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Abstract. Supercomputers are widely used to solve various computa-
tionally expensive tasks that arise both in fundamental scientific and
applied problems. However, the extreme complexity of supercomputers’
architecture leads to low real efficiency of their usage. This is aggravated
by the fast growth of massive involvement in the HPC area, which leads
to a significant increase in the number of users who do not have expe-
rience in developing efficient parallel applications. There are many tools
for analyzing and optimizing parallel programs, however, in our experi-
ence, they are used quite rarely. One of the main reasons for that is the
complexity of their proper use — it is necessary to understand which
tool should be used in current situation, how to use it correctly, how to
interpret results obtained with this tool, etc. Our project as a whole is
aimed at solving this problem. The main goal is to develop a software
package that will help users understand what performance problems are
present in their applications and how these problems can be detected and
eliminated using existing performance analysis tools. The first task that
arises in this project is primary mass analysis of the entire flow of su-
percomputer applications. Solving it will allow to promptly identify the
facts of inefficient application behavior, as well as give first recommenda-
tions on how to further conduct more detailed performance analysis. In
this paper, we describe the features of the software package subsystem
aimed at solving this task.

Keywords: High-performance computing · Supercomputer · Mass anal-
ysis · Parallel application · Supercomputer job flow · Efficiency analysis

1 Introduction

Nowadays many scientists from different academic fields need to solve compu-
tationally expensive tasks in order to obtain new results in their research. This
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important step often requires high-performance computing technologies due to
its extreme computational complexity, so the number of these tasks tends to
constantly increase. Therefore, more and more specialists start to use supercom-
puter systems for conducting their experiments, leading to a constant growth of
the HPC area [1].

But it is not enough just to use supercomputer systems for solving com-
putationally expensive tasks. It is necessary to learn how to efficiently utilize
provided supercomputing resources. Otherwise, the speed of conducting experi-
ments can drastically decrease. However, the practice shows that the efficiency
of using modern supercomputer systems is surprisingly low [2]. There are many
reasons for that, and two of the most important ones are the tremendous com-
plexity of modern supercomputers’ architecture and the lack of users’ experience
in developing efficient parallel programs. Since the architecture is getting even
more complex and the number of HPC users grows over time, the problem of
low efficiency of supercomputer usage is becoming increasingly important.

The efficiency of parallel applications has been quite extensively studied for a
long time, which led to the development of a big number of software tools aimed
at analyzing and optimizing the performance of parallel programs. Profilers,
tracing tools, emulators, debuggers — all these types of performance analysis
tools can be used to detect and eliminate different kinds of bottlenecks in parallel
programs leading to the efficiency increase.

Unfortunately, our experience of supporting large supercomputers like Lo-
monosov-2 and Lomonosov-1 systems (currently #1 and #3 in Russia [3]) shows
that such tools are very rarely used. We can assume two main reasons for this.
One of the reasons — high complexity of the proper use of such tools. The user
needs to choose a performance analysis tool suitable for his particular situation,
use it in a proper way and correctly interpret the obtained results. All these steps
can be quite difficult, especially for an inexperienced HPC user. And the second
reason is that users often do not even know that there are some performance
issues with their applications.

So, a solution is needed that will solve both of these problems. Our project
is aimed at developing a software package that will help users detect potential
performance issues in their applications and guide them through the proper
usage of existing performance analysis tools in order to detect and eliminate the
root causes of found performance issues.

The rest of the paper is organized as follows. Section 2 is devoted to the
brief description of the overall system being developed in this project. Section 3
describes the background as well as the related works developed by other sci-
entists. Section 4 contains the description of the proposed method for primary
mass analysis: subsection 4.1 describes the input performance data used in this
method, and subsection 4.2 explains what primary analysis results are provided
by the developed solution. The examples of using this method on real-life appli-
cations of Lomonosov-2 supercomputer are shown in section 5. Section 6 includes
conclusion and our plans for future work.



22 P. Shvets et al.

2 Overview of the Overall System

The main goal of the overall system that is being developed in this project is
to help supercomputer users to detect and eliminate performance issues in their
applications. In our opinion, in order to achieve this goal, the system must be
built according to the following main principles and requirements:

1. Mass user orientation. This system is aimed at users of any proficiency
level. For basic system usage, additional knowledge and training should not
be required; however, a user with a higher level of training or experience
should be able to obtain more detailed information with the level of detail
he needs.

2. Usage of existing performance analysis tools. A lot of successful work
has already been done by other researchers in studying particular aspects
of job performance, and we plan to apply this knowledge in our project,
using existing performance analysis tools whenever possible. Some examples
of such tools are shown in Section 3.

