

Implementing a Solution to Communicate with APN Server for Sending

Push Notifications

Petrika Manika

Department of Informatics,

University of Tirana

petrika.manika@fshn.edu.al

Elina Jaupllari

Ict Solutions

Tirane

elina.jaupllari@ictedu.info

Prof.Asoc.Dr. Endri Xhina

Department of Informatics,

University of Tirana

endri.xhina@fshn.edu.al

Abstract

Nowadays, getting information through
notifications is becoming more and more used.
Each of the mobile technology giants iOS and
Android has created their own way to send push
notifications. Mobile push notifications are an
important feature of mobile applications and are
widely used. Popular mobile applications such as
Facebook, Hangouts, WeChat, and other
applications like weather, transport service or
traffic applications, have been built by
implementing mobile push notification
technologies. The purpose of this paper is to
explain the construction of an architecture for
sending a push notification from a server to an
application in the iOS operating system and
notification delivery management. The proposed
system was implemented using Xamarin.iOS.
The system provides a solution for sending a
push notification automatically through the
Apple Push Notification Service.

1. Introduction

In the last decades, human beings are living in the era of a
technological revolution. The use of mobile devices is
changing the daily lives of people. Mobile devices have
become multifunctional and used both for
communication, business or advertising, keeping and
circulating a large information. The smartphone has
become the main means of information, breaking the use
of TV or newspapers, books, and so on. Nowadays, users
encounter a large amount of information and a limited
amount of time to get all this information. Often the
amount of information is unmanageable, it is not possible
to filter and select only information that is of interest to
the user. Developers and researchers have found a way to
manage this information, to attract user’s attention, and
simplify their use, by users. Push and locally scheduled
notifications can provide users with timely information

and the ability to initiate necessary actions as a
response. Mobile push notifications are an important
feature of mobile applications and are widely used
because of the mobile IT services they offer
[Rog08]. The most popular mobile applications such
as Facebook, Hangouts, or instant messaging
systems such as WeChat or other app are all
implemented through mobile push notification. But
many other applications such as weather, traffic and
transport services have also been built using push
notifications to send real-time information to users.
[Hol10] Before this evolution, users should take out
their mobile devices and check it from time to time
for new emails. Urgent and important
communication sometimes had to wait. There was a
limitation of requests for email control because any
email checking request was sent to the server, which
then checked for new emails. All this process
required time, and turned into a nightmare for the
user.
The first presentation of a notifications started in
2003 with the Blackberry Push Email, the first email
notification system. It was a popular device because
it was ideal for moving businesses. They received
"push" emails as soon as email arrived on the
device. The announcement was the smallest
information window on the mobile screen. The
email was read and can be replayed immediately, in
real time, saving time and money. This made
communication much easier.
Then, in 2009 it was Apple who introduced its
version of push notification and called APNS, the
Apple Push Notification System. APNS is a
notification service platform that allows third-party
applications developers to send notifications to
applications that are installed on apple devices.
[Gus14]
In 2010 it was Google who introduced its Google
Cloud Messaging service that enables third-party
application developers to send information from
their servers to the applications installed in android
operating systems as well as in the google chrome
browser. [Gus14]

In the following years, these services were improved by
adding content, images, videos and interactive buttons
that allowed communication with the application
publisher or application navigation. [Warr14]
Once upon a time it was very difficult for the users to be
informed in real time whether by email. Today's push
notifications, stay alongside email as a legitimate way for
users to communicate, solving this problem. Notifications
have changed the way they interact with smartphones,
releasing our inbox spaces, and at the same time
developing and facilitating users to benefit from and to
deliver services. Basically, a Push Notification is a short
message or a notification that is sent through an installed
application, to anyone who has installed the application
and has received notifications. Mobile notifications are
divided into two categories, local notification and remote
notification or otherwise push notifications. Their change
is that for local notifications, it configures the details of
the notification and passes these details to the system,
which then handles the notification, when the application
is not in the foreground. Remote notifications are
notifications that use one of the developer company
servers to send notifications to user devices.
The purpose of this paper is to explain the construction of
an architecture for sending a push notification from a
server and managing the notification delivery. The rest of
the article is structured as follows: Section 2 presents the
construction of an architecture for sending a push
notification. Section 3 explains how notification delivery
is managed. Section 4 explains the tests performed and the
implementation of this architecture in a concrete
application. In the end, Section 5 concludes the paper
presenting the lessons learned and work in the future.

