
Eve: A Multi-Agent Approach to an Open-Source and Web-Based

Platform

Desa Avxhi

Informatics Department

Faculty of Natural Sciences

University of Tirana

desa.avxhi@fshnstudent.info

 Areti Bojaxhiu

Informatics Department

Faculty of Natural Science

University of Tirana

areti.bojaxhiu@fshn.edu.al

Abstract

In recent years, systems based on multi-agents
are developing faster. Yet, the difficulty of
achieving the communication between agents
in heterogeneous environments is still a
problem. In this paper, we will give a closer
look at Eve, a new platform that has recently
been developed. It aims to be open and
dynamic and makes it very easy to use the
concept of software agents. Two most
important characteristics of this platform are
its accessibility and its ease of implementation
for any developer in any development
environment.

1. Introduction

In recent years, there has been a rapidly growing
interest in developing systems based on multi-agents
(MAS). The reason is that it can solve problems that an
individual agent would have it difficult or impossible to
solve [Mul]. Designing distributed software systems is
pretty hard. At the same time, humans are very good at
distributing work among them.

Such human organizations have inspired designing
and using software agents, making software designs fit
closer to our collective experience, providing a boost in
stability, scalability, and maintainability of the software
system [Xie17]. But, on the other hand, multi-agent
systems are difficult to implement, because they require
abstract modeling and higher level reasoning.

One of the platforms that implement MAS is Eve.
Eve is a multipurpose, web-based agent platform.
Agents on this platform can live and act anywhere: in
the cloud, on desktops, in browsers, robots and others.
The main protocol used in communication between
agents is JSON-RPC [Eve].

Eve offers agents that are simple to develop; making
this way eases the integration of software agents.

Figure 1: Eve platform

2 Traditional and Eve's approach

There are many multi-agent platforms, but Eve's
approach to MAS makes it different from the other
ones.

2.1 Traditional Approach

In traditional platforms, agents live and interact in an
operating system or simulation environment [Bos10].
This is a closed and controlled environment, in the
sense that its agents are deployed on a single server.

In order for the system to become scalable, the
platforms must link multiple sites or locations together,
enabling communications and interaction between
agents that are on different sites. These platforms also
provide the migration of agents from one site to
another.

2.2 Eve's approach

We can say that Eve's approach for multi-agents differs
a lot from the traditional ones. The core of Eve is to
make agents available to other agents and to provide a
way to help them communicate with each other.
Since agents can live on any device (servers, clouds,
smartphones), Eve is platform independent.

In contrast to traditional platforms, whose agents
live in a closed environment, the purpose of Eve is to
offer agents an open, human-like world. Eve's agents
live on the World Wide Web; they are accessed via a
unique url and have a prescribed communication
protocol.

Eve agents can be developed even on an existing
application, because Eve can be hosted in any
environment and can be written in any programming
language [Ste14]. For this reason, applications do not
have to adapt to fit into Eve; instead a simple layer
needs to be added on top of the existing application in
order to connect it to Eve.

Some advantages of the architecture of Eve that are
important to mention are:

Scalability: Being fully web-based, new agents can
be added to the system without lowering the
performance.

Robustness: Eve is insensitive to the server or device
failures, because Eve itself is a distributed agent
platform, with no point of failure.

Massive parallelism of the workload of an agent:
multiple instances of an agent sharing the same state
can exist at once. This means that Eve allocates a
limitless number of threads when an agent is heavily
loaded, and no thread at all when the agent is idle. This
reduces resource consumption for idle agents, in
contrast to traditional platforms that allocate one thread
per agent, even if the agent is idle.

Seamless migration: Since agents are fully location
agnostic, accessing local or remote agents does not
make any difference [Jon14].

3 Agent Modal

The main concept of Eve platform is an Agent, whose

basic definition is: A software entity that acts on behalf

of others in an autonomous fashion performs its actions

on some level of proactivity and reactivity [Mah17].
The agents have an autonomous behavior, meaning

that they need to run in an independent way of the
entity they represents. In order to have this autonomous

behavior, agents should have some features, which Eve
provides:

Time independence: scheduling independent of the

represented entity

Memory: the possibility to keep a model

Communication: a common language to

communicate between agents [Eve].

3.1 Communication Protocol

The communication between Eve agents is achieved by

the JSON-RPC protocol. JSON format is easily written

by humans and easily generated or parsed by machines.

Requests and responses sent by an agent that use this

format. An example of a request is shown below:

Url http://myserver.com/agents/agent_y

Request
{

 "jsonrpc":"2.0",

 "id": 1,

 "method": "add",

 "params": {

 "a": 2.2,

 "b": 4.5

 }

}

Response
{

 "jsonrpc":"2.0",

 "id": 1,

 "result": 6.7,

 "error": null

}

Figure 2: Simple request from an agent and the

corresponding response from another one

3.2 Agent methods

An Eve agent comes with the following methods:

-Agent.send(to: string, message: string) - Sends a

message to the specified agent.

-Agent.extend(module: string | Array.<string> [,

options: Object]) - extends the agents with one or more

of agent modules listed in the next chapter.

