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Abstract 

 

Colorization of grayscale images has 
become a new research area in the 
recent years, thanks to the advent of 
deep convolutional neural networks. 
The automatic image coloring consists 
in adding colors to a new grayscale 
image without any user intervention. 
The automatic image coloring suggests 
that we cannot determine the colors 
that are needed in an image, so it will 
be done without any prior knowledge. 
In this paper, the convolutional neural 
network is used as a method for 
colorizing grayscale natural images. 
The model architecture is a 
combination of a convex networking 
architecture with Inception-ResNet-v2, 
which assists the overall coloring 
process by extracting high-level 
features. The approach is tested on 
machines using CPU and GPU. In 
both cases the output image is very 
close to reality, except in machines 
using CPU it takes a lot of time for the 
network to be trained. 
 

1. Introduction 

Neural networks are constantly on trend and are 

considered as key points in many research areas.  

Artificial neural networks have generated a lot of 

optimism with respect to research in the Machine 

Learning industry, thanks to very important results in 

language recognition, computer vision and text 

processing. 

The purpose of this paper is to introduce neural 

networks as a highly efficient technique in coloring 

grayscale images.  

There are many other methods that represent color 

images, but they require the user's attention. 

The method presented in this paper, is intended by the 

user to make no action on the image. 

Expectations from the use of neural networks in the 

coloring grayscale images are: 

 The method will be fast, giving the result in a few 

minutes. 

 The result will be very close to reality. 

2. ANN 

A Neural Artificial Network (ANN) is a computable 

model inspired by the way biological neural networks 

process information in the human brain. An ANN 

consists of a number of simple and interconnected 

processors, also called neurons, analogous to biological 

neurons in the brain.  

Each neuron receives a number of input signals through 

its connections; however, it gives no more than one 

output signal. The output signal is transmitted through 

the neuron’s exit line [Neg05]. 

Developing an ANN comprises the definition of 

[Gjy16]: 

1 -  the network architecture, which is defined by the 

basic processing elements (i.e. neurons) and by the 

way in which they are interconnected (i.e. layers);  

2 -  the NN Learning, which implies that a processing 

unit is capable of changing its input or output 

behavior as a result of changes in the environment, 
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i.e. to adjust the weights based on input vector 

values; 

3 -  the data used for training, testing and validating the 

neural network. 

The basic unit of calculation in a neural network is the 

neuron, often called a node or unit. It receives input 

from some other nodes, either from an external source, 

and calculates an output. Each input has a related 

weight (w), which is determined based on its relative 

importance to other inputs. 

 

Figure 1: Perceptron 

The output Y from the neuron is calculated by the 

function f(x). The function f(x) is nonlinear and is called 

the Activation Function. The purpose of the activation 

function is to derive a nonlinear result in the output of a 

neuron. This is important because most of the real data 

in the world are not linear and we want neurons to learn 

this non-linear data. 

There are some activation functions that we may 

encounter in practice:  

 

Figure 2: Sigmoid function graph 

 

The sigmoid function takes a real value as input and 

transforms it between values 0 and 1 as shown in figure 

2. It is very suitable for probability calculations. 

 

  
 

 

Figure 3: Hyperbolic Tangent Function Graph 

 

The hyperbolic tangent function, g(x)=tanh(x, which 

takes a real input value and transforms it between 

values -1 and , as shown in figure 3. 

 

 

Figure 4: ReLU function graph 

Rectified linear units function (ReLU), figure 4: 

 

 



 

The advantage of ReLU is the speed of calculation. The 

ReLU is extremely fast and is now widely used in most 

layers and activation units. 

3. Convolutional Neural networks 

Convolutional Neural Networks (ConvNets or CNNs) 

are a category of Neural Networks that have been very 

effective in areas such as image recognition and 

classification [Mor17]. They have also been successful 

in identifying faces, objects, and traffic signs, but also 

in the field of robots and autopilot machines. 

3.1 Convolution layer 

Convolution is a mathematical operation that is used in 

the signal filtration process, to find patterns in signals, 

etc. [Mor17]. In the convolutional layer, all neurons 

apply the convolution operation to the inputs, so they 

are called convolutional neurons. The most important 

parameter in a convolutional neuron is the size of the 

filter. Let’s say we have a layer with a filter size of 5 x 

5 x 3. Also assume that the entry given to the 

convolutional neuron is an image 32 x 32 with 3 

channels. 

 
Figure 5: Image and Selected Filter 

 

We used one of the 5x5x3 parts out of the image and 

calculated the convolution (point product) with our 

filter (w). This operation gives as a result a single 

number as output. We will also add bias (b) to this 

output. 

