
Implementing Triple-Stores using NoSQL Databases

Eleni Stefani
Department of Informatics
Faculty of Natural Sciences

University of Tirana
Tirana, Albania

eleni.stefani@fshnstudent.info

Klesti Hoxha
Department of Informatics
Faculty of Natural Sciences

University of Tirana
Tirana, Albania

klesti.hoxha@fshn.edu.al

Abstract

Knowledge bases empower various
information-retrieval systems nowadays.
The usual implementation of them is through
RDF based triple-stores. The available
toolkits that enable this are usually less
mature in comparison with well established
document-oriented NoSQL databases. In this
work we report on an alternative implementa-
tion of triple-stores using NoSQL databases.
In comparison with similar solutions in this
regard, we decided to not use RDF at all,
therefore no data or query mapping was
needed. We propose the implementation
of a vocabolary using a separate document
collection. This would also facilitate the
dynamic enlargement of it in automated
fact-extraction scenarios. Our results show
that using a document-oriented NoSQL
database for storing and retrieving triples
offers a considerable performance. The
involved preprocessing needed because of the
limitations of a non RDF based solution, did
not affect this. The achieved performance
was also higher in comparison with doing the
same knowledge retrieval operations using a
purposely built linked data toolkit.

1 Introduction

Triple-stores [Rus11] are the first choice implementa-
tion of linked data knowledge bases [BHBL11]. The
usual representation of a triple-store is through a RDF
based solution. It supports the definition of ontologies
and relations between entities using a standardized ap-
proach. There are several open source tools that back
up this solution, but unfortunately none of them have

an industry acceptance comparable with other tradi-
tional ways of storing data (i.e. RDBMS, NoSQL).

Big players of the information retrieval landscape
have already reported success stories by using a
knowledge base for enriching their information output
[Don16], [Pau17]. However these are proprietary im-
plementations that have not been open sourced so far.
Considering the increase in usability perception when
incorporating information from a knowledge base in
search results [ALC15], many have created or planned
adding a knowledge base (usually tripe-store powered)
in their actual information retrieval system setup.

The lack of fully mature solutions in this regard and
the complexity of them, have hindered the ubiquity of
knowledge bases in comparison with traditional data
stores. Furthermore, for simple scenarios that just try
to gain advantage of linked data, having to deal with
a constraining RDF schema might be unnecessary.

On the other hand, NoSQL databases are very well
accepted at the time of this writing. They offer an
incomparable performance in extensive data creation
scenarios, are very scalable, and the existing solutions
for implementing them allow for quick deployment in
traditional servers or in the cloud. Furthermore, there
is an already trained crowd of developers with hands
on experience with this data store category.

In this work we report on a prototype implemen-
tation of a triple-store using a document-oriented
NoSQL database. It does not use RDF, just simple
subject-predicate-object triples stored in a MongoDB1

database. Our goal is to provide preliminary insights
of using already established NoSQL databases for stor-
ing graph oriented data (a typical setting for linked
data contexts). We aimed on experimenting about in-
corporating triple structured data in information sys-
tems without having to rely on a heavyweight RDF
manipulation framework.

1https://www.mongodb.com/download-center/community

We provide a sample vocabulary based on DBPedia
[ABK+07] predicates. It was stored in a separate doc-
ument collection. Our experiments were performed
using a subset of DBPedia knowledge. We evaluate
our approach in terms of performance comparing it
also with Apache Jena2, an open source Linked Data
framework that supports RDF based implementations
of triple-stores.

In the rest of this paper after giving a short overview
of various triple-store implementation approaches in
section 2, we give detailed insights of the developed
prototype in section 3. The paper is concluded with
detailed data about the evaluation of our prototype.

2 Triple-Store Implementation Ap-
proaches

There are several approaches for implementing triple-
stores. The most frequent ones are purpose-built im-
plementation frameworks or graph databases.

2.1 Purpose-built frameworks

Also named as native triple stores, purpose-built
frameworks are technologies developed for storage and
retrieval of RDF data.

