
Deceptive Level Generator

Adeel Zafar, Hasan Mujtaba, Mirza Omer Beg, Sajid Ali
Riphah Int. University and NUCES-FAST, Islamabad

Email: adeel.zafar@riphah.edu.pk, hasan.mujtaba@nu.edu.pk, omer.beg@nu.edu.pk, sajid.ali123@yahoo.com

Abstract

Deceptive games are games where rewards are designed to 
lead agents away from a global optimum policy. In this pa-
per, we have developed a deceptive generator that generated 
three different type of traps including greedy, smoothness and 
generality trap. The generator was successful in generating 
levels for a large set of games in the General Video Game 
Level Generation Framework. Our experimental results show 
that all tested agents were vulnerable to several kinds of de-
ceptions.

Introduction
Creating manual content for games is a time consuming 
(Togelius et al. 2010) and expensive task. Delegating con-
tent generation to an algorithmic process can save time and 
money. Procedural Content Generation (PCG) (Shaker et al. 
2010) is such a method, where the algorithmic process is 
used to create a large variety of content including levels, 
maps, textures, and weapons. The recent advancement in the 
field of PCG has seen the rise of two different types of algo-
rithms for the purpose of automatic generation: Constructive 
techniques and Search-Based techniques. With the construc-
tive technique, content is generated in a single pass without 
any further iterations. Constructive techniques (Shaker et al. 
2010) are a simple and fast means of content generation. By 
contrast, Search-Based techniques (Togelius et al. 2010) re-
generate the content in order to improve their quality. Those 
techniques mostly use an evolutionary algorithm or similar 
method for content generation.

In a recent study, author (Anderson et al. 2018) intro-
duced the concept of deceptive games. These games are de-
signed in a way to trap the agents or controllers playing the 
game. The motivation for designing these type of games is 
focused on a more broader aspect of designing difficulty or 
challenge in games for Artificial Intelligent (AI) agents. The 
study focused on providing a Video Game Description Lan-
guage (VGDL) (Schaul 2013) in the General Video Game AI 
(GVG-AI) (Perez et al. 2016) framework. In this paper, we 
have built on this idea and have created a deceptive generator 
that generates the deceptive levels for a large set of games in 
the GVG-AI framework. The deceptive generator generates

three different types of traps including greedy trap, smooth-
ness trap and generality trap. The experimentation results
highlighted the fact that the generated levels of the decep-
tive generator were challenging for different AI agents.

The remainder of the paper is organized as follows. In sec-
tion 2, we give some background and related work. Section
3 explains the strategy and algorithm for level generation.
Section 4 presents the experimental evaluation. Finally, we
conclude the paper in section 5.

Background

Procedural Content Generation

PCG is a technique of generating gaming content, includ-
ing levels (Dahlskog et al. 2014) (Adrian et al. 2013),
maps (Togelius et al. 2010), music (Jordan et al. 2012),
racing tracks (Kemmerling et al. 2010), weapons (Hast-
ings et al. 2009), and terrains (Frade et al. 2012) auto-
matically through some pseudo-random process. Though
PCG is not a silver bullet for game designers, it has been
widely used for Rogue-like games by Indie game develop-
ers. Automated content generation techniques can help In-
die game developers to limit the cost and time of devel-
opment which is showcased by successful games such as
No Mans Sky (https://www.nomanssky.com/), Binding of
Isaac (http://store.steampowered.com) and Faster than Light
(http://store.steampowered.com).

VGDL, GVG-AI and GVG-LG Framework

Video Game Description Language (VGDL) (Schaul 2013)
was designed by Stanford General Video Game Playing
(GVGP). VGDL is a simple, description language to define
a variety of 2D games. General Video Game AI (GVG-AI)
(Perez et al. 2016) framework is the basis for general video
game playing competition, where participants can create dif-
ferent agents and can test them against a variety of games.
General Video Game Level Generation (GVG-LG) (Khalifa
et al. 2016) track is built on top of GVG-AI. The framework
allows participants to create generators that can generate lev-
els for a set of different games. Initially, the framework is
composed of three sample level generators including ran-
dom, constructive and search based generators.