In order to calculate the product of the points, it is 

mandatory for the filter third size to be the same as the 

number of channels in the input. I.e. when we do the 

calculation, the point product is a multiplication of the 

5 x 5 x 3 matrix with filter size of 5 x 5 x 3. 

 
Figure 6: Convolution application scheme 

 

In this case, we moved to our image with 1 pixel per 

step. In some cases, it can be exceeded by more than 1 

pixel. This number is called a big step (stride). The 

stride controls how the filter convolves around the 

input volume. 

From the figure above, after each convolution, the 

output decreases in size (as in this case we are going 

from 32 x 32 to 28 x 28). In a multi layered deep neural 

network, output will become too small in this way, 

which does not work very well. 

A standard practice is to add zeros to the input layer 

boundary so that the output has the same size as the 

input layer. 

Let’s say we have an input of size N * N, the filter size 

is F, we are using S as the stride and the input has no 

padding, then the output size will be: 

 

(N-F + 2P) / S + 1 

3.2 Pooling Layer 

Spatial pooling (also called downsampling) reduces the 

dimension of each map of features, but saves the most 

important information. 

Spatial pooling can be of different types: Maximum 

(Max), (Average) Average, (Sum) Sum etc. 

In the case of Max Pooling, we define a space (for 

example, a window 2 × 2) and we get the largest 

element from the corrected feature map within that 

window.  

Instead of getting the biggest element, we can also get 

the average (Average Pooling) or the sum (Sum 

Pooling) of all elements in that window. 

In practice, Max Pooling has been shown to work 

better. 



 
Figure 7: Pooling using 2x2 Filter and a stride of 2.  

Source: [Kar18] 

 

The figure 7 shows the Max Pooling operation on a 

mapping obtained by applying the ReLU + convolution 

operation, using a 2x2 filter. 

ReLU is an elementwise operation (applied to the 

pixel) and replaces all negative pixel values in the 

feature map with zero. The purpose of the ReLU is to 

introduce non-linearity in our convolutional network, as 

most of the real-world data we would like to be learned 

by our network should be non-linear (Convolution is a 

linear operation – multiplication and matrix addition 

element for element, so by introducing a non-linear 

function such as ReLU we included nonlinearity). 

The ReLU operation can be clearly understood from 

the below figure. 

 

 
 

Figure 8: ReLU Operation. Source: [Kar16] 

Other non-linear functions such as tanh or sigmoid can 

also be used instead of ReLU, but ReLU performs 

better in most situations [Sze16]. 

If the input is of size w1 * h1 * d1 and the filter size is f 

* f with step S. Then output sizes w2 * h2 * d2 will be: 

w2 = (w1-f) / S +1 

h2 = (h1-f) / S +1 

d2 = d1 

 

     The most common union is done with a size filter of 

2 * 2 with a step of 2. As can be calculated with the 

formula above, pooling essentially reduces the input 

size by 50%, and makes the number of parameters and 

network calculations more manageable. 

It makes the network unchanged by small 

transformations, distortions and translations in the input 

image (a small distortion in data will not change 

pooling output – since we get the maximum / average 

value in a local space). 

It also helps us reach an almost unchanged view of our 

image. This is very important because we can discover 

objects in an image no matter where they are. 

 

3.3 The Convolutionary Network Elementary 

Blocks 

 

Figure 9: The convolutional neural network blocks 

Source: [Kar16] 

Above we have seen the Convolution, ReLU and 

Pooling. It is important to understand that these layers 

are the basic blocks of each convolutional neural 

network. As shown in Figure 9, we have two sets of 

Convolution, ReLU, and Pooling layers – the second 

Convolution layer converts to First Pooling Layer 

output using six filters to produce six feature maps. 

Then the ReLU is individually implemented in all these 

six featured mappings that are also followed by the 

Max Pooling operation. 

Together, these layers extract useful features from 

images and place non-linearity on our network. 

3.4 Fully connected layer 

If each neuron on one layer receives input from all 

neurons from the previous layer, then this layer is 

called a fully-connected layer. The production of this 



layer is calculated by multiplying the matrix followed 

by the bias offset. 

Output from the convolutional layers and the 

pooling layer presents high-quality image input 

features. The purpose of the fully-connected layer is to 

use these attributes for classifying the image of entry 

into different classes based on the data set of training. 

In addition to the classification, the addition of a 

fully-connected layer is also an easy way to learn non-

linear combinations of these characteristics. Most of the 

features from convolutional and pooling layers can be 

good for the task of classification, but combinations of 

these characteristics may be even better. 

4. Architecture 

 

Following all the above aspects of convolutional 

networks a method proposed for colorization is 

represented by using this network and his classification 

capabilities. 