2 Architecture for Sending a Push

Notification

This section introduces the architecture of building,
sending and receiving a notification, presenting the
structure, key components, and functionalities.
Currently, the technological market offers various
architectural solutions for sending and receiving push
notifications. As noted above, Apple offers its iOS
Operations System to its Apple Push Notification Service.
Google provides its service initially through Google
Cloud Messaging which is currently replaced through
Firebase Cloud Messaging for iOS, Android and for web.
Let's talk more specifically about the Apple Push
Notification Service Architecture.
An APNs consists of three main elements:

a - Provider - A provider is a server, that you deploy
and manage, and which is configured to work with
APNs.
b - APNs -Apple Push Notification service (APNs)
is the centerpiece of the remote notifications feature.
It is a robust, secure, and highly efficient service for
app developers to propagate information to
iOS.[App]
c - Client Application- is the application on client
mobile where are delivered the notifications.

Figure 1: Architecture of delivering a remote

notification from a provider [App]

2.1. Push Notification Path from Provider to

Device

On initial lunch application app, the IOS system
creates an accredited connection, encrypted, and
continuous IP link, between the app and APNs. This
connection allows the application to make the
appropriate settings to enable it, to be notified,
otherwise called the application when downloaded
from the app store, requiring user approval to
receive notification from this application and

performs the appropriate settings on the system [App].
- iOS requests a device token from Apple Push
Notification Service (APNs).
-The application receives the token, which functions as
the address to send a push notification to.
-The application sends the token of the device to your
server.
-When prompted, the server will send a push notification
with a device token to the APNs.
-APNs will send a push notification to the user’s device.

Figure 2: Remote Notification path from provider to

device [App]

2.2. Provider Responsibilities

A provider is a server, that is deployed and managed from
a company, and it can be configured to work with APNs.
It has some responsibilities for participating with APNs.
● Receiving app-specific device token from APNs
which allow a provider to know about each running
instance of the app.
● Determining when remote notifications need to
be sent to each device.
● Building and sending notification request to
APNs.
Each remote notification request from provider must send:

1. A constructed JSON dictionary which
contain the notification Payload
2. A globally-unique device token
3. HTTP/2 request to APNs, including
cryptographic credentials in the form of a token or a
certificate, over a persistent secure channel.
Then after notification request from provider the
APNs delivers corresponding notifications to the
intended devices on your behalf.

2.3 Security Architecture

APNs enforces end-to-end, cryptographic validation
and authentication using two levels of trust:
connection trust and device token trust.
A device token is an opaque NSData instance that
contains a unique identifier assigned by Apple to a
specific app on a specific device. Only APNs can
decode and read the contents of a device token. Each
app instance receives its unique device token when it
registers with APNs, and must then forward the
token to its provider. The provider must include the
device token in each push notification request that
targets the associated device; It ensures that
notifications are routed only between the correct
start (provider) and end (device) points.
Connection trust works between providers and
APNs, and between APNs and devices.
We are mostly focused in Provider-to-APNs
Connection Trust.
There are two schemes available for negotiating
connection trust between your provider and Apple
Push Notification service:
-Token-based provider connection trust:
A provider using the HTTP/2-based API can use
JSON web tokens (JWT) to provide validation
credentials for connection with APNs.
In this scheme, provider provision a public key to be
retained by Apple, and a private key which must
retain and protect. Providers then use their private
key to generate and sign JWT provider
authentication tokens. Each of push notification
requests must include a provider authentication
token.
-Certificate-based provider connection trust:
 A provider can, alternatively, employ a unique
provider certificate and private cryptographic key.
The provider certificate, is provisioned by Apple
when establish push service, and identifies bundle
ID for apps. Depending on how you configure and
provision the certificate, the trusted connection can

https://developer.apple.com/library/archive/documentation/LegacyTechnologies/WebObjects/WebObjects_3.5/Reference/Frameworks/ObjC/Foundation/Classes/NSDataClassCluster/Description.html#//apple_ref/occ/cl/NSData

also be valid for delivery of remote notifications to other
items associated with your app, including Apple Watch
complications for your applications, and for voice-over-
Internet Protocol (VoIP) status notifications.
APNs delivers these notifications even when those items
are running in the background. With certificate-based
trust, APNs maintains a certificate revocation list; if a
provider’s certificate is on the revocation list, APNs can
revoke provider trust.[App]

Figure 3: Illustrates the use of an Apple-issued SSL

certificate to establish trust between a provider and APNs.

As shown in Figure 3, certificate-based provider-to-APNs
trust works as follows:
1. Provider asks for a secure connection with APNs
using transport layer security (TLS)
2. APNs then gives the provider an APNs
certificate, which then is validated from the provider.
3. Provider must then send its Apple-provisioned
provider certificate back to APNs.
4. APNs validates provider certificate, thereby
confirming that the connection request originated from a
legitimate provider, and establishes a TLS connection.

