
Shape detection and classification using OpenCV and Arduino Uno

Xhensila Poda

Faculty of Natural Sciences

University of Tirana

xhensila.poda@fshnstudent.info

 Olti Qirici

Faculty of Natural Sciences

University of Tirana

olti.qirici@fshn.edu.al

Abstract

 “ If We Want Machines to Think, We Need to Teach

Them to See. --Fei Fei Li, Director of Stanford AI

Lab and Stanford Vision Lab ” [ERD12]

 Working on Computer Vision is equivalent to working

on millions of calculations in the blink of an eye with

almost same accuracy as that of a human eye. It is not

just about converting a picture into pixels, and then try

to make sense of what’s in the picture through those

pixels but it is thinking of what can be done by a

machine when they will be able to see as accurate as a

human eye.

1. Introduction

There is a clear distinction between two regular

geometric shapes, for example a circle and a square.

Identifying this difference for a human is easy, but how

can a computer find the difference between these two

objects? How can we build a system that takes an image

as an input, detects and distinguishes the shapes present

in it ?

This paper will introduce a system for shape detection

recognition and classification. To make the system

complete, a great importance is given to the necessary

image processing techniques to be applied. We’ll make

an effort to go all the way, ranging from the lower

image processing layers to the stage in which a

hardware system (based on Arduino) could classify

objects in shapes of certain categories, through a

mechanical arm. The main motivation for the research

lies with discovering what the limits and possibilities

are. But apart from the theoretical point of view there

also is a great practical use when it comes to object

detection. The motivation for wanting to build a system

that can detect different shapes mainly stems from a

desire to make the computer able to interact with the

real world.

Computer Vision applications, which have been the

subject of constant research interest for almost four

decades, have now matured to a point where they can

be applied efficiently for advanced tasks in various

fields of human activity. One of the areas that has

shown great interest in such systems is the Industry. In

the process of assembling and quality control in

industry, there is a strong need for robot-based object

detection and recognition systems. The application of

these systems in industry gave way to the realization of

this work.

The Industrial Assembly process is part of the

manufacturing process and can be defined as a set of

tasks in which all parts of the discrete components are

gathered to form a certain configuration. Fitting is often

the weakest point in the entire production process

because this activity takes a considerable part of the

cost and total production time. One of the main reasons

for this is the diversity of products that a single venture

places on the market, so it is often difficult for

companies to follow market demands when their

assembly is mainly based on manual assembly

processes. This is even more true as the market requires

products that meet high expectations in the areas of

quality, price and delivery time. The key to achieving

this goal is the continuous improvement of the

production process.

Today, industrial robots can perform tasks with

precision and high speed. However, compared to

human operators, robots are hampered by lack of

sensory perception to achieve more sophisticated tasks.

People make object detection and recognition seem like

a trivial process. We can easily identify objects in the

surrounding environment, regardless of their

circumstances, whether they are upside down, different

from color, other than composition, etc. And the objects

that appear in many different shapes or objects that

have significant deviations in the form such as trees,

(rarely find two trees that have identical shape) can

easily be generalized by our brain as the same kind of

object. To go from the evidence of objects to the

human world in the computerized detection of objects

is necessary that we add to this machines the sense of

http://vision.stanford.edu/feifeili/
http://ai.stanford.edu/
http://ai.stanford.edu/
http://vision.stanford.edu/

sight. This concept, in the automated world, is known

as Artificial Vision. But what is Artificial Vision and to

what level does this system look like with the sense of

sight in the human world? The technical definition of

Artificial Vision is as follows:

 “The use of devices for optical, non-contact sensing to

automatically receive and interpret an image of a real

scene in order to obtain information and/or control

machines or processes.” [WHE97]

Numerous processing can help to extract some

information about the forms and objects present in an

image, but the level of abstraction achieved by people

can't be compared to the Artificial Vision techniques

nowadays. This gap between these two worlds has

several reasons that are explained in the following

paragraph.

