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Abstract

In many video games, a wide range of non-playable charac-
ters make up the worlds players inhabit. Such characters are
often voiced by human actors and their accents can have an
influence on their perceived moral inclination, level of trust-
worthiness, social class, level of education and ethnic back-
ground. We use deep learning to train a neural network to
classify speech accents. Such a machine-learned tool would
provide game developers with an ability to analyze accent
distribution in their titles as well as possibly help screening
voiceover actors applying for a role. To make the approach
accessible we used a readily available off the shelf deep net-
work and commodity GPU hardware. Preliminary results are
promising with a 71% test accuracy achieved over two ac-
cents in a commercial video game.

1 Introduction
Modern video games often feature numerous non-playable
characters (NPCs) that populate the in-game world, con-
tributing to the atmosphere, gameplay and storytelling. Such
characters are usually available to interact with the player
and are frequently voiced by well-known actors (e.g., Martin
Sheen in Mass Effect 2 (BioWare 2010)). As in movies, dif-
ferent accents in the same language (e.g., English) contribute
to an ethnic, social and moral image of an NPC. Thus it is
important for game developers to be aware of and control
assignment of accents to in-game characters. Having a fast
and low-cost way of determining an accent of a voiceover
can help developers screen sent-in audition files or take an
inventory of accents within a development prototype.

In this paper we demonstrate how machine learning can
be used to automatically classify speech accents in video-
game voiceovers. The approach is designed to be accessible
to small-scale game developers and individual researchers
in the field of game studies. Specifically, we train an off-
the-self deep neural network on commodity hardware. The
network achieved a 71% test accuracy over American and
British accents in the commercial videogame Dragon Age:
Origins (BioWare 2009).

The rest of the paper is organized as follows. We formu-
late the problem precisely in Section 2, then discuss related
work in Section 3. We then present our approach in Section 4
and detail results of an empirical evaluation in Section 5. The

paper is concluded with a discussion of the current short-
comings and the corresponding future work.

2 Problem Formulation
The problem is mapping from an audio file containing
speech to an accent label from a pre-determined set. A file
is assumed to have a single speaker whose accent is consis-
tent throughout the file. We evaluate performance of such a
mapping by measuring its accuracy on a test set of files. The
objective is then to increase the test accuracy while keep-
ing the approach accessible to game developers as well as
researchers from different disciplines.

3 Related Work
In speech recognition Graves, Mohamed, and Hinton (2013)
used recurrent neural networks (Goodfellow, Bengio, and
Courville 2016) to recognize phonemes in the TIMIT
database (Garofalo et al. 1993). Other work in phoneme
classification in speech signals using convolutional neural
networks (CNN) (Palaz, Collobert, and Doss 2013; Song
and Cai 2015; Zhang et al. 2017) used logarithmic mel-filter-
bank coefficients and hybrid networks composed of a CNN
and a recurrent neural networks (RNN). Their primary task
is different from ours in that they are identifying phonemes
to recognize words as opposed to accents. Yet other work
on phoneme recognition (Hinton et al. 2012) highlighted
the importance of weight initialization when recognizing
phonemes. Once again the problem they were tackling is
substantively different from ours. Research by Espi et al.
(2015) of acoustic event detection emphasized the impor-
tance and feasibility of local feature extraction in detecting
and classifying non-speech acoustic events occurring, for in-
stance, in conversation scenes. This work is indirectly re-
lated to our current work as it does not label accents in a
conversation, however it can be combined with our approach
to detect and remove sections of the audio without speech.

Work has been done on detecting emotions in speech
through spectrograms (Huang et al. 2014; Badshah et al.
2017). While this is not the task we were trying to solve,
it is similar in its use of spectrograms as the input to their
neural network.

Recently we explored training a neural network on an ex-
isting (non-video-game) accent database and then used the



trained network to detect accents in audio files from a video
game(Ensslin et al. 2017). They thought that training on cu-
rated accent database would yield a better classifier. There
were two problems with their approach. First it required ac-
cess to a separate accent database. Second, their test accu-
racy was poor. Our approach is similar but trains on video-
game audio files directly and yields better test accuracy.

4 Our Approach
To keep our approach accessible to a broad set of game de-
velopers and researchers, we used a common off the shelf
deep neural network: AlexNet (Krizhevsky, Sutskever, and
Hinton 2012). This approach has yielded state-of-the-art re-
sults when classifying bird species using their song (Knight
et al. 2018).

4.1 Converting Audio to Images
As AlexNet was originally designed to classify images, we
converted audio files to spectrograms in a fashion simi-
lar to our previous work (Ensslin et al. 2017). Specifically,
each spectrogram consisted of four different image quad-
rants computed by Algorithm 1 as follows.

The audio file S gets partitioned intom parts ofw seconds
each (line 3). For each part sx, we apply the Fast Fourier
Transform to it, resulting in a sequence of amplitudes A
(line 4). We remove all amplitudes for frequencies below
fmin and above fmax (line 5). We then partition the remain-
ing frequency range [fmin, fmax] into b linearly (if Lf holds)
or logarithmically spaced segments (line 6). For each seg-
ment B(y) we sum the corresponding amplitudes into the
scalar ay (line 8). We then map ay to a spectrogram pixel
I(x, y) using a color mapping C (line 9). Optionally we take
a logarithm of the amplitude ay (if La is false).