3. Active interaction with end user. Potential performance issues detected
by our software package may not always be absolutely correct or complete, so
we plan to develop a feedback mechanism which will enable users to explicitly
confirm (or adjust) the job analysis results. This will help us to increase the
accuracy of our solution.

4. Accumulation of gained knowledge. It is supposed to accumulate a
rather extensive knowledge base about real-life efficiency problems in differ-
ent types of applications, as well as their root causes and ways to eliminate
these causes. The presence of such a database will allow in the future, when
analyzing a new program, to find similar, already studied situations and thus
use the experience gained earlier.

Our proposed solution that is being developed consists of several important
parts. The first part is devoted to the primary mass analysis of the overall
supercomputer job flow, which enables us to detect basic performance issues
in the parallel applications running on this supercomputer. This part is done
automatically, without any user involved, since at this initial step users are not
aware of any issues in their programs. In this part we need to analyze every
running program and notify its owner (and/or system administrators, if the
situation is critical) in case we have found any bottlenecks that can potentially
decrease the program efficiency.

The next part is responsible for the detailed analysis of a particular program.
If a user wants to find out more information about performance of his program,
especially if any potential performance issues were found during the first part,
he will be able to start a particular type of detailed analysis (e.g. tracing of MPI
programs, analysis of memory efficiency or low-level analysis) for studying a
particular aspect of program behavior. In this case our software package should
guide the user through this process, helping in an automated way to choose
an appropriate existing analysis tool, use it properly and interpret the results
achieved with this tool. This part should be done in close cooperation with
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the user, because it allows to conduct an efficiency analysis that combines user
expertise and knowledge about his program as well as our experience in using
performance analysis tools. If obtained information is not enough, it should be
possible to start another type of detailed analysis.

The last part of our solution is aimed at analyzing the efficiency of the su-
percomputer as a whole. It is devoted to help system administrators detect and
solve problems similar to the ones studied in first two parts, but scaled up to the
level of the whole system. The main goal of this part is to analyze the efficiency of
the overall job flow, concerning the current configuration of the supercomputer.

In this paper, we focus mainly on the first part of the project — primary mass
analysis of the supercomputer job flow. The other parts are not yet implemented,
although they are under active development.

3 Background and Related Work

The fundamental problem to be solved by this project is the low efficiency of
supercomputing system usage as a whole and applications executed on these
systems in particular. As it was stated earlier, there is a lot of existing perfor-
mance analysis tools, but almost all of them are focused on studying only one
particular aspect of application behavior like the optimality of cache usage, MPI
efficiency, I/O analysis, etc.

At the same time, there are only a small number of studies designed to help
a user to understand this diversity of software tools and to conduct an inde-
pendent comprehensive analysis of possible problems in his applications. One of
such studies was the POP (Performance Optimization and Productivity) CoE
(Center of Excellence) Project [4, 5]. Its objectives are the closest to our project.
A competence center was created to help users from European organizations
to improve the efficiency of their applications. This center performs an audit
of user applications and offers methods for refactoring code to improve perfor-
mance. The major difference between our project and the described one is that
in the POP CoE Project all the work on study and optimization of applications
was performed manually by the Center’s experts. In our proposed project, it is
planned to develop a software tool suite that will help make this process more
automated (although less insightful) and available to the masses.

Furthermore, several software tools that allow to analyze different aspects of
application performance can be pointed out. For example, Valgrind package [6]
helps to perform a comprehensive study of different memory usage issues. It
has a core that performs instrumentation of binary files and records all of the
memory operations executed. This core functionality is then used by a number
of tools, each aimed at a particular type of memory usage analysis (heap profiler,
detection of memory-based errors, cache performance, etc).

The next package — Score-P [7] — is aimed at providing a convenient
unified access to several popular analysis tools like Scalasca [8] or Vampir [9].
This approach makes it easier for the user to analyze MPI or OpenMP programs.
Similar functionality is provided by the TAU Performance System toolkit [10].
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Among commercial solutions, the Intel Parallel Studio XE package [11] can be
mentioned. The tools from this package cover many aspects of program behavior,
however, this package stands out more on an abstract level and almost does not
assist a user in selecting tools suitable in his particular situation or in analyzing
the obtained results for the application being studied.

Since this paper is mainly focused on the primary mass analysis of the su-
percomputer job flow, related works in this area should also be mentioned. None
of the existing solutions described earlier can help a user to detect applications
with performance issues; they can be applied only if it is already known that
this particular application needs to be analyzed. To solve this problem, primary
analysis of each job in the supercomputer job flow should be performed. In prac-
tice, monitoring systems like Nagios [12] or Zabbix [13] are usually used for this
purpose in order to detect inefficient behavior of running applications. But such
systems do not perform any complex analysis of the collected performance data;
the main task of detecting suspicious programs lies on system administrators.