2. Difficulties

2.1 Lighting

A perennial problem in working with images is the
various lighting conditions a picture can have been
taken under. The effect of lighting on colors is
extremely large, and especially in color based
recognition is considered to be one of the most difficult
problems. Human eyes within a broad range
automatically adjust for brightness. A computer does
not have that capability. This greatly reduces its ability
to recognize colors. Good examples are the very
popular soccer robots, the Aibos. In most cases they are
programmed to find their location in the field by
identifying colors of objects around them. Every new
match to be played by these robots is preceded by a
large operation of recalibrating them to new lighting
conditions. This takes a lot of precious time (it can
easily take an hour) and can be troublesome because
the time constraints often compromise the quality.
Since we work with shapes instead of colors we are less
dependent on these changing colors, but unfortunately
this does not mean that lighting is not a problem for us.
Mechanisms like edge extraction are sensitive to
lighting conditions. Edges tend to disappear when
lighting becomes dim and the difference in brightness
of pixels tends to decrease. And brighter images can on
their part lead to the extraction of too much edge
information, as with a brighter image small color
changes can become more visible. [VRI06]

2.2 Multiple objects

Just about the hardest problem of object detection in
real images is that the objects are not likely to appear
alone, making it very hard to detect them, since
separation of objects in an image is not a trivial task.
This is even harder when two objects are touching or
overlapping, possibly letting them be identified as one.
Such a problem, of separation of objects and clustering
of various elements, by itself justifies a full research
project and we have no other choice then to give this
issue here a lower priority and refer the research to
future work. [VRI06]

3. Tools

3.1 OpenCV

 A multitude of software tools and libraries
manipulating images and videos are available, but for
anyone who wishes to develop smart vision-based
applications, the OpenCV library is the tool to use.
Since its introduction in 1999, it has been largely
adopted as the primary development tool by the
community of researchers and developers in computer
vision. Below are listed the main reasons why i have
chosen OpenCv to develop my project:

3.1.1 Cross-Platform Library

OpenCV is a cross-platform library, enabling users on
different operating systems to use it without
complications. It is even accessible on mobile systems
like iOS and Android, making it a truly portable library.

3.1.2 Vast Algorithms

OpenCV (Open source Computer Vision) is an open
source library containing more than 500 optimized
algorithms for image and video analysis. This vast
library allows programmers to perform a multitude of
tasks in their software such as extracting 3D models of
objects, object detection and tracking etc.

3.1.3 Extensive Use

OpenCV is being used by giant companies like Google,
IBM, Toyota and startups such as Applied Minds and
Zeitera as well as organizations in countries all over the
world to conduct multifarious tasks. This gives users
assurance that they are on board of a library that is
being used extensively by enterprises and government

institutions. Moreover, OpenCV has a vast community
where users can ask for assistance and offer help to
their fellow developers in case they have questions
regarding codes or the platform. This lets developers
access insights from real people about the library and
its codes.

3.1.4 Efficient

OpenCV was designed for computational efficiency and
with a strong focus on real-time applications. Written in
optimized C/C++, the library can take advantage of
multi-core processing. Enabled with OpenCL, it can
take advantage of the hardware acceleration of the
underlying heterogeneous compute platform. [LAG11]

3.2 Arduino

Arduino is a for-profit company that builds the self-
entitled Arduino open-source hardware platform. What
this means is that the hardware designs are open, as is
all software used to program the boards. Third parties
are welcome to build and distribute their own, but the
name ‘Arduino’ cannot be used by third parties. A
rather large enthusiast community has sprung up around
the Arduino board, making it a popular platform for
personal projects. The Arduino boards incorporate an
ATMega microcontroller, along with necessary
electronics to connect it to a computer via USB for
programming, and to help regulate its power and
sanitize its inputs and outputs to a degree. There are
several types of Arduino boards, and the Arduino Uno
with the ATMega328 microcontroller was the board
chosen for this project. Arduino provides an open-
source software development environment for
programming the Arduino boards. The boards are
programmed using a modified version of C++, in which
some concepts esoteric to novice programmers are
hidden. Straight forward functions are included for
most common microcontroller tasks. The programming
environment makes it very easy to write programs, and
loading them onto the board is as easy as plugging in
the USB cable and clicking the “upload” button.

