
Eliminating the Impossible: A Procedurally Generated Murder Mystery

Henry Mohr
hmohr@haverford.edu

Haverford College
Haverford, PA, USA

Markus Eger and Chris Martens
meger@ncsu.edu, crmarten@ncsu.edu
Principles of Expressive Machines Lab

NC State University
Raleigh, NC, USA

Abstract

Games that involve solving puzzles or mysteries often suffer
from low replayability once the solution is known. Procedu-
ral content generation has been used to aid with increasing
variance in game play, leading to a higher replay value. How-
ever, games that feature information that must be obtained
by the player present the additional challenge of tracking the
player’s knowledge and ensuring that it is possible for them
to finish the game. In this paper we present a detective game
with procedurally generated characters that pursue a range of
goals, including one that commits a murder. The player’s role
is to solve the crime by collecting evidence from the actual
game world as well as by interrogating the characters. Even
though some of the characters might be inclined to hide ev-
idence, our system guarantees that the player is always able
to solve the murder case. To demonstrate the capabilities of
our system we present a short example game that we have
implemented using our techniques.

Introduction
Gregory: “Is there any other point to which you would
wish to draw my attention?”
Sherlock Holmes: “To the curious incident of the dog
in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Sherlock Holmes: “That was the curious incident.”
From: The Adventure of Silver Blaze

Detective stories in the tradition of Sir Arthur Conan Doyle’s 
Sherlock Holmes are a cornerstone of today’s entertainment 
culture, including TV Shows such as Sherlock or Monk, 
movies like Murder on the Orient Express or the long run-
ning Nancy Drew series of books. There are also video game 
adaption of several of these stories, as well as stand-alone 
detective video games, such as L.A. Noire. One limitation 
of these games, though, is that they always present the same 
story or a slight variation thereof, making it trivial for a 
player to solve the game after the first play-through. For ex-
ample, in a faithful video game adaption of the Adventure 
of Silver Blaze, the curious incident of the dog in the night-
time would be less curious for a player once they learned of 
its significance, namely that the dog recognized the culprit 
and was therefore silent.

One approach taken by several video games to improve
variation and replayability is the procedural generation of
content (Hendrikx et al. 2013). This can range from creating
different maps the game is played on, variations of buildings
shown in the game world, or procedurally generated char-
acters with their own history (Adams 2017). The challenge
in providing procedurally generated content for a game is to
generate a wide enough range of outputs to be meaningfully
different, while preventing undesirable output from occur-
ring. For example, if a game generates a new maze for play-
ers to solve on every play-through, but the mazes are just
minor variations on the same basic layout, they will not pro-
vide much of a challenge to the players. On the other hand,
mazes that are literally unsolvable, because there is no path
from the start to the goal, must also not be generated.

The genre of murder mystery stories lends itself nicely to
procedural generation, because it follows a relatively fixed
general structure, but allows for variety within that structure.
In 1928 Willard Huntington Wright, using his pen name S.S.
Van Dine, compiled a list of 20 rules that detective stories
should follow (Van Dine 2015). Most of these rules are dif-
ferent aspects of the requirement that the murderer has to
be found by logical deduction, rather than psychic means,
trickery, or by accident. Owing to the time these rules were
written in, the so-called Golden Age of Detective Fiction,
they also recommend to avoid certain topics or techniques
that were over-used at the time, such as having a dog not
bark at night-time.

In this paper we present a detective game which utilizes
a procedural generation approach to generate a new crime
on every play through, and uses Dynamic Epistemic Logic
to represent facts and clues found by the detective. Our ap-
proach provides a range of different experience, by gener-
ating a set of different characters with different motivations,
one of which will commit the murder, but ensures that the re-
sulting crime is always solvable by the player. We will first
discuss some related work, including the underlying logi-
cal representation, then present our approach, followed by a
brief discussion of an example domain which consists of a
murder on a cruise ship. Finally, we will provide an outlook
on how this work can be expanded upon in the future.



Related Work
Since the basis for detective games lies with detective sto-
ries, much of our work draws from prior work on story
generation. It has been observed that plans and narratives
share several properties, such as consisting of a temporal
and causal ordering of actions, and planning can therefore be
used to generate stories (Young 1999). In such an approach
the author defines a goal for the story, and the planner will
assign actions to characters to achieve this goal. However,
Riedl and Young (2010) have noted that a pure planning ap-
proach does not account for the goals the individual char-
acters have, and have presented an alternative planning ap-
proach where each character’s actions have to serve a char-
acter motivation. Note that character motivations typically
play an important role in detective stories as the motive of
the murderer.

