
Formal Model of Problems, Methods,
Algorithms and Implementations in the

Advancing AlgoWiki Open Encyclopedia?

Andrey Popov1, Dmitry Nikitenko2[0000−0002−2864−7995], Alexander
Antonov2[0000−0003−2820−7196], and Vladimir Voevodin2[0000−0001−6036−5106]

1 Lomonosov Moscow State University, Moscow, Russia
dr10x@mail.ru

2 Research Computing Center of Lomonosov Moscow State University, Moscow,
Russia

{dan,asa,voevodin}@parallel.ru

Abstract. Any automation, modeling or computing is based on algo-
rithms. The choice of methods, algorithms and efficient implementations
is a very important question. AlgoWiki Open Encyclopedia is an online
resource which was developed to describe all existing algorithms as fully
as possible, provide information about its properties, give example of its
implementations and completely classify all algorithms. The first ver-
sion of the AlgoWiki Open Encyclopedia did not have a formal model,
describing relationship between the four key entities, which are prob-
lems, methods, algorithms and implementations. The main idea of the
advanced approach is to create the formal graph model of algorithm clas-
sification, which could be used by AlgoWiki website itself or any trusted
web service for many purposes, and first of all, organizing existing de-
scriptions of algorithms into the proposed core structure preserving the
data integrity during all possible routines.

Keywords: Algorithms Classification · Relationship Graph Model

1 Introduction

Any type of computing is based on some algorithms. The choice of methods, al-
gorithms and proper implementations is a very important question [1]. The Al-
goWiki is an online encyclopedia of algorithms, created with purpose to describe
structure and key features of various algorithms and provide complete informa-
tion about different implementations of these algorithms on different platforms
and describe its properties such as parallel complexity and parallel structure, ef-
ficiency, scalability and etc. The service also classifies all the algorithms, making
navigation easier for user [2].

? The research is carried out using the equipment of the shared research facilities
of HPC computing resources at Lomonosov Moscow State University. The results
described in section III were obtained in Lomonosov Moscow State University with
the financial support of the Russian Science Foundation (agreement N 14-11-00190).



2 A. Popov et al.

There are four levels of entities in the AlgoWiki: Problem, Method, Algo-
rithm and Implementation. Problem level describes the problems which need
to be solved using methods or algorithms. Method and Algorithm levels may
seem similar, but they are actually not. The main difference between them is
that method is slightly more abstract description of way or technique to solve
problem, while algorithm descriptions are more extended and more particular.
For example methods can be described with just simple words, but description
of algorithm has to be supported with flow chart or pseudocode statements for
example, because algorithms are more certain about the sequence of actions,
exact amount of data operated, its type and its inputs, outputs and etc. And
Implementation level shows the certain examples of implementing the algorithm,
i.e. example codes on most popular programming languages. This is the least ab-
stract description stage, because algorithm implementations are written on spe-
cific programming language and is oriented to be executed on specific platform.
According to the idea of AlgoWiki algorithm classification, one can look at the
problem which has to be solved, and find the list of methods which can be used
as a solution. Within the method, one or several algorithms can be chosen, de-
pending on whether there are different versions of applying the method. Finally,
on the algorithm page user can find its Implementations. But sometimes it will
not be a simple Problem – Method – Algorithm – Implementation path for the
user, because of some unusual relationships. Some problems can be solved with
several methods, but in the same way one method can be used to solve several
different problems. Sometimes it is also possible to go directly from problem to
algorithm, skipping the method stage. Some problems can have several subtypes
or versions of itself, and each of that subtype will be a part of Problem level.
Or problems can be grouped together into categories of problems. The same
principles can be applied to methods and algorithms. Just like problems, they
also may have subtypes.

So as it turns out, algorithm classification is more complicated than it could
have been imagined at the first stage of the project and there’s a strong need in
a special core description and management.

2 Background

At the moment AlgoWiki uses wiki engine, meaning that it is a set of web-
pages which are connected with direct links. This approach is simple, but it
has some shortcomings. There was no formal model describing relationships and
dependencies at the first project stage, so it was not represented by some kind
of data structure. Furthermore there’s no system which would stick problems,
methods, algorithm and implementations together, nothing takes care of the key
data when it is getting changed. If webpages are only connected with direct
links, when accidental changing mistakes with links can lead to disorders. On
long term basis mistakes are inevitable, just because of human factor. This is
already enough to call the approach not sustainable, but things become even
more confusing and easy to mess up with, if the website wants to support sev-



Advancing AlgoWiki Open Encyclopedia 3

eral languages and, in fact, it is planned to cover as many languages as possible.
AlgoWiki is also planned to be reliable scientific source of information, so other
people can refer to it in their work. But referring by just leaving the link is not
reliable enough, because there is no guarantee that after the site was edited the
original referred page would be accessible. The other problem of this approach is
that it becomes less effective as the website grows in size. The lack of systematic
strategy becomes more critical as more and more webpages are added to the
website, because it starts getting more difficult to operate.