There are a number of studies aimed at performing related tasks more auto-
matically. For example, several studies are aimed at detecting abnormally ineffi-
cient behavior in computing systems using machine learning methods [14, 15]. A
good review of various systems for detecting bottlenecks and performance issues
in computing systems is provided in [16]. Another approach is based on detecting
abnormal behavior of a compute node, instead of analyzing application perfor-
mance data. Such approach is being studied in [17, 18]. Other works like [19,
20] are aimed at identifying patterns (or types) of applications, which helps to
better understand the structure and behavior of the job flow in general.

Our group in RCC MSU also conducts research of the efficiency of the su-
percomputer job flow. In [21] we propose a machine learning-based method for
automatically detecting abnormal jobs using system monitoring data. Another
approach called JobDigest [22] provides reports on dynamic analysis of perfor-
mance data for each application running on the supercomputer.

Many of these studies can be used for detecting particular types of possible
performance issues. But the goal of our project is to develop a global approach
that will help to integrate all this knowledge and use it for detecting root causes
of performance issues as well as providing recommendations on further detailed
analysis.

4 Developing Method for Primary Mass Analysis

This section is devoted to the description of the first part of the overall project —
primary mass analysis. Within this part, we want to detect potential performance
issues for every job in the supercomputer job flow, find out potential root causes
of these issues if possible, and make a set of recommendations for the user on
further analysis and elimination of these root causes. Such type of analysis is
primary and therefore should not be detailed, especially knowing the fact that
at this stage we do not have any information about the internal structure of
the analyzed program. Therefore, in almost every case it will be impossible to
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detect and eliminate all performance issues and root causes. So the major aim
of primary analysis is to set the direction of further analysis that should be
performed within the next part of the overall project devoted to the detailed
analysis of each particular application.

In order to implement this primary part, we need to collect the input data
on supercomputer job flow as well as develop methods for analyzing this data.
Further in this section, a description of these two major steps will be given. It
should be mentioned that these steps are platform-dependent, therefore currently
they can be directly applied only to the Lomonosov-2 supercomputer. But the
overall idea and the proposed method can be used in other supercomputer centers
as well.

4.1 Input Data Used in the Proposed Method

At the first step, we need to collect performance data on every job running on
the supercomputer. This data is usually collected by monitoring systems, since
they provide the most accurate and complete information about job behavior.
In our case, we use a proprietary system on the Lomonosov-2 system, but we are
planning to move to a more flexible and dynamically reconfigurable DiMMon
system [23] being developed in RCC MSU.

We collect all kind of job performance characteristics (provided by moni-
toring systems) like CPU load, load average, memory usage intensity (number
of cache misses per second, number of load and store operations per second),
network usage intensity (number of bytes or packets sent/received per second).
Since at this stage the main focus is on the mass analysis of the overall job flow,
and not on the fine study of a particular application, we do not need detailed
information on this application behavior during its execution. Therefore, we cur-
rently collect only integral values (minimum, maximum, average) of performance
characteristics.

In future, we plan to add more complex data for primary analysis. For ex-
ample, we want to use more “intellectual” data on job performance collected
by other analysis tools like anomaly detection system being developed in RCC
MSU [21]. Adding such data will help to provide more accurate primary analysis
and detect more types of possible performance issues. Another source of input
data that can be helpful at this part is the information about the state of super-
computer components during the job execution. For example, a network switch
failure can seriously slow data transfer for a number of running jobs, and high
overall load of the file system can decrease the intensity of job I/O. Therefore, the
information about such issues with software or hardware infrastructure should
also be analyzed in order to detect possible root causes of job inefficiencies.

It can be noted that the same input performance data will be used in other
parts of the overall project (e.g., for fine analysis of a particular program), but
in that case the data must be much more detailed, since integral values are
definitely not enough for deep analysis of root causes of performance issues.
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4.2 Results of Primary Analysis

After collecting performance data on every job, it is necessary to perform the
analysis step in order to obtain results that can be helpful for detecting and
dealing with potential performance issues. Primary analysis part provides two
types of results. The main results are obtained by rule triggering, and additional
information is provided by classes.

The first type of performance information that can be specified for each
job is based on classes. We have developed a number of classes that describe
different types of job behavior. For each job, it is decided whether it belongs
to a particular class or not. There are classes for describing 1-node and serial
jobs; highly communicative jobs that actively use Infiniband network; jobs with
behavior suitable for the supercomputer; jobs with low or high memory locality;
etc. Currently we have implemented 20 classes. Each job can simultaneously
belong to any number of classes.