Another important aspect in detective stories is that of
character beliefs. In the beginning of the story, the detec-
tive, like the reader, is unaware of the murderer’s identity,
but the murderer often knows that the detective is looking
for them. Likewise, other characters may actually have ob-
served some aspect of the crime, but may have something
else to hide themselves. Ryan et al. 2015 describe virtual
characters that build mental models of the world in a muta-
ble way, i.e. they may misremember or forget parts of what
they know, or they may (intentionally) lie to other agents.
However, these lies are generated randomly and not in ser-
vice of some goal the character may have.

Because of the relatively formulaic structure of murder
mysteries, the idea of generating them has inspired a num-
ber of previous efforts. Green et al. (?) describe a system that
generated murder mystery adventure games from Wikipedia
articles about historical people. Stockdale (2003) presented
ClueGen, a procedurally generated murder mystery game in
which the player acts as a detective in a murder case. In
this game, the focus lies on characters’ relationships with
each other, which informs how they share or hide informa-
tion with the detective. Due to the uncertainty the player has
about information provided by the non-player characters, the
game provides the player with audio clues when a character
is lying to enable solvability. In contrast, our approach fo-
cuses on generating physical clues about the murder, with
some of the information related to them truthfully provided
by non-player characters, guaranteeing the case to be solv-
able. As Eger and Martens (2017a) have described, Dynamic
Epistemic Logic, which we will briefly discuss in the next
section, can be used to keep track of character knowledge in
stories, and what they have deduced about the story world.
In our game, we utilize this approach to track which options
the player has eliminated and to determine whether or not
they have enough evidence to arrest the murderer.

Dynamic Epistemic Logic
To formalize the deduction process of the detective, we use
Dynamic Epistemic Logic, the logic of changing knowl-
edge and beliefs (Van Ditmarsch, van Der Hoek, and Kooi
2007). In Epistemic Logic, beliefs are usually represented as
sets worlds that the different agents consider possible, called

Figure 1: A diagram of the system architecture

the appearance of the actual world to each agent. Dynamic
Epistemic Logic adds an action language that describes how
agents’ beliefs change over time by introducing new worlds
that they consider possible or eliminating those that they no
longer consider possible. There are several differen flavors
of Dynamic Epistemic Logic, of which we use one devel-
oped by Baltag (2002). It follows what Van Ditmarsch et
al. call the dominant approach, in which actions are repre-
sented in a similar way to states, where each action also has
an appearance to the different agents. In this particular fla-
vor it is also possible to have actions that agents only sus-
pect to happen, without any action actually occurring. Eger
and Martens also described a macro system and runtime en-
vironment, Ostari, that greatly simplifies writing epistemic
actions in Baltag’s logic and is available freely (Eger and
Martens 2017b). Our game is built on top of this system as
described in the next section.

Approach

We have built a system that generates playable murder mys-
tery stories based on properties of the different characters
and how the detective can obtain clues to narrow down their
search. These clues can be found either by examining the
environment, or by questioning the characters themselves.
However, some characters may be hiding a secret that they
have committed a different transgression, and will not share
information that would reveal that transgression to the de-
tective, unless the detective already knows about it. We track
the knowledge of the detective by using Dynamic Epistemic
Logic in Ostari, which allows us to determine when the
player has actually collected enough evidence to have a case
in court.

The game consists of several parts, shown in Figure 1.
Players interact with the game using a web browser that
connects to a Python web server that manages the game.
Upon initiating a session, the characters will be generated
by a Python script that generates an Ostari input file as de-
scribed below. This file is then executed by Ostari, resulting
in a murder and the corresponding clues, either in physical
form in the game world, or as observed by the characters.
During game play, Ostari manages the player’s beliefs and is
responsible for updating them with the information obtained
by the investigative actions taken by the player.



Character Generation
Each game session in our game starts with newly generated
characters produced by a Python module. This module uses
a template file, which contains the Ostari code with the ac-
tions for the particular game domain, but also has several
placeholder variables that will be filled in with the char-
acter information. A game domain defines character prop-
erties, each of which has a list of possible values. For ex-
ample, a property haircolor may have values blonde,
black and brown. For each character, we randomly draw
from these lists of possible property values until we obtain a
unique assignment of property values. This uniqueness con-
straint ensures that the murder is solvable, if each property
value can be observed and the detective can determine what
value the properties of the murderer have. Once the values
for the properties of the characters are determined, their as-
signment is converted to Ostari code and the appropriate
placeholder in the template file replaced with that code.