Most of these issues can be tackled with advanced wiki engines, but there’s
a key reason to follow another way.

As soon as the idea to generate a Top500 like dynamical performance rank-
ings regarding any available object model slice (problem, method or a group of
methods, algorithm or a set of algorithms) together or in separate with hardware
details appeared, it became obvious that AlgoWiki needs to change its engine
to make efficient access to the object descriptions [3].

3 Proposed Approach Principles and the Graph Model of
Algorithm Classification

The structure of original algorithm classification model could be imagined as
a forest, where every single tree represents problem level, branches represent
methods and optionally their subtypes, then thinner branches are algorithms
and possibly algorithm subtypes. Finally, the leaves of these trees stand for
implementations and there can be more than one leaf at the end of each last
branch. In fact the woods are going to be very leafy, because most algorithms
have a lot of implementations and it is planned to include in the model as many
of them as possible.

But as it was mentioned earlier, it appeared that a same method can be used
to solve different problems. For example Breadth First Traversal can be used
for different purposes like detecting cycles in undirected graph or finding if it is
possible to travel between two nodes in a graph. So many to many relationships
are also possible in the system, so the forest should be tropical, with lianas
hanging around and connecting trees together.

Hopefully this analogy helps understanding the structure, but it is not correct
to call this model a tree, because some vertices are allowed to have more than
one parent node, so the graph may contain loops. But apart from that the graph
shares some common features with the tree, because it has a root, a node which
exists only for technical purpose to be a parent for problems, starting vertex
of the problem level objects, connected unrelated parts together and making a
single connected graph.

On the problem level of classification, the nodes can represent single prob-
lems, their subtypes, categories or even a subject of problems, for example “Al-
gebra Problems”. Root vertex is formally a part of the problem level and can
be called as “All problems”. Methods and Algorithms can have subtypes as well



4 A. Popov et al.

as problems. Implementations due to the fact that they are leaves, cannot have
any subtypes or any kind of further extensions.

In this, we can built a formal model of objects relationship (Fig. 1).

Fig. 1. Acceptable parent-child relationships

The model is quite flexible and anything is possible, except the following
restrictions applied to all parent-child relationships in the model:

– The child node must have the same level as the parent node or lower. Problem
level is meant to be the highest and, obviously, implementation level is meant
to be the lowest.

– The parent for the Implementation level vertex must be Algorithm level
vertex.

– The child node of the root must be a Problem level vertex

The graph model solves the problem of the lack of system of the old approach,
because now the all relationships between key entities of the website exist not
only in the heads, but also in a formal model, which can be synchronized with
the AlgoWiki website and avoid accidental confusion with working with it in the
future.

This model is the main scientific contribution of the paper. There can be
various implementations and data structures developed, but they should all cover
the proposed schema.

4 Implementation

4.1 Choosing Data Structure to Represent the Model

This graph model was decided to be represented with relational database tech-
niques because of one simple key reason – all the benchmark data for all pre-
sented in AlgoWiki implementations are best managed with these techniques,
and it would be easy and reasonable to use the same approach to objects de-
scription when building object or hardware related rankings. At the same time
the relational database describes many-to-many relationships good, and in many
ways.

The reason why graph or other database approaches [4] are not attempted is
because AlgoWiki will have its Algorithms Performance rankings, lists of algo-
rithms, based on their linear and parallel properties, which is the fastest, which



Advancing AlgoWiki Open Encyclopedia 5

is more efficient and etc. It is easier to implement it with relational database
model. In addition, AlgoWiki algorithm classification model is too simple and
the graph itself is relatively small. There is no need in features of graph database
model, such as being able to deal with millions of vertices and edges and extreme
parallelism [5].

The PostgreSQL will be used in production mode probably, which is used to
store and manage the results of implementation runs for a number of algorithms,
based on different parallel technologies and run options.

Actually, the database implementation of AlgoWiki core was pushed by evolv-
ing need for linking the implementation run results with the AlgoWiki structure,
allowing creating various ranking slices[3]. Authors find two real ways of future
problem solution.

The first is based on development of MediaWiki interface, in this case every
time when an on-the-fly ranking is built, the ranking side query has to connect to
the Wiki first, extracting the needed data, and run a query in its own database
then. Another option is to have a duplicate object description in the database
of the ranking, refreshed by schedule.