Deceptive Games
In a recent study (Anderson et al. 2018), the author intro-
duced the concept of deceptive games. These games were
designed in accordance to lead the agent away from a global
optimum policy. To showcase the vulnerability of game
playing agents, a number of deceptions were designed. Each
trap was focused on a certain cognitive bias. The results
showed that different game playing agents had different
weaknesses. In this paper, we have built on the existing work
and have created a deceptive generator. The deceptive gen-
erator generates multiple cognitive traps including greedy
trap, smoothness trap and generality trap. For the aforemen-
tioned problem, the GVG-LG framework was used and the
algorithm was successful to generate a variety of traps for a
large set of games.

Method
Classification of Games
In order to implement deceptions in the game set of GVG-
LG framework, we have thoroughly analyzed all the 91
games. The initial step of exploring all games exhaustively
was important as we had to limit the games, where our im-
plemented deceptions would not make some sense. While
exploring the games of the GVG-LG framework, we identi-
fied that there are some games perfectly correspond to our
deceptive algorithm including zelda, whakmole, and rogue-
like. There were overall 31 games that are relevant to our
deceptions and hence our algorithms give the best result on
that. All the rest of the games do not respond positively to
our deceptive algorithm. These games had problems such as
unplayability of levels, resource deficiency issues and lack
of requisite environment.

Deceptive Generator
The deceptive generator generates three different types of
traps including smoothness trap, generality trap, and greedy
trap. The overall generation work in four different steps in-
cluding initialization, greedy trap, smoothness trap and gen-
erality trap. Before explaining the details of the algorithm,
we would explain the concepts that are necessary to under-
stand the working of each algorithm. These concepts are as
follows:
• Game Description: This file specifies how the game is

played and all the interactions.
• Sprites: Sprites are the main game elements. They are de-

fined in the SpriteSet section of the game description file
(VGDL). In the SpriteSet section, sprites have a name and
a type and some parameter values.

• HashMap: The HashMap function returns a hashmap that
helps decode the current generated level.
Algorithm 1 extracts all the sprite data by the game object.

Further to this different ArrayLists have been filled by the
appropriate sprite type. In algorithm 1, (from line 1 to 3) are
responsible for extraction of sprite data, hash map and key
sets associated with each sprite type. The next phase of the
algorithm (from line 4 to 12) assigns each sprite with its type
and populates the ArrayList.

Algorithm 1: Fill Up ArrayList
1 SpriteData = currentGame.getAllSpriteData();
2 HashMap = currentGame.getLevelMapping();
3 KeySet = HashMap.getKeySet();
4 foreach key in KeySet do
5 TempArrayList = HashMap.get(key);
6 SpriteName = TempArrayList.get(spriteIndex);
7 foreach sprite in SpriteData do
8 if sprite.name == SpriteName and

sprite.TypeMatch then
9 ArrayList.Put(key);

10 end
11 end
12 end

Algorithm 2: Generate Greedy Trap
/* call Initialization Routine..

This routine would be called in
other traps. */

1 GRIDSIZE = 12 ;
2 gridChoice = generateRandom(1,2);
3 avatarPos = generateRandom(1,2);
/* Initialization Routine ends.. */

4 if gridChoice == 1 then
5 stripRow = GRIDSIZE/4 ;
6 foreach rows >= 1 and rows <= GRIDSIZE do
7 foreach cols >= 1 and cols <= GRIDSIZE

do
8 if rows = stripRow AND avatarPos = 1

then
9 while cols=keysLength and keyType

=avatar OR goal OR wall do
10 grid + = keyType.get()
11 end
12 end
13 else if rows < stripRow AND rows > 1

then
14 while keys.Type = resourceKeys

AND harmfulKeys do
15 grid + = keyType.get()
16 end
17 end
18 else
19 while keys.Type=resourceKeys do
20 grid + = keyType.get()
21 end
22 end
23 end
24 end
25 end