-Agent.receive(from: string, message: string) - receives

a message from the specified agent.

-Agent.connect(transport: Transport | Transport[] |

string | string[], [, id: string]) - Connects an agent to one

or more transports listed below.

-Agent.disconnect([transport: Transport | Transport[] |

string | string[]]) - Disconnects the agent from the

transport/transports specified. If no transport is

provides, the agent will be disconnected from all the

transports available [Api].

4 Eve concepts

4.1 Configuration

Local agents can communicate with each other using

the default ServiceManager, loaded at eve.system. A

System Manager is an object that manages services for

agents and allows them to connect to relevant services

[Mod].

A Service Manager configuration looks like below:

eve.system.init({
 transports: [
 {
 type: 'distribus',
 }
],
 timer: {
 paced: false
 }
});

4.2 Transports

Eve Platform has the following built-in transports:

Advanced Message Queuing Protocol (AMQP) is a
protocol used for message-oriented middleware. Main
features of this protocol include: message orientation,
queuing, routing, reliability and security.

Distribus is a distributed message bus for node.js

and the browsers. In this transport type, hosts are

connected to each other in a peer to peer network.

Peers then send messages to each other by their id.

HTTP is the easiest way of sending messages

between agents. Messages sent by an agent are received

by a web server and then sent back to the recipient.

PubNub provides publish/subscribe of a network.

WebSocket opens a connection between two agents.

It is fast but its limitation is that it can be used only for

a small number of agents, because of a certain amount

of WebSockets that can be opened at the same time.

Distribus is recommended when having to deal with

large number of agents.

WebSockets can be used both server and client side.

When a url is provided, WebSocket is considered as a

server, where agents can connect. When url is not

provided, WebSocket is a client that can be connected

to other servers [Tra].

4.3 Modules

Eve Platform offers the following modules that agents

can be extended with:

Babble - A Babble communication is modeled as a
control flow diagram containing blocks: ask, tell, listen,
if, decide, then. Blocks can be linked to the next block
in the control flow and the blocks can dynamically
determine the next block.

Pattern - The agents in this module will be extended

with functions listen and do not listen. Having a certain

pattern that can be a string or regular expression, a

listener is triggered when an incoming message

matches this pattern.

Request - This module offers the ability to send

requests using the 'request' method and waiting for a

reply.

RPC - Agents in this module to communicate using a

JSON RPC protocol. This module can be used with all

the transport ways listed above. Its 'request' method

sends a request in JSON format and waits for its reply

in the same format [Mod].

5 Use

The main methods of an agent are connected,

disconnect, that are used to connect an agent to one or

more transport types; send and receive, that are used for

communication between agents.
Below are the steps that have to be followed in order

to set up a system with eve agents. Create an agent
class extending eve.Agent.

var eve = require('evejs');

 function MyAgent(id) {

 eve.Agent.call(this, id);

 // ...

 }

 MyAgent.prototype =

Object.create(eve.Agent.prototype);

 MyAgent.prototype.constructor = MyAgent;

 MyAgent.prototype.receive = function (from,

message) {

 // ...

 };

 module.exports = MyAgent;

Make necessary configurations, initialize transports

and other services.

eve.system.load({

 transports: [

 {

 type: 'distribus'

 }

]

 });

Create an agent: agent1 = new Agent('agent1') and
connect it to transports:
agent1.connect(eve.system.transports.getAll()).

Send or receive messages using 'send' and 'respond'

methods. The agent that sends or responds the request

can be specified by its full url or just by its id:

agent1.send('distribus://networkId/agent2', message) or

agent1.send('agent2', message) [Tra].

6 Conclusion

In this paper, we had an overview of the Eve platform,

used for developing or integrating multi-agent systems

to existing applications. The main advantage of this

platform over the others was that Eve agents live in an

open, human-like world and can be anywhere, in any

device. Eve platform can be developed in any

programming language, giving it another important

advantage. We also saw the basic steps of

implementing an agent-based system.

References

[Ste14] L. Stellingwerff, J. D. Jong and G. E. Pazienza.

Practical Applications of the Web-Based

Agent Platform 'Eve', 2014.

[Mah17] Q. H.Mah17moud. Software Agents:

Characteristics and Classification, 2017.

[Xie17] J. Xie, Chen-Ching Liu Multi-agent systems

and their applications, 2017.

[Jon14] J. D. Jong and L. Stellingwerff.. Eve: a Novel

Open-source Web-based Agent Platform, 2014

[Bos10] R. Bosch and D. Srinivasan. An Introduction

to Multi-Agent Systems, 2010

[Eve] https://eve.almende.com/index.html

[Mul] https://en.wikipedia.org/wiki/Multi-agent_system

[Emsl] https://github.com/enmasseio/evejs

[Api].https://github.com/enmasseio/evejs/blob/master/d

ocs/api.md

[Tra].https://github.com/enmasseio/evejs/blob/master/d

ocs/transports.md

[Mod].https://github.com/enmasseio/evejs/blob/master/

docs/modules.md