The second way has an idea of centralized AlgoWiki core management tool,
based on database object descriptions. In this case, both Wiki and the ranking
get the structure information out of that utility. The paper discusses the possible
way of following this second way.

4.2 Relational Database Possible Model

Problem, method, algorithm and implementation are the four different levels of
elements existing in the AlgoWiki algorithm classification (Fig. 3). Inside the
proposed database model they all are treated as the same entity, which is called
Object.

The Object table is the heart of the database schema and it lists all the
problems, methods, algorithms and implementations, giving each of them unique
identifier, Object ID. This identifier plays important role as a primary key for
Object and foreign key for several other tables, but it can be used for external
purposes. For example, trusted apps or resources can reference a certain prob-
lem, method, algorithm or implementation by using its unique identifier in this
relational database.

The fact that Object instances must be one of four different types, i.e. prob-
lem, method, algorithm or implementation is represented with the aid of Level
table, which lists all the four levels of algorithm classification and Object table
refers Level table with a foreign key, Level ID.

Object entity has many-to-many relationship with itself, so there is a sepa-
rate table Object has Object which describes all the parent-child relations. This
table stores a pair of identifiers for parent and child objects, which are essential
attributes, but it may be useful for technical purpose to store who and when
created the connection as well and some tables would have similar attributes
with similar technical purpose.



6 A. Popov et al.

The table Object Fixing is used to store the identifiers of those objects, that
are being edited at the moment, and will not be available for editing.

Fig. 2. Relationships between Object, Level, Object has Object and Object Fixing
entities

This is necessary to prevent collisions, occurring when two people simulta-
neously edit the same object or one started editing the object before the other
finished editing and saved his changes. The alternate way of achieving it was
having a boolean flag attribute in the Object table, but this option was denied,
because among hundreds of objects only few will be edited simultaneously, so
there is no point in spending extra memory capacity on storing lots of “false”
values. It is more sensible to store the list of those few objects.

Apart from Level and Object, the database model has two more entities.
Those are Language and NameType (Fig. 4). The idea is that any object has
different instances of the same attribute. For example an algorithm has a name,
but it may have a full name or a short name, and these names will be differ-
ent on different languages. All the names of different types and descriptions
on different languages are stored in separate tables Object has Name and Ob-
ject has Description respectively. If necessary, more tables like can be added, if
there will be a necessity in storing information about other object attributes.
The primary key of each attribute instance is a composite key of Object ID and



Advancing AlgoWiki Open Encyclopedia 7

Language ID foreign keys. Object has Name has NameType ID in addition, be-
cause there are different types of names. Many algorithms or methods may have
many names on many languages, but the combination three identifiers is unique.

Fig. 3. Object, Language and NameType entities and three more object-owned at-
tribute entities which depend on their combinations

The table, Object has Webpage allows making objects related with existing
webpages. That can be useful to solve reference problem. As was earlier men-
tioned, AlgoWiki is planned to be used for scientific purposes, so additional
attention should be paid to make a better way to reference the resource in-
formation. Referring to an algorithm with a direct hyperlink may not be not
sustainable enough, because the algorithm is not attached to its webpage firmly
and after a series of website changes and fixes, the referred algorithm may be
deleted or moved to different page or something else can happen. But if instead
the unique identifier of the algorithm was used to refer to it, there would not be
such problem. In this case, if the algorithm webpage changed its URL address,
this change will be reflected in the corresponding row in Object has Webpage
table. Making things work as it was described may eliminate the chance that
someone would end up referring to an empty page which used to be the algorithm
old page for an instance.

As a result, the proposed relational database schema stores all the necessary
information about the formal graph model of AlgoWiki algorithm classification.
The schema is capable of scaling and adding new things, for example new lan-
guage or object-describing attributes. In addition, it creates new opportunities
for trusted websites or apps, which need using AlgoWiki structure data.



8 A. Popov et al.

4.3 Database Handling Algorithms

When the first version of the schema was created, it was uncomfortable and
confusing to insert some test data into the database by hand and it was very easy
to mess up with it, because the database is normalized. However, it is not a big
problem to automate the process with programmed tools, and normalization is
very helpful in increasing the queries running speed. There is another important
reason to create algorithms which is to make it easier to work with the database
in the way that would be safe for it. It is vital to preserve the data integrity, when
inserting or changing values in the database and prevent the data being orphaned
due to the object deleting in improper way. There are seven main algorithms,
which make all the essential validity checks for better creating, updating and
deleting data:

– Creating new object
– Creating a relationship between the object and another object

• Stating parent (adding new parent connection)
• Stating child (adding new child connection)

– Replacing the object’s parent
– Deleting the relationship between the object and its parent
– Relationships integrity check
– Erasing the object

The algorithms listed above ensure that the three restrictions of the graph
model of algorithm classification are followed, i.e. it eliminates the chance of cre-
ating illegal relationships, such as implementation being a parent of a problem,
for example.