Such kind of information allows to assess the behavior of the program in
general. This data can be useful to the user since it contains quite specific in-
formation about the job properties. For example, if a job belongs to two classes:
“memory intensive” and “low memory locality”, a user can understand that he
most likely needs to optimize memory usage in his program.

Information about classes can help to better understand the general behav-
ior of the job. But usually they alone are not enough to detect performance
issues and even more so to determine their root causes. For this purpose, we
have developed a set of 25 rules that are being checked for every job in the
supercomputer job flow. If triggered, each rule describes a particular potential
performance issue detected in the job behavior, as well as determines a set of
its possible root causes and recommendations on what further detailed analysis
should be performed.

Rules can be devoted to the study of various aspects of the program efficiency.
For example, there is a rule aimed at detecting issues when the execution of
MPI operations becomes the bottleneck. In this case it is necessary to optimize
the MPI part of the program, for which profiling tools like mpiP, HPCToolkit,
Scalasca or other tools can be used during the detailed analysis part. Another
rule describes a situation when the job underutilizes the computational resources
of a compute node due to a small number of active processes. In this situation,
the job performance can be possibly increased by using more processes per node.

All rules are divided into several groups based on the semantics of perfor-
mance issues being detected by these rules. Currently there are 9 groups of rules
that are aimed at detecting the following types of issues:

1. A hanged job. This group of rules is intended to detect the following
situation: the overall activity of a job is so low (concerning CPU load, GPU
load, memory and network usage intensity) that we can be sure that this job
is hanged or not working correctly.

2. Significant disbalance of workload. The group is devoted to any kind
of computational disbalance in a job, either in a compute node or between
different nodes.
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3. (for GPU-based jobs) Computational resources are underutilized.
Rules in this group are currently used to detect jobs that are heavily using
GPU, while CPU host is being almost idle.

4. Incorrect behavior / operation mode. This group helps to detect jobs
with strange behavior that normally should not appear (from a technical
point of view) — low job priority, high CPU iowait, etc. Such jobs appear
mostly due to the issues with supercomputer hardware or system software,
but in some cases they can be caused unintentionally by the end user.

5. Inefficient MPI usage. The group is quite extensive and includes different
kinds of rules. For example, one rule from this group evaluates network
locality (average distance between compute nodes used in a job); another rule
detects jobs with high intensity of MPI usage while showing low utilization
of compute nodes; other rule estimates the amount of system resources spent
on MPI part.

6. Inefficient size of MPI packets. Rules in this group help to detect a
particular problem associated with inappropriate size of MPI packages that
could lead to high data transfer overhead.

7. Serial-like jobs that are not well suitable for the supercomputer.
This group detects jobs that can be quite efficient overall, but they are not
well suitable for a supercomputer. It concerns, for example, serial jobs for
which it is probably more efficient to use other types of computer systems
like cloud systems. Rules in this group can also be useful for system adminis-
trators and supercomputer management, because such information can help
them better understand and control the structure of the supercomputer job
flow.

8. Suspiciously low intensity of using computational resources. Partic-
ular type of underutilization is also studied by rules from this group, which
try to detect jobs that show suspiciously low CPU/GPU usage as well as
being not communicative (almost do not use communication network).

9. Wrong partition was chosen. The group is used to catch jobs that were
launched in inappropriate supercomputer partition. This concerns, for ex-
ample, jobs that are running in a GPU partition but do not utilize GPU
devices at all.

All obtained primary results (information provided by classes and rules) is
made available to the supercomputer users. In our MSU supercomputer center,
we use the Octoshell system [24] to communicate with users. Octoshell is a
work management system that helps to manage all tasks concerning accounting,
helpdesk, research project management, etc. Using the Octoshell website, any
user of MSU supercomputer center can study analysis results obtained for his
jobs.

5 Evaluation of the Proposed Method

The pilot version of the proposed method for primary analysis was implemented
and is being evaluated on the Lomonosov-2 supercomputer. In this section we will
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describe some technical details of the working algorithm for performing primary
analysis, as well as show examples of using the implemented method on real-life
jobs.

The subsystem for performing primary analysis runs on a separate server
connected to the Lomonosov-2 supercomputer. This subsystem can be logically
divided into two parts: data collection module and analysis module. The data
collection module constantly awaits for a signal from a resource manager about
the end of a job execution via the HTTP POST protocol (technically there is
no big difficulty to analyze running jobs as well, this will be implemented in the
near future). After getting a signal, this module collects performance data from
the external source provided by the monitoring system, processes this data and
stores it in an internal PostgreSQL database.

