architecture is a combination of a

convex networking architecture with Inception-ResNet-

v2, which assists the overall coloring process by

extracting high-level features.

The first part is an encoder. The last part is decoder.

In the central part lies the fusion layer. The fusion layer

gets the output from the encoder and the embedding

generated by the Inception-Resnet-V2 model and

connects the two results before proceeding. Model

Inception-ResNet-V2 is trained in the data set from the

Unsplash site.

Figure 10: Network architecture

It is a very good architecture to understand the

dynamics of the coloring problem.

5. The Image

 An Image is a matrix of pixel values. All the above

architecture is used taking as input an image. All we

need to know in regards of this problem is to

understand the image color spaces and components

used by them. The two colors spaces that were used

were RGB and Lab.

5.1 RBG color space

Channel is a conventional term used to refer to a

particular component of an image. An image from a

standard digital camera has three channels – red, green

and blue – that we can imagine as three 2d matrices

placed on each other (one for each color), each with

pixel values ranging from 0 to 255 [Skr17].

Figure 11: Grayscale Image. Source: [Wal17]

A grayscale image, on the other hand, has only one

channel. So we will only consider grayscale images, so

we will have a single 2d matrix representing an image.

The value of each pixel in the matrix ranges from 0 to

255 – zero that indicates the black and 255 indicates

the white.

Color image in RGB consist of three layers: a red

layer, a green layer and a blue layer. This may be

counter-intuitive for us. Imagine dividing a green leaf

with a white background in three channels. Intuitively,

we can think that the plant is only present in the green

layer but this is not true.

But, as seen below, the sheet is present in all three

channels as an image in RGB has three different layers(

Red, Green, Blue). Layers not only define color but

also lightening.

Figure 12: Three layers that define the color.

Source: [Wal17]

Like grayscale images, each layer in a colored

image has a value of 0-255. Value 0 means that there is

no color in this layer. If the value is 0 for all color

channels, then the image pixel is black. As is well

known, a neural network creates a connection between

an input value and output value. To be more precise

with our coloring task, the network needs to find the

features that connect grayscale images to colored

images.

So, the features needed to be found are those

connecting the values of the grayscale image pixel

matrix to those of three color matrices.

Figure 13: Illustration of the connection to be found.

Source: [Wal17]

We started by making a simple version of our neural

network to color an image. This way, we saw the core

syntax of our model while adding features to it.

By means of the prototype code, we were able to make

the transition below. The picture in the middle is made

with our neural network and the picture to the right is

the original color photo. The network is trained and

tested on the same image.

Figure 14: Input image (left), output (middle),

Original (right)

On the next step, we changed color channels, from

RGB to Lab.

5.2 Lab color space

L represents the degree of lightness of the image,

while the a and b spectrum of colors: green-red and

yellow-blue. In the Figure 15, an image presented in

Lab mode has a grayscale layer, and is packed in two,

three color layers that could have been in RGB mode.

This means that we can use the original pixel image in

our final prediction.

 L a b

Figure 15: Image in Lab color space

Lab packing makes it possible for us to have only two

channels to predict.

Our final prediction will be:

We have a grayscale layer as the input, and we want to

predict two colored layers, a and b in the Lab color

space. To create the ultimate color image we will

include the L / grayscale image we used for the input.

The result will be creating a Lab image.

6. Processing

Our neural network finds features that connect

grayscale images with their color versions [Wal14].

We had to color the grayscale images – but as a

restriction, we set to see only nine pixels at a time.

Each image can be scanned from left to right from start

to finish and it is possible to predict what color each

pixel should be.

Figure 16: nine pixels

For example, these nine pixels may be the bird’s tail

corner in the photo we used in the picture below. It is

very difficult to make a good coloring, so it is

necessary to divide the coloring into steps.

First, it searches for simple models: lines, circles,

simple shapes, all black pixels, and so on. Looks for the

same exact pattern in any space and removes pixels that

do not match. So 64 new images from 64 mini filters

are generated.

Figure 17: Image generated filters

If the image is scanned again, the same small models

that are already detected will be viewed. To get a

clearer picture of the image, the image shrinks in half.

Figure 18: Image filtering

Still there is only a 3x3 filter scanning any image.

But combining nine new pixels with lower-level filters

can reveal more complex models. A combination of

pixels can form a half circle, a small dot, or a row.

Again, the same model from the image is repeatedly

extracted. This time, 128 new filtered images are

generated.

After a few steps, the filtered images that are produced

will look like in figure 19.

As mentioned, it starts with small features, such as a

corner or very simple shapes. Layers close to Output

are combined in models. Then, they are combined in

detail, and eventually transformed into a view of the

image.

Figure 19: Filtering result

The process is similar to that of most neural networks

that deal with vision. Therefore and here the network is

defined as a neural convolutional network. In these

networks, we combine some filtered images to

understand the context of the image. With the context

meaning the network can determine the exact color

with which the coloring has to be realized.

The implementation of the network is made using

python as programming language and tensorflow

[Aba16], an open source library for machine learning.

Also Keras [Gul17] was used due to his high support

for modularity.

We used a cloud platform called floydhub for running

the project in a 2 hour free GPU usage to have a better

result due to his reliable structure for handling such

projects.

7. Training

The neural network acts in such a way that makes

tests and makes mistakes. First, it makes a random

prediction for each pixel. Based on the error for each

pixel, it works in reverse through the network to

improve the characteristics extraction [Dah16].

It begins to adapt to situations that create the biggest

mistakes. In this case, the settings are: whether to color

or not, and how to locate different objects.

The network begins by coloring all the objects in the

image by brown color. It is the color that is most

similar to all other colors, thus producing the smallest

error.