The person who edits the graph model dose not actually edit the entire
graph. He only works with just one object, creates new one and sets its type and
relatives or picks an existing object and updates or removes it. When the object
is picked to be edited, a new row with its Object ID, current timestamp and the
username of the author is added to the Object Fixing table, which makes the
object blocked for anyone else to edit it, so there is no way two people make
changes for the same object at the same moment.

Another important notice is that in order to be executed, some algorithms
require the chosen object node to satisfy certain conditions. Database editor
is not allowed to delete objects if they have children. The reason is to avoid
making objects orphaned and creating gaps between nodes. Root is the only
vertex which does not have any parents and it would be strange if it did. Other
vertices must have at least one parent element. So in order to cut down a big
branch of the AlgoWiki “tree”, editors should cut off all the smaller branches
attached to the big branch first or maybe even start with shearing all the leaves,
if the smaller branches have children as well. Note that it is not expected that
the formal graph model will be built from scratch so badly, that large changes
will be required. The algorithms are designed to make small changes in it.

Another algorithm which has a limitation is Deleting the relationship between
the object and its parent. It is allowed to execute the algorithm only if the



Advancing AlgoWiki Open Encyclopedia 9

object has more than one parent. Obviously, all non-root objects must not be
left without any parents, so if there is only one parent, it cannot be deleted, but
instead, it can be replaced, which is basically deleting the old relationship with
parent and creating new one combined into a single transaction.

Creating a relationship between the object and another object algorithm does
not need any special conditions. It is always allowed to be executed, but there is
an important notice, that parent-child relationship can only be created if both
objects exist, i.e. those which exist in the Object table and have an associated
identifier. It is illegal to create relationships with non-existing objects. Building
graph model starts from a single vertex, the root. Then creating objects on
problem level and stating their parents, then adding “younger” vertices and
stating their parents and so on. Objects are added to the model one by one. And
the case than the child is stated is only possible when those nodes were added
earlier. So most commonly the person editing the object will create relationships
with parents, rather than with children.

Before looking on the algorithms with more details, it is important to recall,
how creating object and creating relationships between two objects are imple-
mented in the database. Creating the relationship is represented by adding a new
row with a pair of parent and child identifiers to Object has Object table, which
is the edge list of the graph model. There are two more attributes: Created time
and Created by to store secondary technical purpose information. In the same
time adding new row to Object table is not enough to create an object, with
exception for root vertex. In order to add the object to the graph model it has
to be connected with at least one other object, which would be its parent. So
stating the parents and children is an important part of creating new object.

Those algorithms were created with three assumptions being made. The first
one is that in the Level relationship Level ID and Level Name correspond in the
following way: 1 – Problem, 2 – Method, 3 – Algorithm, 4 – Implementation. It is
most likely to be, but it does not matter that much, just a notice in order to avoid
misconception of further algorithm descriptions, where comparison operators
were used. The second assumption is that the root object is a part of problem
level of classification, so its Level ID equals 1. And the third assumption is that
the root vertex has Object ID equals 1, which will be used by some algorithms
to identify root object among others.

Creating new object algorithm consists of the four major steps. The first one
is to state the classification level of the object, i.e. its Level ID. The second step
is to state the parents of the object. Unless the object is the root of the graph
model it is forced to have at least one parent node, to ensure that it would not
be an orphan. After one stating the first parent, the algorithm suggests adding
more parents. The next step is optional and it is adding child nodes relationships.
And finally, the last step is adding a new row into Object table and adding rows
into Object has Object table for each stated relationship, both actions form a
single transaction. The object instance must not exist without at least one edge
instance. In specific case if the Level ID of that object equals 4 or, in other words,
the object is an implementation, it has a different validity check which makes



10 A. Popov et al.

sure that the parent will be an algorithm level object and does not give a chance
to create any kids relationships or stating additional parent for implementation
object.

Creating a relationship between the object and another object algorithm is
similar to steps of the previous algorithm. Validity checks are identical, parent
Level ID must be lower or equal to the child Level ID and if the edited object is
an implementation (Level ID=4), its parent must be an algorithm (Level ID=3).
The outcome of the algorithm is a new row added to the edge list table.