Generating the Murder and Clues
The generation of the murder itself, and therefore the clues
which the player finds, is handled by Ostari. The generated
characters act as players within an Ostari game, with access
to domain dependent actions for moving, waiting, murder,
witnessing events, and potential other crimes. These actions
are constrained by their motivation property, so NPC
agents will not take significant actions such as murder or
theft without an in-story reason. Character motivations pro-
vide goals for the NPC agents. Currently, agents take ac-
tions randomly until they have achieved their goals, but be-
cause actions other than movement are constrained by their
motivation, they can only take actions that will eventually
lead to their goals being achieved. Actions taken by NPC
agents can generate evidence, either in physical form, by e.g.
leaving a hair behind to indicate their hair color (which sets
the hairclue property of their current location to be their
haircolor), or by being witnessed by another character.
For example, if an NPC wanders around the game world
and observes the murder or parts thereof, they will have ev-
idence for the player that will help them determine the mur-
derer. However, not all NPCs will be forthcoming with the
information they have, as we will describe in the next sec-
tion. The game makes sure that the player can always have
enough evidence to solve the murder by initially creating ev-
idence in the location of the murder for every property of the
murderer, then deleting pieces of evidence if a character wit-
nesses the corresponding properties. This can be seen in the
code for the commitmurder and witnesshair actions,
as shown in Figures 3 and 4. This serves the goal of creating
a satisfying story, by reducing the chance that the evidence
will be trivially gathered into one place while maintaining
the solvability of the murder.

Solving the Murder
To solve the murder, the player investigates the locations
in the game and interviews the suspects to determine who
could have committed the crime. The player can search the
location they are currently at, question or observe the phys-
ical properties of a suspect in the same location as them, or

move between locations. The player can also accuse any sus-
pect who has not been ruled out as the murderer, although
the accusation will fail unless all other suspects have been
ruled out, i.e. the detective has enough evidence to bring the
case to court. Searching a room will always find any clues
in the room, whether they relate to the murder or to other
crimes. Suspects who know properties of the murderer will
tell the inspector upon being questioned, unless they have
the hidesecret motivation, which in-story signifies that
they a secret, such as being involved in another crime. How-
ever, if the inspector learns their secret (which is represented
in the mechanics by believing that the suspect’s secret
property has a specific value), and questions them after do-
ing so, they are willing to admit to their actions and will
share any information they might have. For example, if a
character stole something and saw the murderer in the pro-
cess, they will not be forthcoming during questioning be-
cause they want to hide their own crime. However, when the
detective searches the thief’s room they might find the stolen
property and be able to confront the thief, who will now
cooperate. In epistemic terms, the thief will cooperate once
the detective has knowledge of their crime, which is what is
tracked by Ostari. As the properties of the murderer and of
the suspects are revealed, the game uses Ostari’s belief sys-
tem to track the player’s knowledge of which suspects have
which properties, and who could or could not have commit-
ted the murder. The player may accuse a suspect at any point
during the game, but only if they have gathered enough ev-
idence to eliminate all other suspects, the accusation will
be successful, and the player wins. If the player accuses the
wrong suspect, or even if they accuse the actual perpetrator
of the murder but do not have enough evidence to uniquely
identify them as the murderer, the game ends with a loss for
the player.

To prevent the game from devolving into a matter of sim-
ply gathering as much evidence as possible, there is a limit
on the number of actions the player can perform. Once the
player runs out of time, the game also ends with a loss for
the player. Players therefore have to carefully plan where to
go and which information to gather.

User Interface
Our game is presented in the form of a web page. The user
is first presented with a short back story, and is then redi-
rected to the user interface shown in Figure 2. There they can
choose which action to perform by clicking the appropriate
link. Each action has a corresponding effect, such as a move
action moving the player character to a different location,
or an observational action providing the player with infor-
mation. This effect is reported to the player, but to simplify
the process of eliminating the impossible, our user interface
also provides a summary table of the information they have
obtained about the various suspects.

Results
In this section we will provide a short discussion of an ex-
ample scenario we have developed to demonstrate the ca-
pabilities of our approach. A scenario consists of a setting,



Figure 2: A screenshot of the browser-based interface provided by our game. The player can choose between the different
actions on the left, and will be told about the outcomes of these actions below. On the right side the user is presented with a
summary of the facts they have uncovered about the suspects as well as what they know about the murder and murderer.

which is presented in the back story at the beginning of the
game, character properties and motivations, potential goals,
and the corresponding actions the characters can perform.
Currently it is necessary that each property can be observed
in some way by the detective. Additionally, properties that
can be observed by NPCs can serve as evidence obtained
from questioning them.