3.2.1 Reason behind choosing Arduino

First, the device is an open-source hardware platform
that is programmed using an open-source programming
environment. Moreover, the Arduino boards are
advertised to be straight forward to use and program;
they are designed for use by artists and hobbyists. The

C++ like programming language used to program the
board is easy to grasp. The last advantage has to do
with the cost. Arduino platforms have a low cost and
compared to the variety of projects that gives the
opportunity to develop this cost is insignificant.

4. Methodology used

4.1 Contours identification and utilized techniques

This project was developed in three main directions.
First direction focuses on image processing techniques
in order to detect and classify the regular shapes present
in an image. The second direction focuses on how the
output produced in the first stage will be transmitted in
Arduino and how Arduino will interact with this output.
The third direction is the construction of a hardware
platform in which all the results obtained will be
combined and will solidify the purpose of this research.

“A contour is a closed curve of points or line segments,
representing the boundaries of an object in an image. ”
[RIC03]

 In other words, contours represent the shapes of
objects found in an image. If internal detail is visible in
an image, the object may produce several associated
contours, which are returned in a hierarchical data
structure. Once the contours of an object are detected,
we can do things like determine the number of objects
in an image, classify the shapes of the objects, measure
the size of the objects etc. The input to the contour-
finding process is a binary image, which it will
produced by first applying thresholding and/ or edge
detection techniques. In a binary image, the objects to
be detected should be white, while the background of
the image should be black. A point worth mentioning is
that it is not enough to merely identify the boundary
pixels of a pattern in order to extract its contour. What
we need is an ordered sequence of the boundary pixels
from which we can extract the general shape of the
pattern. [ALE17]
Contour tracing is one of many preprocessing
techniques performed on digital images in order to
extract information about their general shape. Once the
contour of a given pattern is extracted, it's different
characteristics will be examined and used as features
which will later on be used in pattern classification.
Therefore, correct extraction of the contour will

produce more accurate features which will increase the
chances of correctly classifying a given pattern.
Meanwhile, these questions may arise: Why waste
precious computational time on first extracting the
contour of a pattern and then collecting its features?
Why not collect features directly from the pattern?

The appropriate answers to such questions would be:

the contour pixels are generally a small subset of the

total number of pixels representing a pattern. Therefore,

the amount of computation is greatly reduced when we

run feature extracting algorithms on the contour instead

of on the whole pattern. Since the contour shares a lot

of features with the original pattern, the feature

extraction process becomes much more efficient when

performed on the contour rather on the original pattern.

In conclusion, contour tracing is often a major

contributor to the efficiency of the feature extraction

process - an essential process in the field of pattern

recognition. [JAN12]
As mentioned earlier before applying a contour
detection algorithm we need to apply Thresholding or
Edge Detection. But which of the techniques should we
choose? Before we make a comparison of two
techniques, let's look at the technical definition for
Thresholding.

 “Thresholding is a nonlinear operation that converts
a grayscale image into a binary image where pixels are
divided into two groups depending on a value defined
as the threshold value. The pixels that have a value
greater than the threshold value receive the value of 1
while others take the value 0. ” [SHA01]

Thresholding just takes a look at intensities and sees
whether or not each value is smaller or larger and we
get "edge" points respectively. However, depending on
the complexity of the scene, thresholding and edge
detection would yield the same thing. For example, if
you had a clean image that has a clear intensity
difference between the foreground and background,
then either edge detection or thresholding would work.
The scene that we have to deal with is very complex,
with multiple objects in it, so thresholding will not give
good results. This is why edge detection is chosen.
Canny Edge Detection is a popular edge detection
algorithm. It was developed by John F. Canny in 1986.
OpenCv library has a built in method named Canny()
which implements Canny Edge Algorithm. [ALE17]
The implementation of this algorithm in OpenCv goes
through several phases that are explained below:

4.1.1 Noise Reduction

Since edge detection is susceptible to noise in the
image, first step is to remove the noise in the image
with a 5x5 Gaussian filter.