The main difference that the network has from other

neural visual networks is the importance of pixel

locations. In coloring networks, the size or aspect ratio

stays the same throughout the network. In other types

of network, the image becomes distorted when

approaching as many final layers as possible.

Max pooling layers in classification networks increase

the amount of information, but also distort the image. It

only provides information, but not the presentation of

an image. In colorizing networks, a stride of 2 (two) is

used to halve the width and height. This also increases

the amount of information, but does not distort the

image.

Figure 20: Image Upsampling and padding

Two further distinctions are: increasing the number

of pixels by upsampling and maintaining the

proportions of the image. Classification networks give

as result a final classification of the objects in an image.

Therefore, they continue to reduce the size and quality

of the image while passing through the network.

Coloring networks maintain continuously the same

image ratio. This is done by adding white padding as

the above image.

8. Results

The outputs below are obtained by training the network

only through the CPU.

During training using CPU and GPU the image is very

close to reality.

CPU training only takes a lot of time, so for this

problem the training definitely requires a very good

GPU.

The training is done through the CPU to give the idea

that the network learns on the right track.

Due to the inability of a powerful GPU, a 2-hour

floydhub time is used using their cloud graphics card.

The result archived is presented in figure 21.

The main limitation of the method lies in the fact that it

is able to color images that are in common with images

for which the network is trained.

The training is done in open and closed environments

to mitigate this.

Coloring will only apply to real-world images rather

than self-generated images.

To get good quality transfer results, it’s important for

both images have a semantic level of similarity between

them, though the image itself may change drastically.

The best results are achieved when images belong to a

context, though they may be very different from each

other.

Figure 21: Results from colorization

Coloring is also an unclear problem: e.g. what color

can have a plastic object? This has no unique solution.

By learning from the data, our model will mainly use

the predominant colors it has learned.

9. Conclusions

We merged global and local information architecture

for coloring grayscale images.

The time to reach a satisfactory result is enormous

because the network is trained only through CPU

capabilities.

Using GPU in a 2 hour time span was used in few

images but yielded a good result in a few minutes.

The implementation containing the convolutional

neural network was able to perform coloring without

any user intervention. Our network is trained in a very

large set of data that determines what is in the image

and stains the images from the context of the image.

The implementation allows us to process images in a

256x256 resolution leaving as color matching work for

images of any resolution.

As the network is trained with a data set, it enables the

coloring of an image to be based on the context of

another.

10. Further work

The network is executed in a small set of data due to

limited resources. In the future, will be trained in a

much larger set of data and compare the results.

We aim to do this by using the entire Unsplash dataset

from which we used only some training images in the

above case. Achieving this and enabling training on a

computer with very good parameters such as a powerful

GPU would accomplish the process in a shorter time, a

few seconds.

References

[Neg05] Michael Negnevitsky, Artificial Intelligence: A

Guide to Intelligent Systems.: Pearson

Education, 2005.

[Gjy16] Dezdemona Gjylapi, Eljona Proko, and Alketa

Hyso, “Genetic Algorithm Neural Network

model vs Backpropagation Neural Network

model for GDP Forecasting,” in 2nd

International Conference on Recent Trends

and Applications in Computer Science and

Information Technology, vol. CEUR

Workshop Proceedings 1746, Tirane, 2016,

pp. 23-29.

[Mor17] Diego González Morín, Lucas Rodés-Guirao

Federico Baldassarre. (2017, Dec.) Deep

Koalarization: Image Colorization using CNNs

and Inception-Resnet-v2. arXiv:1712.03400.

[Online]. HYPERLINK

“https://arxiv.org/pdf/1712.03400.pdf”

[Kar18] Andrej Karpathy. (2018) Convolutional Neural

Networks for Visual Recognition. [Online].

HYPERLINK

“http://cs231n.github.io/convolutional-

networks/”

[Kar16] Ujjwal Karn. (2016) An Intuitive Explanation

of Convolutional Neural Networks. Kaggle

Forum. [Online]. HYPERLINK

“http://ens.ewi.tudelft.nl/Education/courses/et4

351/intuitive_cnn.pdf”

[Sze16] Christian Szegedy, Sergey Ioffe, and Vincent

Vanhoucke. (2016, August) Inception-v4,

Inception-ResNet and the Impact of Residual

Connections on Learning.

arXiv:1602.07261v2. [Online].

HYPERLINK

"https://arxiv.org/pdf/1602.07261.pdf"

[Skr17] Ole-Johan Skrede. (2017, Mar.) color images,

color spaces and color image processing.

[Online]. HYPERLINK

"https://www.uio.no/studier/emner/matnat/ifi/I

NF2310/v17/undervisningsmateriale/slides_inf

2310_s17_week08.pdf"

[Wal17] Emil Wallner. (2017, OCTOBER) FloydHub

Blog - Colorizing B&W Photos with Neural

Networks. [Online]. HYPERLINK

"https://blog.floydhub.com/colorizing-b-w-

photos-with-neural-networks/"

[Wal14] Stefan van der Walt et al., "scikit-image:

image processing in Python," PeerJ, June

2014.

[Aba16] Martín Abadi' et al., "TensorFlow: A System

for Large-Scale Machine Learning," in 12th

USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’16),

Savannah, GA, USA, 2016, pp. 265-283.

[Gul17] Antonio Gulli and Sujit Pal, Deep Learning

with Keras. Birmingham, UK: Packt

Publishing, 2017.

[Dah16] Ryan Dahl. (2016, January) Tiny Clouds.

[Online]. HYPERLINK

"http://tinyclouds.org/colorize/"