The first trap implemented in our generator is the greedy
trap. Greedy trap aims to maximize some immediate reward
and rely on the assumption that a local optimum would guide



them to the global optimum. We took this notion into con-
sideration and designed a greedy trap. Algorithm 2 incorpo-
rates the greedy trap. Initially, an initialization routine (from
line 1 to 3. Note that this routine would be called in other
algorithms as well) has been called to define the size of the
level. The algorithm then divides the level into two parts:
one slightly larger than the other. After dividing the level
into two parts, we place the items/sprites excluding harmful
sprites in the larger section of the level (from line 4 to 9). In
the narrow section of the grid, our algorithm places harmful
sprites along with collectible sprites to make the greedy trap
more effective.

Algorithm 3: Generate Smoothness Trap
/* call Initialization Routine */

1 if gridChoice == 1 then
2 medianRow = GRIDSIZE/2 ;
3 foreach rows >= 1 and rows <= GRIDSIZE do
4 foreach cols >= 1 and cols <= GRIDSIZE

do
5 if rows = medianRow and avatarPos=1

then
6 while cols=keysLength and keyType

= avatar OR goal OR wall do
7 grid + = keyType.get()
8 end
9 else if rows < medianRow then

10 generateRandomStrips;
11 while keys.type=collectibles do
12 grid+ =keyType.get();
13 end
14 end
15 else if rows > medianRow then
16 end
17 generateRandomStrips;
18 while keys.type=collectibles AND

harmful do
19 grid+ =keyType.get();
20 end
21 end
22 end
23 end
24 end

Smoothness trap exploits the assumption that AI tech-
niques rely on that good solutions are close to other good
solutions. This assumption could be exploited by using a
mechanism that hides the optimal solution close to bad so-
lutions. In algorithm 3, we have implemented the idea of
smoothness trap. Contrary to the greedy trap, in smoothness
algorithm, we divided the level into two segments. One seg-
ment of the level was implemented as a smooth path and
the other as a harsh path. The smooth path (line 6-9) has a
low level of risk and hence avatar is positioned close to col-
lectible and goal sprites. On the other hand, harsh or difficult
path (line 15 to 20) is implemented as a long path with both
collectibles and harmful sprites.

Algorithm 4: Generate Generality Trap
/* call Initialization Routine */

1 firstPart = GRIDSIZE/3;
2 secondPart = ((GRIDSIZE)-firstPart)/2;
3 thirdPart = (GRIDSIZE)(firstPart+secondPart);
4 gameLevel = getGameLevel();
5 foreach rows >= 1 and rows <= GRIDSIZE do
6 foreach cols >= 1 and cols <= GRIDSIZE do
7 if gameLevel=1 OR gameLevel=2 then
8 if rows=firstPart then
9 avatarKeys.get();

10 end
11 else if rows=secondPart then
12 collectibleKeys.get();
13 end
14 else if rows=thirdPart then
15 harmfulSprites.get();
16 end
17 end
18 else if gameLevel= 3 then
19 //Place harmful sprite with goal
20 end
21 end
22 end

Generality trap exploits the concept of surprise by pro-
viding a game environment, where a rule is sensible for a
limited amount of time. In algorithm 4, we have generated
the generality trap. It is worthwhile mentioning that in or-
der to execute a generality trap, the agent or controller has
to play at least three levels. The first two levels develop the
concept of the agent while the third showcases the surprise
element. The algorithm first calls the initialization function
and then divides the level into three parts (from line 1 to
3). After the initialization step, the algorithm works for each
level separately. If the level is 1 or 2, the algorithm would
keep harmful sprites away from goal sprites so that avatar
has no experience of combat and it should develop the con-
cept that fighting with harmful sprites is a useless activity.
However, when the 3rd or final level was being played, the
algorithm places the harmful objects in the vicinity of goal
object to surprisingly break the previously developed con-
cept.