4.1.2 Finding Intensity Gradient of the Image

Smoothened image is then filtered with a Sobel kernel
in both horizontal and vertical direction to get first
derivative in horizontal direction (𝐺𝑥) and vertical
direction (𝐺𝑦). From these two images, we can find
edge gradient and direction for each pixel as follows:
Gradient direction is always perpendicular to edges. It
is rounded to one of four angles representing vertical,
horizontal and two diagonal directions.

4.1.3 Non-maximum suppression

After getting gradient magnitude and direction, a full
scan of image is done to remove any unwanted pixels
which may not constitute the edge. For this, at every
pixel, pixel is checked if it is a local maximum in its
neighborhood in the direction of gradient Point A is on
the edge (in vertical direction). Gradient direction is
normal to the edge. Point B and C are in gradient
directions. So point A is checked with point B and C to
see if it forms a local maximum. If so, it is considered
for next stage, otherwise, it is suppressed (put to zero).
In short, the result you get is a binary image with “thin
edges”.

Figure 1

Non-Maximum Suppression

 4.1.4 Hysteresis thresholding

This stage determines which edges are real edges and
which are not. For this two threshold values are needed,
minVal and maxVal. Any edges with intensity gradient
more than maxVal are sure to be edges and those below
minVal are sure to be non-edges. Those who lie
between these two thresholds are classified edges or
non-edges based on their connectivity. If they are
connected to “sure-edge” pixels, they are considered to

be part of edges. Otherwise, they are discarded. For
example edge A in Figure 2 is above the maxVal, so is
considered as “sure-edge”. Although edge C is below
maxVal, it is connected to edge A, so that also
considered as valid edge and we get that full curve. But
edge B, although it is above minVal and is in same
region as that of edge C, it is not connected to any “sure
edge”, so that is discarded.It is very important that
minVal and maxVal are accurately selected to get the
correct result. This stage also removes small pixels
noises on the assumption that edges are long lines.
[HOW15]

Figure 2

Hysteresis thresholding

 4.1.5 Contour detection algorithm in OpenCv

Contour detection algorithms can typically be
categorized into three types as follows

• Pixel following,
• Vertex following
• Run-data-based following

Of these, the pixel-following method is the most
common. Pixel-following method traces contour pixels
in a predefined manner and then saves their coordinates
in memory according to the trace order. Pixel-following
methods, such as the simple boundary follower (SBF) ,
modified SBF (MSBF), improved SBF (ISBF) Moore-
neighbor tracing (MNT),the radial sweep algorithm
(RSA) and the Theo Pavlidis algorithm (TPA) have
simple rules for tracing contour pixels based on a chain
code. These methods require a frame-size memory to
trace the contour and generate erroneous images when
the contour image is enlarged because they maintain
only the pixel coordinates. [TAU]
OpenCv has a built in method that implements an
algorithm for contour detection: cv2.findContours().
This method takes as input three parameters:first one is
source image, second is contour retrieval mode and

third is contour approximation method. The outputs
are: image, contours and hierarchy. Contours is a
Python list of all the contours in the image. Each
individual contour is a NumPy array of (x,y)
coordinates of boundary points of the object.