Apache Jena

Jena is a Java based framework for dealing with se-
mantic web/linked data scenarios. It provides a Java
library that allows the manipulation of RDF graphs. It
supports RDF, RDFS, RDFa, OWL for storing triples
(according to published W3C recommendations) and
SPARQL Query Language for retrieving information
from graphs. The allowed data serialization are RD-
F/XML, Turtle and Notation 3. Apache Jena also
includes a SPARQL server, Apache Jena Fuseki which
can be run as a stand alone server. It offers access to
the same Jena features using a HTTP interface.

Sesame

Sesame is another alternative for implementing triple-
stores using RDF data [BKVH02]. It needs a repos-
itory for data storage, but this repository is not in-
cluded in Sesame architecture, that’s why Sesame is
database-independent. It can be combined with a va-
riety of DBMSs. In its architecture it contains a layer,
named SAIL (Storage and Inference Layer) for manag-
ing communication with the database in use. Sesame
can only accept queries written in SeRQL (a RDF
query language) and converts them in queries suitable
to run on the underlying repository.

2https://jena.apache.org/

4Store

4Store is a RDF DBMS which stores RDF data as
quads, adding an additional property for storing the
graph name. 4store uses a custom data structure for
storing the quads data and it also uses its own tool for
querying them, 4s-query [CMEF+13].

2.2 Graph Databases

Because of their structure, graph databases offer a nat-
ural option for storing triples since the standard repre-
sentation of triples is also a graph. In this section we
describe some examples of this category of databases.

AllegroGraph

AllegroGraph3 enables linked data applications
through a graph database and also an application
framework. It offers similar features as the above de-
scribed tools: storing and retrieving triple data. Data
retrieval can be done using SPARQL or Prolog. It sup-
ports data serializations like N-Quads, N-Triples, RD-
F/XML, TriG, TriX, and Turtle formats and it can be
used with various programming languages. Similarly
to a relational database, it supports ACID transac-
tions.

Virtuoso

Virtuoso Universal Server4 is another alternative for
implementing triple-stores. It can access RDF data
stored in a RDBMS repository which may be part of
Virtuoso itself, or an external one [EM09]. The usual
database schema is relatively simple, RDF data are
stored as quads in a table with four columns. A quad
includes the triple and the graph name, subject S, pred-
icate P, object O and graph G. Regarding the query
language, Virtuoso uses a combination of SPARQL
and SQL. It translates SPARQL queries to SQL ones
according to the database schema.

2.3 Research Prototypes

Other approaches of implementing triples stores in-
clude research prototypes which try to exploit tech-
nologies that weren’t initially developed for this pur-
pose.

Dominik Tomaszuk [Tom10] has also experimented
on implementing RDF triples in JSON or BSON doc-
uments in MongoDB. The document structure that
he suggests consists of storing subject, predicate and
object data as document fields. Consequently, in each
document can be stored only one triple. About knowl-
edge retrieval the author analyzes some algorithms for
interpreting SPARQL queries.

3https://franz.com/agraph/
4https://virtuoso.openlinksw.com/

Franck Michel [MFZM16] in its work represents
xR2RML as a mapping language for querying Mon-
goDB with SPARQL.

Another approach tends to store RDF triples into
CouchDB using JSON documents [CMEF+13]. In this
approach, each document can store only one JSON ob-
ject (even if technically can be more than one) where
the key represents the subject of the triple. The value
of the object consists of two JSON arrays, one for
storing predicates and the other for storing objects of
triples. The relation of predicates and objects is done
according to their indexes on array. Because of this
structure, a document can store more than one triple
only if all triples share the same subject. To add new
triples, already existing documents can be modified or
new documents can be created. For running queries,
the proposed system accepts SPARQL queries which
are then converted to queries CouchDB can process.

3 Our Approach

3.1 Data Structure Schema

In this section is described the schema that is used
for storing triples into JSON documents and how we
dealt with unique identification of entities. We did not
use a RDF based specification for this approach, so our
sources won’t be described by URIs. We wanted to ex-
periment with creating simple knowledge graphs with-
out the overhead involved by using traditional linked
data tools (RDF, SQARQL). To cope with unique
identification of entities we suggest the use of two type
of documents:

• knowledge documents for storing knowledge,

• entities documents for identifying entities

Each of them needs to be stored in a separate
MongoDB collection, consequently two collections are
needed: KNOWLEDGE collection and ENTITIES
collection.