At this point, connection trust is established and
provider server is enabled to send certificate-based
remote push notification requests to APNs.

3. Management of Notification Delivery

Managing the delivery of a notification through the
Apple Push Notification System requires the
configuration and construction of an appropriate
architecture. This architecture is comprised of a
provider with a notification and window service
database that enables communication with the APNs
and the Application where the notifications are
received.
Initially, to send a notification to a mobile
application with iOS, a database should be built to
save the various application notifications. For each
of the notifications in the database, it should be kept,
if the notification is sent to the user or not. This can
be accomplished through a column where sent alerts
can be saved with a value of 1 and uninvited ones
can be saved with a value of 0.

Figure 4: Database Diagram for Device List

Identifier and applications of request.

Also, a server must create a model for storing devices that
want to receive notification from the application which I
will explain below.
Secondly, in the iOS mobile application, users should be
offered the option of choosing a popup if they want to
receive notifications from this application or not. At the
moment the user accepts the application to send
notification to that device, APNs generates a unique
location for this device and sends the device token that is
being registered. This device token as mentioned above is
stored in the database of recorded devices for receiving
notifications. In this database, apart from the device
token, there is also information about the application from
which this device comes from.

Example 1: Register for notification C# code in

Xamarin.iOS.

In the server there is also a service window which controls
in a given time frame which is determined by the
developer himself, whether there are new releases or not.
Once the window service finds a new notification, it
creates a JSON format with the data of this notice and
sends this notification to the APNs, at this moment a
connection is established between the provider and APNs

that we explained in the above section. Window
Service sends APNs apart from the notification and
the list of Devices that should receive the
notification. Then it is APNs that manages the
sending of notifications even if any of the
application is not in the foreground or is uninstalled
from mobile.

Example 2: A remote notification payload for

showing an alert in iOS mobile devices.

4. Implementation of Apple Push notification in

iOS Application (Testing and result)

The presented system is implemented in the mobile
app "Buxheti.info/Shkoder". This application is
currently on the iOS platform. For the purpose of the
law "On Public Information" and with the desire of
the municipality to be transparent and closer to the
citizen, the Municipality of Shkodra has
implemented the Budget Transparency Application.
The application enables citizens to get acquainted
online with investments and expenses incurred by
the municipality. Budget transparency has been
designed and structured as an instrument for
monitoring municipal public spending by citizens
and civil society organizations. This increases the
public's access to information and sensitizes them to

increase participation in the process of drafting the
strategic financial documents of the municipality. The
implementation of the push notification was seen as a
good opportunity for informing the citizens about the
expenses incurred by the municipality.
To implement the notifications, a server was used where
the database and a windows service were located. For
each device that downloaded the application, a device
token was stored in the database that also served as the
device identifier for the notification delivery. Also,
notifications were stored in the database and specified
whether they were sent or not. The server was running a
service window every 30 minutes and checked if there
was any new notification or not. As soon as it found new
releases it was sent to the APNs and notification was
received on the devices that were already registered.

Figure 5: Example of a notification sent in an iOS

device.

5. Conclusion

This paper presented a proposal architecture for iOS
Push notification system using APNs. To develop a
whole notification system, it is really hard, and
requires lot of time and money, it also needs to
manage invalidated tokens, security, applications
and users. Needs to use different technologies and a
good development team. As the conclusion, using
third party push notification service provider reduce
the pressure and also make the notification system
easy and fast. It costs less and is more safe and
secure.

References

[Rog08] R. Roger.; V.Wright, “Assessing

technology’s role in communication

between parents and middle schools”,

Electronic Journal for the Integration of

technology in education, 2008, Vol 7, pp.

36-58

[Hol10] P.Holleis, M.Wagner, S.Böhm, &

j.Koolwaaij, "Studying mobile context-

aware social services in the wild",

Proceedings of the 6th Nordic Conference

on Human-Computer Interaction:

Extending Boundaries,2010, pp. 207-216

http://dx.doi.org/10.1145/1868914.

1868941

[Gus14] M. Gusev and S. Ristory, "Alert notification

as service", Croatia, 2014.

http://dx.doi.org/10.1109/mipro.2014.68595

84

[Warr14] I.Warren, A.Meads,S. Srirama.,

T.Weerasinghe & Paniagua, "Push

Notification Mechanisms for Pervasive

Smartphone Applications ",Pervasive

Computing, IEEE, 2014,13(2), pp. 61-71.

http://dx.doi.org/10.1109/MPRV.2014.34

[App] Local and Remote Notification Programming

Guide.

http://dx.doi.org/10.1109/mipro.2014.6859584
http://dx.doi.org/10.1109/mipro.2014.6859584
http://dx.doi.org/10.1109/MPRV.2014.34