After detecting all contours in an image, in order to
perform shape detection contour approximation will be
used.
As the name suggests, contour approximation is an
algorithm for reducing the number of points in a curve
with a reduced set of points — thus the term
approximation. This algorithm is commonly known as
the Ramer-Douglas-Peucker algorithm, or simply the
split-and-merge algorithm. Contour approximation is
predicated on the assumption that a curve can be
approximated by a series of short line segments. This
leads to a resulting approximated curve that consists of
a subset of points that were defined by the original
curve. Contour approximation is actually already
implemented in OpenCV via the cv2.approxPolyDP()
method. [JAN12]
In order to perform contour approximation, firstly is
needed to compute the perimeter of the contour
followed by constructing the actual contour
approximation as shown below:

peri = cv2.arcLength(c, True)
approx=cv2.approxPolyDP(contours[i],peri*0.02
,True)

Common values for the second parameter to
cv2.approxPolyDP are normally in the range of 1-5%
of the original contour perimeter. Given our
approximated contour, we can move on to performing
shape detection:

It’s important to understand that a contour consists of a
list of vertices. We can check the number of entries in
this list to determine the shape of an object.
For example, if the approximated contour has five
vertices, then it must be a pentagon as shown below:

Figure 3
#contours

canny2, contours, hierarchy =

cv2.findContours(canny,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

 for i in range(0,len(contours)):

 peri = cv2.arcLength(contours[i],True)

 approx = cv2.approxPolyDP(contours[i],peri*0.02,True,approxOut)

Contour detection code

if(len(approx) == 5):shape = 'p'

arduino.write(shape.encode())

x,y,w,h = cv2.boundingRect(contours[i])

cv2.drawContours(frame, [approx], -1, (0, 0,

255), 3)

The output of this phase is shown below:(Figure 4)

Figure 4

Contour detection result

4.2 Serial communication between Arduino and

OpenCV

4.2.1 Data input in Arduino

This part will demonstrate how to establish a
connection between Arduino and Python script. The
transferred information is just an indicator for the type
of shape that has been detected. This can be done using
Serial Communication.
 But why does Arduino need this information? Because
Arduino is the “brain” that will put the hardware device
in move. Depending from the input that it takes from
the python script ,Arduino will control the movement of
the mechanical arm. Python and Arduino both contain a
library that is specific for serial communication,
respectively PySerial for python and Serial for
Arduino. The sender of the information in this case is
Python script while the receiver is Arduino. On the side
of the sender we declare an object of the PySerial
Library which will initiate the communication path
from which the data will be transmitted . This object

will save an important information , that is the port in
which Arduino will receive the message. Another
important element is information that will be sent.
Serial communication transmit data bit after bit. When
a specific shape is detected (i.e pentagon) in a variable
we will save a character (i.e 'p') .This means that the
detected shape is a pentagon and then this information
is send to Arduino by arduino.write() command.

4.2.2 Data processing in Arduino

Now that the communication between these
technologies has been made possible , is only left to see
how this received information can be used by Arduino.
The code structure of Arduino is made of two main
methods: init() in which we declare all the necessary
objects and variables and loop() which will be executed
as long as Arduino is in working conditions.

In the body of init() method Serial.begin() is called,
which will initiate communication for Arduino.
Loop method manages the received information as
shown below:

 :if(Serial.read()== 'p')

So if message contains character 'p' that means python
script has detected a pentagon. In this case Arduino will
give the command to move servo motor ninety degrees.
This command will open the first bin which is
responsible for holding pentagons.
This control is possible only for two kind of shapes
(triangle or rectangle,circle or triangle,etc) because
hardware structure has only two containers .
Arduino code responsible for controlling the mechanic
arm is shown below:

5. The hardware

 “People who are really serious about software should

make their own hardware”-- Alan Kay

Although this is not entirely our case, it is a great

inspiration to build the optimal hardware platform that

best suits the software we have built up. The built-in

hardware platform is made up of several parts that are

explained in the following paragraphs. Most of the

components of this platform are realized through 3D

printing.