Experimentation
In order to showcase our results, we have generated levels
for multiple games. The description of these games are as
follows:

• Zelda: The avatar has to find a key in a maze to open a
door and exit. The player is also equipped with a sword
to kill enemies existing in the maze. The player wins if it
exits the maze, and loses if it is hit by an enemy. Refer to
figure 1 for generated levels of zelda.

• CatPult: The main theme of this game is to reach the exit
door to win. The avatar cannot step on ponds of water,



Figure 1: The figure depicts Zelda game levels. From left to right: generality trap level 1, generality trap level 2, generality trap
level 3, smoothness trap and greedy trap (Note lower boundary is cropped).

Figure 2: The figure depicts Catapult game levels. From left to right: generality trap level 1, generality trap level 2, generality
trap level 3, smoothness trap and greedy trap.

Figure 3: The figure depicts Cakybaky game levels. From left to right: generality trap level 1, generality trap level 2, generality
trap level 3, smoothness trap and greedy trap (Note lower boundary is cropped).

Figure 4: The figure depicts DigDug game levels. From left to right: generality trap level 1, generality trap level 2, generality
trap level 3, smoothness trap and greedy trap.

however can jump over them using catapults. Each cata-
pult can be used only once. Refer to figure 2 for generated
levels of CatPult.

• Cakybaky: In cakybaky, you have to bake a cake. To do
this task, there are several ingredients that must be col-
lected in order and to follow the recipe. There are angry
chefs around the level that chase the player, although they
only care about their favorite ingredient, so only the ones
that prefer the next ingredient to be picked up are active at
each time. Refer to figure 3 for generated levels of Caky-

Baky.
• DigDug: The objective of this game is to collect all gems

and gold coins in the cave, digging its way through it.
There are also enemies in the level that kill the player on
collision. Refer to figure 4 for generated levels of DigDug.

• SolarFox: The main theme of this game is to collect all
the diamonds on the screen and avoid the attacks of ene-
mies. The brake of the spaceship controlled by the player
is broken, so the avatar is in constant movement. Refer to
figure 5 for generated levels of SolarFox.



Figure 5: The figure depicts SolarFox game levels. From left to right: generality trap level 1, generality trap level 2, generality
trap level 3, smoothness trap and greedy trap.

Table 1: Performance of controllers for generated levels.
Controllers Performance

Agents Algorithm Win Percent-
age

Normalized
Mean Score

Weakness Best Per-
forming
Game

Number27 Portfolio 52% 0.60 Smoothness Trap DigDug
thorbjrn MCTS 40% 0.71 Greedy Trap Zelda
OLETS Optimistic

Planning
40% 0.63 Smoothness/Greedy

Trap
CataPults

NovelTS Tree 28% 1.0 Greedy Trap Zelda
sampleRS Random 28% 0.96 Greedy Trap CataPults
sampleRHEA EA 28% 0.80 Greedy Trap CakyBaky
NovTea Tree 20% 0.40 Generality/Greedy

Trap
CataPults

CatLinux GA 20% 0.33 Generality/Greedy
Trap

CataPults

sampleMCTS MCTS 16% 0.45 Greedy Trap CakyBaky
sampleOneStep One State

Lookup
8% 0.13 All Zelda

The generated levels were tested on a wide variety of agents
including OLETS, sampleMCTS, sampleRHEA, sampleRS,
NovTea, NovelTS, Number27, sampleOneStep, CatLinux
and thorbjrn. Most of the agents were collected from the
GVG-AI competitions and some are advanced sample con-
trollers. The agent selection was based on the unique fea-
tures of their algorithms. Each agent was run multiple times
on each level generated by our deceptive generator. The re-
sults of the experimentation are shown in table 1. Note that
the agents are ranked according to their win rate and mean
score. In total, 250 levels were played by 10 different con-
trollers. No single algorithm was able to solve all the de-
ceptions. The Number27 agent was the most successful in
accordance with win percentage and the onesteplookahead
agent was the least successful of all. It is important to note
here that the majority of the agents performed well on zelda.
However, no agent was able to successfully play levels of
SolarFox. In addition, we can see from table 1 that all the
game playing controllers had a different weakness (general-
ity, smoothness or greedy trap).