Algorithm 1: Create spectrogram quadrant
input : S, fmin, fmax, w, b,Lf ,La, C
output: spectrogram image I

1 m←
⌈
|S|
w

⌉
2 for x ∈ {1, 2, . . . ,m} do
3 sx ← xth window from S
4 A← fft(sx)

5 A← A|fmax

fmin

6 B ←
{
linspace(fmin, fmax, b), if Lf

logspace(fmin, fmax, b), otherwise
7 for y ∈ {1, 2, . . . , b} do
8 ay ←

∑
A|B(y)

9 I(x, y)←
{
C(ay), if La

C(log(ay)), otherwise

Figure 1 illustrates the process on a simple piano-roll au-
dio file. The top-left quadrant of the image is produced by
setting both Lf and La to true and therefore uses linearly
spaced frequency-range segments B. The top-right quadrant
has La set to false and thus runs a logarithm on cumulative

Linear amplitude

Linear frequency

Log amplitude

Log frequency

Figure 1: A composite spectrogram of a piano-roll audio.

Figure 2: A composite spectrogram of a voiceover file with
an American accent.

amplitude ay before converting it to the RGB color via color
mapping C (which maps lower amplitudes to colder/blue
colors and higher amplitudes to warmer/red colors). The
bottom-left quadrant spaces frequency-range segments loga-
rithmically (i.e., Lf is set to false). Finally, the bottom-right
quadrant uses logarithmically spaced frequency-range seg-
ments as well as applies logarithm to amplitudes.

Each quadrant is a color image of the height of b pixels
and the width of m pixels. The resulting composite spectro-
gram thus has 2b rows and 2m columns. Figure 2 shows a
composite spectrogram of an actual videogame audio file.

4.2 Training and Testing the Network
Algorithm 1 converts a set of audio files {Sk} to a set of
spectrograms Ik. As the audio files increase in duration, the
width of each quadrant (m pixels) will necessarily increase
in order to keep the same temporal resolution. Since off the
shelf deep neural networks tend to require the input image
to be of a fixed size, we divided each audio file Sk into seg-



ments {Si
k} of up to s seconds. This ensures that the spec-

trogram maintains a temporal resolution of at least m
s pixels

per second of audio.
Our original dataset of audio files and their accent la-

bels {(Sk, lk)} thus becomes a dataset of audio segments
each of which inherits the accent label of the original file:
{(Si

k, lk)}. Once converted to spectrograms by Algorithm 1
these become {(Iik, lk)}.

To get robust results, and avoid overfitting the data, we
conduct the training and testing process in the standard fash-
ion with T independent trials. On each trial t, we split
the dataset {(Sk, lk)} into α (complete) audio files to be
used for training and 1 − α which are used for testing:
{(Sk, lk)} = St

train ∪ St
test with |St

train| = bα|{(Sk, lk)}|c.
Expressed at the level of spectrograms of audio segments
we have {(Iik, lk)} = Ittrain ∪ Ittest.

On each trial t, we train a neural network on Ittrain using
three hyperparameters: the number of epochs, the batch size
for stochastic gradient descent and the learning rate. Once
the networkNt is trained we freeze its weights and test it on
Ittest. The per-segment accuracy of the trained network is the
percentage of audio file segments for which the accent level
output by the network matched that in the test set:

Aper-segment
t =

|{(Iik, lk) ∈ Ittest | Nt(I
i
k) = lk}|

|Ittest|
.

The per-segment accuracy of the net is then averaged over
all T trials: Aper-segment = avgtA

per-segment
t .

We also calculate per-file accuracy. For that we run the
network on all segments comprising an audio file from the
test set and take the majority vote on the labels the network
produces.1 Thus we define Nt(Ik) as the majority vote of
the network’s classifications of each segment: Nt(I

i
k). Then

the per-file accuracy is defined as:

Aper-file
t =

|{(Ik, lk) ∈ Ittest | Nt(Ik) = lk}|
|Ittest|

.

As before: Aper-file = avgtA
per-file
t .

5 Empirical Evaluation
In this section we will present a specific implementation of
our approach and an evaluation of its performance on audio
files from a commercial video game.

5.1 Data Collection
We used voiceover audio files captured from Dragon Age:
Origins (BioWare 2009) — a game with a wide variety of
accents and characters.

The background music in the game was turned off so only
the speech is present. We tried to capture as many NPCs

1If an equal number of segments was labeled with the same ac-
cent then we break the tie between the labels in favor of the label
of the earliest such segment. For instance, if a five-segment audio
file is labeled by the network as [British, British, American, Amer-
ican, Spanish] then we break the tie between British and American
in favor of British. This method was used since we initially as-
sumed there are no ties, so we always select the first most frequent
segment-level label.

as possible and only one recording per NPC was used to
form our dataset. The audio files were separately labeled by
three individuals Each individual listened to each audio file
and labeled its accent. Then the multiple labelers compared
their labels and debated any differences until a consensus
was reached.2 This process resulted in 295 audio files such
that each file contained a single speaker labeled with a single
accent label: 147 with an American accent and 148 with a
British accent.