The model architecture is a combination of a 

convex networking architecture with Inception-ResNet-

v2, which assists the overall coloring process by 

extracting high-level features. 

The first part is an encoder. The last part is decoder. 

In the central part lies the fusion layer. The fusion layer 

gets the output from the encoder and the embedding 

generated by the Inception-Resnet-V2 model and 

connects the two results before proceeding. Model 

Inception-ResNet-V2 is trained in the data set from the 

Unsplash site. 

 

Figure 10: Network architecture 

It is a very good architecture to understand the 

dynamics of the coloring problem. 

 

5. The Image 

      An Image is a matrix of pixel values. All the above 

architecture is used taking as input an image. All we 

need to know in regards of this problem is to 

understand the image color spaces and components 

used by them. The two colors spaces that were used 

were RGB and Lab. 

5.1 RBG color space 

Channel is a conventional term used to refer to a 

particular component of an image. An image from a 

standard digital camera has three channels – red, green 

and blue – that we can imagine as three 2d matrices 

placed on each other (one for each color), each with 

pixel values ranging from 0 to 255 [Skr17].  

 
 

Figure 11: Grayscale Image. Source: [Wal17] 

A grayscale image, on the other hand, has only one 

channel. So we will only consider grayscale images, so 

we will have a single 2d matrix representing an image. 

The value of each pixel in the matrix ranges from 0 to 

255 – zero that indicates the black and 255 indicates 

the white. 

Color image in RGB consist of three layers: a red 

layer, a green layer and a blue layer. This may be 

counter-intuitive for us. Imagine dividing a green leaf 

with a white background in three channels. Intuitively, 

we can think that the plant is only present in the green 

layer but this is not true.  

But, as seen below, the sheet is present in all three 

channels as an image in RGB has three different layers( 

Red, Green, Blue). Layers not only define color but 

also lightening. 

 
Figure 12: Three layers that define the color.  

Source: [Wal17] 



 

Like grayscale images, each layer in a colored 

image has a value of 0-255. Value 0 means that there is 

no color in this layer. If the value is 0 for all color 

channels, then the image pixel is black. As is well 

known, a neural network creates a connection between 

an input value and output value. To be more precise 

with our coloring task, the network needs to find the 

features that connect grayscale images to colored 

images. 

So, the features needed to be found are those 

connecting the values of the grayscale image pixel 

matrix to those of three color matrices. 

 
Figure 13: Illustration of the connection to be found.  

Source: [Wal17] 

 

We started by making a simple version of our neural 

network to color an image. This way, we saw the core 

syntax of our model while adding features to it. 

By means of the prototype code, we were able to make 

the transition below. The picture in the middle is made 

with our neural network and the picture to the right is 

the original color photo. The network is trained and 

tested on the same image. 

 

Figure 14: Input image (left), output (middle),  

Original (right) 

On the next step, we changed color channels, from 

RGB to Lab. 

5.2 Lab color space 

L represents the degree of lightness of the image, 

while the a and b spectrum of colors: green-red and 

yellow-blue. In the Figure 15, an image presented in 

Lab mode has a grayscale layer, and is packed in two, 

three color layers that could have been in RGB mode. 

This means that we can use the original pixel image in 

our final prediction. 

 

                L                         a                              b  

Figure 15: Image in Lab color space 

Lab packing makes it possible for us to have only two 

channels to predict. 

Our final prediction will be:  

We have a grayscale layer as the input, and we want to 

predict two colored layers, a and b in the Lab color 

space. To create the ultimate color image we will 

include the L / grayscale image we used for the input. 

The result will be creating a Lab image. 

6. Processing 

Our neural network finds features that connect 

grayscale images with their color versions [Wal14].  

We had to color the grayscale images – but as a 

restriction, we set to see only nine pixels at a time. 

Each image can be scanned from left to right from start 

to finish and it is possible to predict what color each 

pixel should be. 

 

 

Figure 16: nine pixels 

 

For example, these nine pixels may be the bird’s tail 

corner in the photo we used in the picture below. It is 

very difficult to make a good coloring, so it is 

necessary to divide the coloring into steps. 

First, it searches for simple models: lines, circles, 

simple shapes, all black pixels, and so on. Looks for the 



same exact pattern in any space and removes pixels that 

do not match. So 64 new images from 64 mini filters 

are generated. 

 

Figure 17: Image generated filters 

If the image is scanned again, the same small models 

that are already detected will be viewed. To get a 

clearer picture of the image, the image shrinks in half. 

 

Figure 18: Image filtering 

 

Still there is only a 3x3 filter scanning any image. 