This data is then used by the analysis module, which checks what classes
or rules are triggered for each job. The obtained primary results are then sent
using HTTP POST protocol to the Octoshell front-end. Flask web-server [25] is
used for supporting interactions between this subsystem and external modules
(external data sources, Octoshell front-end, etc).

It is worth mentioning the overheads brought by this subsystem. Since the
described implementation is running on a separate server, there is no application
performance degradation introduced by the primary analysis part. The only
source of possible overheads is the monitoring system collecting performance
data on the running jobs. Our experiments has shown that this data collection
process requires less than 1% of CPU load on compute nodes and less than
1% of communication network bandwidth under normal conditions, so overall
overheads are very low.

The example of the web page with primary analysis results for a particular
real-life job is shown in Fig. 1. Such page is available for every job executed
on the Lomonosov-2 supercomputer, so any user can analyze any his job he is
interested in.

The structure of this page is as follows. The upper left “Basic information”
block just shows the description of this job — job id, size and duration of the
job, status of its completion and name of used partition.

The most basic information on the job performance is provided in the upper
central “Thresholds” block. For this purpose, the average values of main per-
formance characteristics are studied. For each characteristic, the average value
is compared to manually selected thresholds and therefore marked as “low”,
“average”, “high”. Based on the thresholds in Fig. 1, we can understand that
generally this job seems to be quite efficient (normal CPU load, high load aver-
age and instruction per second (IPC) values), it does not use GPU at all as well
as does not put any load on a file system, but it does use Infiniband network for
MPI communication. Although such information is very general and does not
help to detect performance issues, it is still useful for understanding the overall
job behavior.

Further, in the upper right block the triggered classes are shown. We can
see that this job belongs to two classes which indicate that this job works ac-
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Fig. 1. Web page with primary analysis results for a selected job
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tively with the memory subsystem, but the memory access locality is quite low,
meaning that this job does not work efficiently with the memory. This kind of
information can already help the user to understand possible bottlenecks of his
job.

The main part of this page is the “Detected performance issues” block in the
bottom, where the information about triggered rules is shown. We can see that
5 rules apply to this job. The first rule shows that the wrong supercomputer
partition was chosen for executing this job, since this partition is for GPU-based
jobs but this job does not use GPU at all.

The second and third rules are aimed at detecting MPI-based performance
issues. Rule #2 says that this job uses MPI network quite intensively, but the
network locality (average logical distance between allocated compute nodes) is
low, meaning that the nodes are located far from each other, leading to possibly
significant MPI-based overheads. Rule #3 detects another possible MPI-based
performance issue of inefficient size of MPI packets. In this case the average size
of MPI packets is very small, which often leads to MPI-based overheads as well,
due to the network latency and big ratio of service data in MPI packets.

Next rule studies the utilization of compute nodes based on CPU load and
load average values. According to this rule, this job shows significant workload
disbalance, either within a compute node or between different nodes. This usually
leads to suboptimal job performance (processes with less work need to be idle
waiting for processes with more work) and can usually be optimized by balancing
the workload.

The last rule summarizes the information about memory usage provided by
two classes described earlier and gives more detailed description of what is the
supposition in this case and how this can be further analyzed.

Such kind of information can be very helpful to the user since it allows to
understand the major issues with the job and sets the directions for further
performance analysis.

6 Conclusions and Future Work

In this paper we describe our approach for performing primary mass performance
analysis of every job in the supercomputer job flow. This approach is intended to
help to automatically detect jobs with potential performance issues and notify
users about them, which is the first step necessary for finding and eliminating
the root causes of job performance degradation. The proposed approach is based
on analyzing the performance data provided by the monitoring system running
on a supercomputer. Using this performance data, a set of 25 rules is developed.
Each rule, being triggered for a particular job, describes a detected potential
performance issue as well as suppositions on its root causes and recommendations
for further analysis. Any user can study primary analysis results obtained for any
of his jobs. The pilot version of the approach for performing primary analysis is
implemented and being evaluated on the Lomonosov-2 supercomputer, showing
the correctness and applicability of the proposed idea.
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In the near future, we plan to add more input data for the primary analysis
like “intellectual” information on job performance or data on the state of su-
percomputer components during the job execution; this will enable more precise
and holistic primary analysis.

Further, we are going to start developing methods for performing detailed
analysis of a particular job (the second part of the overall software solution)
using existing performance analysis tools. This detailed analysis will be partly
based on the results obtained during primary mass analysis described in this
paper.
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