Relationships integrity check algorithm traces the Object has Object tables
and the Object and for each object in the first table it looks at its relationships
with parents in the second table and checks whether its relationships follow the
restrictions or not, ensuring that all non-root objects have parent node. There
is no need in looking at both parents and children, because the relationship can
be checked if it is legal either way, so it is looking only at object parents, so
root object is skipped. The algorithm may not seem essential, because illegal
inputs are prevented by other algorithms, but who knows what can happen. At
the end of a day nobody wants to lose data integrity, so being extra safe might
be sensible. In addition, this algorithm may be used to indicate the error, if
something wrong turned out to happen.

Erasing the object algorithm includes, first of all, dropping all the rows from
Object has Object, where Child Object ID equals to the identifier of the object
which is going to be deleted. Then the row representing the object is removed
from Object table. It is important to do both. Just like it is not right to have
relationships with objects not existing yet, it is not appropriate to be related
with objects which no longer exist. So all edges connecting with parents are
erased first and then the node itself is removed, preventing the edge list table to
store the rubbish.

Implementing the following algorithms is beneficial, because the data within
the database will be protected and its adding, updating and deleting will be
much easier for people. Validity checks prevent the system from being damaged
by random errors caused by human factor, so it is no longer an issue. As a result
AlgoWiki ends up with a set of helpful algorithms.

5 Conclusion and Future Work

In fact, AlgoWiki just made the first steps towards its full potential. With the aid
of implementation of the brand new relational database schema and the set of
algorithms managing it AlgoWiki will be switched on the new engine. The seven
algorithms described earlier would be the basement for AlgoWiki own Content
Managing System (CMS). The new approach will allow everyone making changes
in the AlgoWiki Open Encyclopedia. It is obvious, that ordinary website visitors
will not be able to change the graph model, only trusted users will, so there are
going to be different types of permissions for different users. As a result, the
website preserves the good features of the wiki engine being synchronized to the



Advancing AlgoWiki Open Encyclopedia 11

formal graph model makes it significantly less vulnerable to random errors and
more capable of expansion without quality losses.

As an extension of AlgoWiki, it is planned to create algorithm performance
rankings [3]. The idea is to compare different implementations of different al-
gorithms, based on their various properties, such as time complexity, memory
efficiency and etc. Users will be able to filter the rating list, by displaying only
the implementations of certain algorithms or written on certain programming
languages or written for specific platform, allowing them to analyze and play
with data. It is most likely that the renewed Top50 engine [6] will be used as a
base for this service development.

In the same time, AlgoWiki is planned to be translated on many languages.
Although the knowledge of English is essential for people involved in IT sphere,
supporting many languages will make AlgoWiki more accessible for those, who
does not speak English well enough.

Summarizing everything, the lack of data organization, possibility of ran-
dom errors and some other the problems of the old version of AlgoWiki can be
solved by creating the formal graph model describing the relationship between
the instances of the four levels of algorithm classification. The graph model is
implemented in the form of normalized relational database. In addition, seven
algorithms helping manage the database have been developed. Although all the
accomplishments have importance on the basic level, a lot of work has to be done
in future and there are many ways AlgoWiki can be extended and developed.

References

1. Vl. Voevodin, A. Antonov, J. Dongarra: Why is it hard to describe proper-
ties of algorithms? In: Procedia Computer Science, Vol. 101 (2016). pp. 4-7.
https://doi.org/10.1016/j.procs.2016.11.002

2. AlgoWiki Open Encyclopedia. [Online]. Available: https://algowiki-project.org
3. A. Antonov, J. Dongarra, Vl. Voevodin: AlgoWiki Project as an Extension of the

Top500 Methodology. In: Supercomputing Frontiers and Innovations, Vol.5, No.1
(2018). pp.4–10. https://doi.org/10.14529/jsfi180101

4. P. Kostenetskiy and L. Sokolinsky: Analysis of Hierarchical Multiprocessor Database
Systems. In: Proceedings of the International Conference on High Performance Com-
puting, Networking and Communication Systems 2007 (HPCNCS 2007),. pp. 245-
251, 2007.

5. C. Pan and M. Zymbler: Encapsulation of partitioned parallelism into open-source
database management systems. In: Programming and Computer Software, 2015,
vol. 41, no. 6, pp. 350-360.

6. D. Nikitenko and A. Zheltkov: The Top50 list vivification in the evolution of HPC
rankings. In: Parallel Computational Technologies, vol. 753 of Communications in
Computer and Information Science (CCIS), pp. 14–26, Springer International Pub-
lishing AG, New York, 2017. https://doi.org/10.1007/978-3-319-67035-5/ 2