But combining nine new pixels with lower-level filters 

can reveal more complex models. A combination of 

pixels can form a half circle, a small dot, or a row. 

Again, the same model from the image is repeatedly 

extracted. This time, 128 new filtered images are 

generated. 

After a few steps, the filtered images that are produced 

will look like in figure 19. 

As mentioned, it starts with small features, such as a 

corner or very simple shapes. Layers close to Output 

are combined in models. Then, they are combined in 

detail, and eventually transformed into a view of the 

image. 

 

Figure 19: Filtering result 

The process is similar to that of most neural networks 

that deal with vision. Therefore and here the network is 

defined as a neural convolutional network. In these 

networks, we combine some filtered images to 

understand the context of the image. With the context 

meaning the network can determine the exact color 

with which the coloring has to be realized. 

The implementation of the network is made using 

python as programming language and tensorflow 

[Aba16], an open source library for machine learning. 

Also Keras [Gul17] was used due to his high support 

for modularity. 

We used a cloud platform called floydhub for running 

the project in a 2 hour free GPU usage to have a better 

result due to his reliable structure for handling such 

projects. 

 

7. Training 
 

The neural network acts in such a way that makes 

tests and makes mistakes. First, it makes a random 

prediction for each pixel. Based on the error for each 

pixel, it works in reverse through the network to 

improve the characteristics extraction [Dah16]. 

It begins to adapt to situations that create the biggest 

mistakes. In this case, the settings are: whether to color 

or not, and how to locate different objects. 

The network begins by coloring all the objects in the 

image by brown color. It is the color that is most 

similar to all other colors, thus producing the smallest 

error. 

The main difference that the network has from other 

neural visual networks is the importance of pixel 

locations. In coloring networks, the size or aspect ratio 

stays the same throughout the network. In other types 

of network, the image becomes distorted when 

approaching as many final layers as possible. 

Max pooling layers in classification networks increase 

the amount of information, but also distort the image. It 

only provides information, but not the presentation of 

an image. In colorizing networks, a stride of 2 (two) is 

used to halve the width and height. This also increases 

the amount of information, but does not distort the 

image. 

 



 

Figure 20: Image Upsampling and padding 

 

Two further distinctions are: increasing the number 

of pixels by upsampling and maintaining the 

proportions of the image. Classification networks give 

as result a final classification of the objects in an image. 

Therefore, they continue to reduce the size and quality 

of the image while passing through the network. 

Coloring networks maintain continuously the same 

image ratio. This is done by adding white padding as 

the above image. 

 

8. Results 
 

The outputs below are obtained by training the network 

only through the CPU.  

During training using CPU and GPU the image is very 

close to reality.  

CPU training only takes a lot of time, so for this 

problem the training definitely requires a very good 

GPU. 

The training is done through the CPU to give the idea 

that the network learns on the right track. 

Due to the inability of a powerful GPU, a 2-hour 

floydhub time is used using their cloud graphics card. 

The result archived is presented in figure 21.  

The main limitation of the method lies in the fact that it 

is able to color images that are in common with images 

for which the network is trained. 

The training is done in open and closed environments 

to mitigate this. 

Coloring will only apply to real-world images rather 

than self-generated images. 

To get good quality transfer results, it’s important for 

both images have a semantic level of similarity between 

them, though the image itself may change drastically. 

The best results are achieved when images belong to a 

context, though they may be very different from each 

other. 

 

 

Figure 21: Results from colorization 
 

Coloring is also an unclear problem: e.g. what color 

can have a plastic object? This has no unique solution. 

By learning from the data, our model will mainly use 

the predominant colors it has learned. 

 

9. Conclusions 
 

We merged global and local information architecture 

for coloring grayscale images. 

The time to reach a satisfactory result is enormous 

because the network is trained only through CPU 

capabilities. 

Using GPU in a 2 hour time span was used in few 

images but yielded a good result in a few minutes. 

The implementation containing the convolutional 

neural network was able to perform coloring without 

any user intervention. Our network is trained in a very 

large set of data that determines what is in the image 

and stains the images from the context of the image. 

The implementation allows us to process images in a 

256x256 resolution leaving as color matching work for 

images of any resolution. 

As the network is trained with a data set, it enables the 

coloring of an image to be based on the context of 

another. 

 

 



10. Further work 
 

The network is executed in a small set of data due to 

limited resources. In the future, will be trained in a 

much larger set of data and compare the results. 

We aim to do this by using the entire Unsplash dataset 

from which we used only some training images in the 

above case. Achieving this and enabling training on a 

computer with very good parameters such as a powerful 

GPU would accomplish the process in a shorter time, a 

few seconds. 
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