Setting and Characters
For our example game we chose a cruise ship, the Enchanted
Princess of the Horizon, as the setting. As the back story in-
forms the player, one of the passengers on the ship has been
murdered while the ship is at sea and it is now headed for the
next harbor. The detective only has limited time (or actions,
in game terms) to determine the murderer, until the passen-
gers are allowed to disembark making it significantly harder
for the authorities to apprehend the culprit. The game is lim-
ited to a small area of the ship, consisting of a deck, a hall-
way, and the rooms of a small cast of NPCs, which are the
suspects. The NPCs are Sylvia, Valciane, Porter, Dorothy,
and William. Each character has two physical properties,
which are hair color (which can be blonde, black, or brown)
and height (which can be tall or short). Additionally, one
character has a valuable gem.

The initial motivations available in our scenario are hav-
ing a grudge against another NPC, and wanting to steal the
gem. Each of these two intentions is assigned to one of
the characters, who will then set out to perform the murder
and steal the game, respectively. At the conclusion of their
crimes, both of the characters obtain a new motivation of
hiding their secret, which makes them uncooperative during

questioning. However, the thief will cooperate if their theft
is uncovered by the player.

Action Encoding
As mentioned above, actions are written in Ostari. Figure
3 shows the code for the commitmurder action. The pa-
rameter p1 represents the murderer, whichis only known
to p1 themselves, i.e. all other characters will know that a
murder occurred, but not who committed it. The action en-
sures that the murderer has a grudge against the victim, pre-
vents edge cases such as the murderer killing themselves,
or the inspector committing the crime with appropriate pre-
conditions, performs the actual murder and places the evi-
dence. Additionally, a placeholder character called killer
is set up to have the same properties as the murderer. The
public(killer, p1) indicates that this information is
public to these characters only, but hidden from everyone
else (by default, properties are not known to any character).

As noted above, each murder places evidence for the mur-
derer’s height and hair color, but if another character is able
to observe one of these attributes, and the detective is there-
fore able to obtain this information by interrogating them,
this evidence is removed from the crime scene. Figure 4
shows the action of witnessing a character’s hair color. It has
preconditions that ensure that there was a murder, the char-
acter is alive/active and at the location of the murder and that
they or someone else don’t already know the hair color of the
murderer. It then removes the evidence indicating the hair
color from the murder location, by setting it to unknown
and updates the players belief with the telltruth state-
ment.



commitmurder(p1(p1): Suspects, victim: Suspects)
{

precondition (grudge(p1) == victim) or (grudge(p1) == unknown);
precondition eq(p1) != victim;
precondition eq(p1) != inspector;
precondition Forall p in Suspects: murderer(p) == False;
precondition (location(p1) == location(victim) or

(location(p1) == unknown) or (location(victim) == unknown));
precondition active(p1) == True;
precondition active(victim) == True;
murderer(p1) = True;
active(victim) = False;
print("$*$", victim, ":is:deadˆ$ˆ");
public (killer, p1) motivation(killer) = motivation(p1);
public (killer, p1) haircolor(killer) = haircolor(p1);
public (killer, p1) tall(killer) = tall(p1);
public (killer, p1) grudge(killer) = grudge(p1);
hairclue(location(p1)) = haircolor(p1);
heightclue(location(p1)) = tall(p1);
murderlocation(game) = location(p1);
motivation(p1) = hidesecret;
secret(p1) = murder;
...

}

Figure 3: The code for the commitmurder action. The ommitted code only contains output directives for the back story.

witnesshair(p1: Players, c: Colors)
{

precondition active(p1) == True;
precondition location(p1) == murderlocation(game);
precondition Exists p in Suspects: active(p) == False;
precondition murderer(p1) == False;
precondition Forall x in Colors: (eq(x) == unknown) or

(not B (p1): haircolor(killer) == x);
precondition Forall p in Suspects: ((murderer(p) == True) or

(Forall x in Colors: (eq(x) == unknown) or
(not B (p): haircolor(killer) == x)));

hairclue(murderlocation(game)) = unknown;
telltruth (p1): haircolor(killer) == c

}

Figure 4: The code for the witnesshair action.



Example Game
For an example play-through, the system generated the fol-
lowing characters and motivations:

• Sylvia is tall, has black hair, and has a grudge against
Porter.

• William is tall, has brown hair, and has the gem.

• Valciane is short, has black hair, and wants to steal
William’s gem.

• Porter is short, and has blonde hair.

• Dorothy is short, and has brown hair.

Note that the assignment of properties to characters is
unique, i.e. no two characters have the same values for all
properties. This means, if the detective finds evidence for
the murderer’s size and hair color, they can uniquely iden-
tify the culprit.