An entity document defines only one entity and in-
cludes two fields, id and name. A document of this
type would look like this:

{

"_id": entity ID,

"name": entity name

}

Knowledge documents are responsible for storing
triples. The set of all knowledge documents stored
in database represents the knowledge graph.

We also run some preprocessing when inserting
triples in our triple-store. Let T(S,P,O) be a triple
where S is subject, P is predicate and O is object. Then
in the respective knowledge document will be stored:

• Subject which will be replaced by its id on entity
document. By default subject is an entity.

• Predicate will be stored as it is.

• Object which will be replaced by its id defined in
entity documents, if is an entity, or will be stored
as it is if is not.

Data Structure Schema of Knowledge Documents

Let T(S,P,O) be a triple where S is subject, P is pred-
icate and O is object. Then a knowledge document
structure will be as follows:

{

"_id": document id,

"subject": S(T),

"P(T)": O(T)

}

A document can store information about only one
subject. Two fields are required in each document: id,
an auto generated number attached to every document
and subject, the actual subject of the triple. The third
pair has as key the predicate of the triple in question
and as value the object of the triple. In the same
way we can continue adding knowledge about a certain
subject. If S(T) is a set with triples then a knowledge
document is created as:

{
” i d ” : document id ,
” s u b j e c t ” : S(T1) ,
”P(T1) ” : O(T1) ,
”P(Tn) ” : O(Tn)

}

3.2 Interaction with database

In this work, we did not to use SPARQL. SPARQL is
suitable only for querying RDF data which also have
been excluded from this approach. Under these con-
ditions, for database interaction we have utilized the
MongoDB Query Language. The developed system
offers the possibility of adding and retrieving informa-
tion through triples. This can be done through an
exposed RESTful API.

3.2.1 Adding Knowledge

One of the first things needed for managing knowledge
is the specification of a vocabulary. We have defined
the vocabulary as the set of all valid predicates that
can be added to our knowledge base, specifying also
the valid data type for each vocabulary entry. There
are three valid data types:

1. Single value,

2. Array of values,

3. Map, or in MongoDB language inner document.
In this work we support only one level of inner
documents.

For example, if we specify a vocabulary entry

• name | single value

and we try to add two triples

• John name John

• John name Johny

our developed prototype will store the last valid triple,
John name Johny. Table 1 presents some vocabu-
lary entries used in our prototype mostly for storing
triples about locations.

Table 1: Vocabulary

Predicate Data type
Name
Anthem
Capital
Area code Single value
Birth place
Death place
Foundation place
Official Languages
Cities
Twin Countries
Citizenship of Array of values
Headquarter of
Residence of
Ethnics Map(Ethnic, Percentage)
Leaders Map(Name, Organization)

Other than the document schema, there is also the
need for specifying a strategy of managing documents
when new knowledge is added (through an API request
in our case). Generally there are two options, modi-
fying current documents in database in order to add
new triples, or creating new documents. The one fol-
lowed in this approach is to create new documents for
each API request that adds new data. If the request
contains an array of triples, the system groups them
by subject and then for each group (subject) adds a
new knowledge document in the database.

3.2.2 Querying Knowledge

As mentioned above, for retrieving knowledge the sys-
tem uses MongoDB Query Language. An external user
only needs to create a JSON filter according to Mon-
goDB specification and pass it to the system through

RESTful calls. Again, preprocessing might be needed.
It consists of replacing entity names found in filter
with their corresponding ids as defined in entities doc-
uments.

There are two particular cases of querying knowl-
edge:

1. the requested entity is known,

2. the requested entity or entities are not known, but
have to be in some relation (expressed through
JSON filters)

In the first case, users can send an HTTP GET
request with the name of entity/subject. For exam-
ple, if knowledge about Albania is requested, user
sends http://server/Albania request and the system
responds with all available triples about this subject.
This is the only case where there is no need of creating
a JSON filter.

In the second case, users can send an HTTP GET
request that contains a JSON filter. For example,
http://server/{”type”:”country”,”capital”:”Tirana”}
which requests an entity of type country and its
capital is Tirana. Other supported logical operators
(other than and) are or, in. It is also possible to
use the following comparison operators: equal, less
than, and greater than.