Conclusion and Future Work
Deceptive games are designed to move agents away from
a global optimum policy. In this paper, we have created a

deceptive generator that generates different types of traps
including generality, smoothness and greedy trap. The gen-
erator was successful in generating a large variety of levels
for a set of games. In order to test our generator, we gener-
ated example levels for five different games including zelda,
catapults, cakybaky, solarfox, and digdug. In addition, ten
different controllers were tested. The results indicated that
each type of deception had a different effect on the perfor-
mance of agents. No single agent was able to solve all type
of traps. The best among all was Number27 and least of all
was onesteplookahead.

In the future, we plan to create more traps within our de-
ceptive generator. Preferable, for games where the included
three traps are not suited. Another important future step is
the creation of agents or controllers which can solve maxi-
mum traps posted by our deceptive generator.

Acknowledgment
We acknowledge Riphah International University for sup-
port of this research.



References
Anderson, D., Stephenson, M., Togelius, J., Salge, C.,
Levine, J., Renz, J. (2018, April). Deceptive games. In In-
ternational Conference on the Applications of Evolutionary
Computation (pp. 376-391). Springer, Cham.
Khalifa, A., Perez-Liebana, D., Lucas, S. M., Togelius, J.
(2016, July). General video game level generation. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference 2016 (pp. 253-259). ACM.
Perez-Liebana, D., Samothrakis, S., Togelius, J., Lucas,
S. M., Schaul, T. (2016, February). General video game
ai: Competition, challenges and opportunities. In Thirti-
eth AAAI Conference on Artificial Intelligence (pp. 4335-
4337).
Shaker, N., Togelius, J., Nelson, M. J. (2016). Procedural
content generation in games. Switzerland: Springer Interna-
tional Publishing.
Dahlskog, S., Togelius, J. (2014, August). A multi-level
level generator. In Computational Intelligence and Games
(CIG), 2014 IEEE Conference on (pp. 1-8). IEEE.
Adrian, D. F. H., Luisa, S. G. C. A. (2013, August). An
approach to level design using procedural content genera-
tion and difficulty curves. In Computational intelligence in
games (cig), 2013 ieee conference on (pp. 1-8). IEEE.
Schaul, T. (2013, August). A video game description lan-
guage for model-based or interactive learning. In Computa-
tional Intelligence in Games (CIG), 2013 IEEE Conference
on (pp. 1-8). IEEE.
Frade, M., de Vega, F. F., Cotta, C. (2012). Automatic evo-
lution of programs for procedural generation of terrains for
video games. Soft Computing, 16(11), 1893-1914.
Jordan, A., Scheftelowitsch, D., Lahni, J., Hartwecker, J.,
Kuchem, M., Walter-Huber, M., ... Preuss, M. (2012,
September). Beatthebeat music-based procedural content
generation in a mobile game. In Computational Intelligence
and Games (CIG), 2012 IEEE Conference on (pp. 320-327).
IEEE.
Kemmerling, M., Preuss, M. (2010, August). Automatic
adaptation to generated content via car setup optimization
in torcs. In Computational Intelligence and Games (CIG),
2010 IEEE Symposium on (pp. 131-138). IEEE.
Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbck,
J., Yannakakis, G. N. (2010, August). Multiobjective ex-
ploration of the starcraft map space. In Computational Intel-
ligence and Games (CIG), 2010 IEEE Symposium on (pp.
265-272). IEEE.
Togelius, J., Yannakakis, G. N., Stanley, K. O., Browne,
C. (2010, April). Search-based procedural content genera-
tion. In European Conference on the Applications of Evo-
lutionary Computation (pp. 141-150). Springer, Berlin, Hei-
delberg.
Hastings, E. J., Guha, R. K., Stanley, K. O. (2009). Au-
tomatic content generation in the galactic arms race video
game. IEEE Transactions on Computational Intelligence and
AI in Games, 1(4), 245-263.