After the characters have been generated, they perform
actions according to their motivations:

• Valciane goes to William’s room and steals his gem, and
her motivation changes to hiding the fact that she stole the
gem.

• Sylvia runs into Porter in the hallway, and murders him.
Her motivation changes to hiding the fact that she mur-
dered Porter. Valciane is in the hallway, and witnesses the
fact that Sylvia has black hair (but not her height!).

This is where the player character comes in to investi-
gate Porter’s murder. To solve the case, they first observe
the body, and deduce that the murderer must be tall from
the angle of the wound. They then observe the suspects and
can already rule out Valciane and Dorothy, both of whom
are short. However, questioning the remaining two suspects
does not yield any information, because William does not
know anything about the murder and Sylvia wants to hide
her involvement. When questioning the exonerated suspects
the player is told that Valciane is hiding something, goes to
search her room and finds the stolen gem. When the player
questions Valciane again, she will tell them what she saw,
since her theft was uncovered and she no longer has any-
thing to hide. With this new information, the player is able
to determine that Sylvia is the murderer and bring her to jus-
tice.

Note that in another play-through of the game, the thief
may observe both properties of the murderer, or none at all,
or have another character, who has nothing to hide and is
thus more willing to cooperate, observe the murderer, re-
quiring the player to employ different approaches in how to
solve the murder. Additionally, while this sample scenario is
relatively simple, it is possible to add more properties and
motivations for the characters, resulting in more opportuni-
ties to hide and find information related to the murder.

Conclusion and Future Work
We have presented our approach to procedurally generated
murder mystery games, which works by generating char-
acters that are guaranteed to be unique, and the necessary

evidence to identify a murderer. In addition to physical evi-
dence our system allows other characters to observe the mur-
der and either share that information or intentionally hide it
to protect another secret they have. This means that solv-
ing the game once does not trivialize the game in the fu-
ture. Player knowledge is tracked using Dynamic Epistemic
Logic as implemented by Ostari system to determine when
they have collected enough evidence. We have also shown
an example game with a small number of properties, that
results in a moderate number of meaningfully distinct de-
tective stories. For future work, we want to build upon this
foundation to create a wider variety of scenarios, by adding
additional character properties and motivations.

While our characters only follow very basic motivations,
a possible future extension could give them more complex
goals, which would result in more variation. For example,
rather than having a grudge as the underlying motivation for
a murder, wanting the gem could also serve as the impe-
tus. A character with such a motivation would break into the
room in which the gem is held, and if the owner is present
would necessarily have to murder them to obtain the gem.
A challenge that needs to be addressed in this case is to en-
sure that exactly one murder happens when multiple char-
acters have motivations that might result in one. Such an
extension might also incorporate Ostari’s AI planning sys-
tem more deeply. Additionally, characters in our game might
conceal what they know, but they will never outright lie to
the player. However, lying of suspects is a staple of detective
fiction, and we are looking at ways to incorporate that into
our game. Rather than outright eliminating possibilities, as
the belief system does in the version of Ostari used by the
game, the detective would have to reason about the probabil-
ities of different scenarios. Determining when the detective
has successfully solved a murder in such cases remains a
problem for future work.

References
Adams, T. 2017. Secret identities in dwarf fortress. Working
Notes of the AIIDE 2017 Workshop on Experimental AI in
Games.
Baltag, A. 2002. A logic for suspicious players: Epistemic
actions and belief–updates in games. Bulletin of Economic
Research 54(1):1–45.
Eger, M., and Martens, C. 2017a. Character beliefs in story
generation. Working Notes of the AIIDE 2017 Workshop on
Intelligent Narrative Technologies.
Eger, M., and Martens, C. 2017b. Practical specification of
belief manipulation in games. Proceedings of the 13th AAAI
International Conference on Artificial Intelligence and Inter-
active Digital Entertainment.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) 9(1):1.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
balancing plot and character. Journal of Artificial Intelli-
gence Research 39(1):217–268.



Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, misre-
member, and lie. Proc. Experimental AI in Games 2.
Stockdale, A. 2003. Cluegen: An exploration of procedu-
ral storytelling in the format of murder mystery games. In
Proceedings of the AIIDE workshop on Experimental AI in
Games, volume 2.
Van Dine, S. 2015. Twenty rules for writing detective stories.
Booklassic.
Van Ditmarsch, H.; van Der Hoek, W.; and Kooi, B. 2007.
Dynamic epistemic logic, volume 337. Springer Science &
Business Media.
Young, R. M. 1999. Notes on the use of plan structures in
the creation of interactive plot. In AAAI Fall Symposium on
Narrative Intelligence, 164–167.