Figure 1 shows the workflow diagram of querying
knowledge using filters. After finding the requested
entities, the system gets all available knowledge stored
about them and performs a merge process for each
entity.

Merge is the process of combining documents that
share a common subject into one. The final document
will have a field containing the subject and all the pairs
of predicate/object found in the merged documents.
The second process that is performed before return-
ing a response is serialization. Serialization refers to
replacing entity ids with actual names as defined in
entities documents. Figure 2 shows the workflow di-
agram of processing knowledge before returning a re-
sponse.

4 Evaluation

In this section we describe the evaluation that we have
performed for the developed prototype. We have per-
formed our experiments with a set of 3.000 triples ex-
tracted from DBPedia. The system was tested for both
use cases: adding and retrieving knowledge. In ad-
dition, we have also executed some tests of querying
triples in Apache Jena in order to make a compari-
son with our approach in terms of performance. For
this purpose the same dataset has been fed as RDF to

Filter Received

Serialization of filter

Find Entities

Find all knowledge
about entities

Figure 1: Filter Processing

the Jena framework. Because of this we cannot com-
pare insert operations with our implemented insertion
strategy.

Adding Knowledge

In our first experiment (Table 2) we test the perfor-
mance of adding all triples with a single HTTP POST
request. We measure the execution time which also
includes all needed preprocessing before storing the
knowledge: grouping triples by subject, creating en-
tities documents, and finally adding the knowledge
documents. Our triples contain knowledge about 15
entities (15 unique subjects), hence in our database
after insertion will be 15 knowledge documents since
all triples will be added from one request.

In the second experiment (also Table 2) we send an
HTTP request for each triple that needs to be stored.
Because each request contains a single triple, there will
be 3.000 knowledge documents in the database.

It can be noticed that the first insertion strategy
performs better. Using a single document that con-
tains all knowledge related triples performs faster.

Table 2: Storing Knowledge

No.Triples No.Requests No.Docs Time
3.000 1 1 2.3 sec
3.000 3.000 3.000 6.8 sec

Knowledge
Documents about an

entity

Merge process

Serialization process

Final
document of

the entity

Send document

Figure 2: Knowledge Processing

Retrieving Knowledge

In order to evaluate the performance of knowledge
retrieving operations in our developed prototype, we
have also executed the same queries to the same knowl-
edge set (RDF) loaded in Apache Jena. We performed
this experiment using different numbers of triples. The
execution time for our prototype includes all the re-
quired preprocessing steps. Other than this, we mea-
sured the performance of these queries using both
triple insertion strategies described above. The ex-
periments were performed using the same hardware in
order to avoid biased results. We executed the follow-
ing queries:

1. get all triples,

2. get triples where subject is Albania,

3. get triples where type is poet,

4. get triples where types is poet or political leader

Table 3 shows the results of these experiments. It
can be noticed that our approach is more efficient in
terms of performance. Also, when considering the re-
sponse size for the same number of triples, it is bigger
in Apache Jena. This is because of the RDF data over-
heads. In regards to the two data insertion approaches
described above (that affect the number of documents
in our database), results show that storing triples in
fewer documents reduced the response time when re-
trieving knowledge.

Table 3: Retrieving Knowledge

No. System Triples Docs Resp.Size Time
1 Ours 3.000 3.000 100KB 0.8 sec
1 Ours 3.000 15 100KB 0.2 sec
1 Jena 3.000 - 1.4MB 5 sec
2 Ours 1.000 1.000 33.3KB 0.6 sec
2 Ours 1.000 1 33.3KB 0.2 sec
2 Jena 1.000 - 76.6KB 1.8 sec
3 Ours 300 300 10KB 0.06 sec
3 Jena 300 - 70KB 1.4 sec
4 Ours 500 500 13KB 0.06 sec
4 Jena 500 - 120KB 1.8 sec

Updating Knowledge

The performance of our developed prototype is also
tested in regards to updating documents. Table 4
shows the results. The dataset contains 3000 triples
in total, but we experiment with a different number
of documents that store them. We run the same up-
date query for all setups. As we also noticed with
our knowledge retrieval experiments, results show that
storing triples in fewer documents gains a shorter re-
sponse time when updating knowledge.