3D printing has been a popular method of creating

prototypes since 1980 and is quickly becoming the

fastest and most affordable way to create custom

consumer goods. There are several different 3D

printing methods, but most widely used is a process

known as Fused Deposition Modeling (FDM). FDM

printers use a thin thermoplastic filament, which is

heated to its melting point and then layered to form a

three-dimensional object.

3D printings produce very accurate, highly stable,

highly efficient and very low cost structures. These

qualities make these structures very suitable for

building functional prototypes.

The most important part of this platform is the

conveyor. (Figure 6) His role is to shift geometric

shapes up to the mechanical arm. The conveyor is built

by two rollers, one of which is passive and the other is

active. The active one is moved by servo motor and is

responsible for moving the entire conveyor.(Figure 7)

Figure 6

Conveyor design

Figure 7

Parts of the conveyor

The second part is the classification structure. This part

is responsible for the process of classifying shapes. The

whole structure is static except the mechanical arm

positioned in its center. This structure is supported by

stepped booster which creates the slope necessary for

the smooth passage of geometric shapes during the

classification process. (Figure 8)

Figure 8

With the description of these parts we end up the

explanation of hardware construction for this

application.

Figure 5

Servo control using Arduino

The finalized project looks like this:

Figure 9

Figure 10

5. Conclusions

Enabling a machine to “see” and “understand ” gives

you the ability as a developer to see and understand a

lot, because this is a job that turns all your efforts into

benefits. The world of computer vision and robotics in

general is quite an intriguing world. The benefits that a

software developer gets when he studies this field are

countless. Thanks to Open Source technologies,

prototypes can be realized at a very low cost. Today a

modest system was built,tomorrow with the same

software and with a more suitable real-world hardware

we can build a system that is part of the manufacturing

industry in Albania. Computer Vision is not just the

implementation of an algorithm, it is not just

mathematical calculation on a vector. Computer Vision

is thinking about the power that can be given to each

system when we give it a chance to perceive the

surrounding environment.

References

[WHE97] P. Whelan, B. Batchelor. Intelligent Vision

Systems for Industry, 1997

[VRI06] J. de Vries. Object Recognition: A Shape-

Based Approach using Artificial Neural Networks,

January 2006

[SHA01] L. Shapiro, G. Stockman. Computer Vision

(1st Edition), February 2001

[HOW15] J. Howse. Learning OpenCv with Python

(2nd Edition), September 2015

 [TAU] G. Toussaint, Course Notes: Grids,

connectivity and contour tracing (PostScript)

 [PAV82] T. Pavlidis, Algorithms for Graphics and

Image Processing, Computer Science Press, Rockville,

Maryland, 1982

[MIK] Mike Alder, Border Tracing (by radial sweep)

[SOS] M. Soss, Proof of correctness of Square

Tracing algorithm when both pattern and background

are 4-connected

[LAG11] Robert Laganiere OpenCV 3 Computer

Vision Application Programming Cookbook - Third

Edition 2011

[JAN12] Jan Erik Solem Programming Computer

Vision with Python 2012

[ALE17] Alexander Mordvintsev & Abid K OpenCV-

Python Tutorials Documentation

Release 1 2017

[ALE15] Aleš Ude Robot Vision 2015

[JUR16] Jürgen Beyerer, Fernando Puente,León

Christian Frese, Machine Vision Automated Visual

Inspection: Theory, Practice and Applications 2016

http://www-cgrl.cs.mcgill.ca/~godfried/
http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/contour_tracing.ps
http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/contour_tracing.ps
http://www.cs.sunysb.edu/~theo/
http://www.maths.uwa.edu.au/~mike/
http://cgm.cs.mcgill.ca/~soss/
http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/4con.html

[MUB97] Mubarak Shah Fundamentals of Computer

Vision 1997

[RIC03] Richard Szeliski Computer Vision:

Algorithms and Applications 2003

[ERD12] E. R. DAVIES Computer and Machine

Vision: Theory, Algorithms,Practicalities 2012