Table 4: Updating Knowledge Documents

Total Docs in Dataset Affected Docs Time
3.000 14 0.6 sec
15 1 0.04 sec
150 1 0.02 sec

5 Conclusion

In this work we propose the implementation of knowl-
edge base triple-stores using already mature NoSQL
solutions like MongoDB. Lacking of a unique identi-
fying schema included in RDF, we propose the imple-
mentation of a vocabulary using a separate document
collection. This involved the addition of some prepro-
cessing steps when inserting or retrieving knowledge.
In comparison with other related works that serialize
knowledge data in a separate DBMS, we don’t deal
with mapping RDF stored data or SPARQL queries
to the serialized dataset. This approach reduces a lot
the complexity of the solution and focuses the effort
on the actual triple-stored knowledge itself.

Our experiments show that by avoiding the over-
heads of the traditional way of storing triple structured
data (RDF) and taking advantage of the performance
oriented features of document-oriented databases, we

can achieve a considerable performance when perform-
ing basic knowledge update operations (insert, up-
date, retrieve). This was confirmed also when compar-
ing the performance of our developed prototype with
Apache Jena, a well established open source linked-
data toolkit.

Based on our results, a better performance can be
achieved when storing multiple triples per document.
Increasing the number of documents considerably in-
creased the response time.

Concluding, we showed that it is possible to imple-
ment a triple-store knowledge base using not purposely
built toolkits. In various scenarios, a RDF based im-
plementation can create unnecessary complexities that
would increase the implementation time of a knowl-
edge base. Furthermore, when dealing with previously
unknown relations (fact extraction through text min-
ing), a NoSQL based implementation facilitates a dy-
namic enlargement of the vocabulary.

References

[ABK+07] Sören Auer, Christian Bizer, Georgi Ko-
bilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. Dbpedia: A nu-
cleus for a web of open data. In The
semantic web, pages 722–735. Springer,
2007.

[ALC15] Ioannis Arapakis, Luis A Leiva, and
B Barla Cambazoglu. Know your onions:
understanding the user experience with
the knowledge module in web search.
In Proceedings of the 24th ACM In-
ternational on Conference on Informa-
tion and Knowledge Management, pages
1695–1698. ACM, 2015.

[BHBL11] Christian Bizer, Tom Heath, and Tim
Berners-Lee. Linked data: The story so
far. In Semantic services, interoperability
and web applications: emerging concepts,
pages 205–227. IGI Global, 2011.

[BKVH02] Jeen Broekstra, Arjohn Kampman, and
Frank Van Harmelen. Sesame: A generic
architecture for storing and querying rdf
and rdf schema. In International seman-
tic web conference, pages 54–68. Springer,
2002.

[CMEF+13] Philippe Cudré-Mauroux, Iliya Enchev,
Sever Fundatureanu, Paul Groth, Albert
Haque, Andreas Harth, Felix Leif Kepp-
mann, Daniel Miranker, Juan F Sequeda,
and Marcin Wylot. Nosql databases for

rdf: an empirical evaluation. In Interna-
tional Semantic Web Conference, pages
310–325. Springer, 2013.

[Don16] Xin Luna Dong. How far are we from
collecting the knowledge in the world. In
International Conference on Web Engi-
neering, 2016.

[EM09] Orri Erling and Ivan Mikhailov. Rdf sup-
port in the virtuoso dbms. In Networked
Knowledge-Networked Media, pages 7–
24. Springer, 2009.

[MFZM16] Franck Michel, Catherine Faron-Zucker,
and Johan Montagnat. A mapping-based
method to query mongodb documents
with sparql. In International Conference
on Database and Expert Systems Appli-
cations, pages 52–67. Springer, 2016.

[Pau17] Heiko Paulheim. Knowledge graph refine-
ment: A survey of approaches and evalu-
ation methods. Semantic web, 8(3):489–
508, 2017.

[Rus11] Jack Rusher. Triple store, 2001.
Last Accessed: http://www. w3.
org/2001/sw/Europe/events/20031113-
storage/positions/rusher. html, 2011.

[Tom10] Dominik Tomaszuk. Document-oriented
triple store based on rdf/json. Studies in
Logic, Grammar and Rhetoric,(22 (35)),
page 130, 2010.