The audio files were from 2 to 40 seconds in duration.
Using a segment length of 3 seconds, we created a data set
{(Iik, lk)} of 1100 segment spectrograms. The majority clas-
sification average of this set is 51.1%; this means that if we
classified the data by selecting the label with the most ele-
ments we would classify 51.1% of the segments correctly.

5.2 Implementation Details
In our implementation of the approach we used the
audioread and fft functions in MATLAB to read each
audio file in, average the two channels of the clip and per-
form the Fast Fourier transform. The spectrogram was con-
verted to an RGB image using jet(100) colormap in
MATLAB. The composite spectrogram (four quadrants) was
then resized to 227 × 227 pixels for input to the network
using the imresize function in MATLAB, which uses a
bi-cubic interpolation method.

We used a version of AlexNet that is available for down-
load as a MATLAB add-on alexnet.3 We trained it with
the MATLAB neural network toolbox via trainNetwork
function using stochastic gradient descent with a learning
rate of 0.01 with a drop learn rate factor of 0.1. We ran all
experiments on an Intel Core i7 980X workstation with a
six-core 3.33 GHz CPU and 24Gb of RAM. It hosted two
Nvidia Maxwell-based Titan X GPUs with 12Gb of video-
RAM each. This allowed us to run two learning trials in par-
allel (one trial per GPU).

5.3 Single-accent Classification
Spectrograms for audio segments were divided into a
training set, used to train the network, and a testing
set. The training set contained 75% of the audio files
of each class, while the remaining 25% were used in
the testing set. We made sure that all spectrograms be-
longing to the same audio file are in the same set (i.e.,
∀k@i1, i2

[
(Ii1k , lk) ∈ Itrain & (Ii2k , lk) ∈ Itest

]
).

There were four control parameters we varied for the data
preparation and network training: the number of epochs and
the batch size which relate to the network training configu-
ration; the number of frequency filters b and the time win-
dow size w which determine the specification of the spectro-
grams. We did not know the best combination for the dataset
at hand so we conducted a parameter sweep. To reduce the
sweep time we factored the parameter space into a product

2If no agreement could be achieved then the audio file was ex-
cluded from the set.

3We used MATLAB for training because of the convenience of
parameter sweep and data analysis as well as access to an existing
code base.



of two subspaces: one defined by the number of epochs and
the batch size and the other defined by the number of fre-
quency filters and the time window size.

We then fixed a single pair of parameters from the second
subspace and tried all 4 · 5 combinations of parameters from
the first subspace. For each try we ran four independent trials
of training and testing, splitting the dataset into training and
testing partitions randomly on each trial. Test accuracy aver-
aged over the four trials defined the quality of the parameter
pair from the first subspace, given the fixed values from the
second subspace. We then picked the highest-quality param-
eter pair from the first subspace and, keeping it fixed, swept
the second subspace trying all of its 4 · 6 pairs. If the best
quality and the second-subspace parameters found matched
those found before, we stopped the process. Otherwise, we
picked another (untried) parameter pair from the second sub-
space and repeated the steps above.

This factored sweep can stop short of finding the global
optimum in the overall four-dimensional parameter space.
On the positive side, it is likely to be faster as it sweeps a
single two-dimensional subspace at a time. In our evaluation
the process stopped after 4 iterations, each consisting of two
subspace sweeps. Thus only 4·(4·5+4·6) = 176 parameter
combinations were tried in total (as opposed to 4 · 5 · 4 · 6 =
480 that would be required to sweep the original space).

Table 1: Control parameter space.

Parameter Values
number of epochs {10, 50, 100, 200}

batch size {3, 5, 10, 50, 100}
window size w {0.05, 0.025, 0.01, 0.001} seconds

frequency filters b {50, 75, 113, 227, 250, 280}

We ran four trials per parameter combination and reported
the average accuracy of the four trials. We found that the
best parameters were 280 frequency filters and window size
of 0.05 seconds, 50 epochs and a batch size of 5; these yield
a test accuracy of Aper-segment = 63.25± 4%.

We then locked in the control parameters listed above and
ran 10 additional trials. The resulting confusion matrix aver-
aged over the four trials is listed in Table 2, left.

File-level Labeling. We then examined test accuracy at
the file level. As described earlier in the paper file-level test
accuracyAper-file

t is computed by training the network to clas-
sify segments but then labeling the file with a majority vote
over the segments. For instance, if an audio file was split into
7 segments, and the network labeled 3 of them as American
accent and 4 as British accent, we would label the entire au-
dio file as British.

We re-ran the experiment, the best parameters for this run
were 250 frequency filters and a window size of 0.05 sec-
onds, 50 epochs and a batch size of 5, which yielded an av-
erage accuracy ofAper-file = 68±3.6%. We ran 10 additional
trials to compute the confusion matrix: Table 3, left.

Segment Duration. Given that some audio files were
shorter than 3 seconds, we also tried the segment duration

of 1 second. For per-segment accuracy, the best parameters
were 280 frequency filters and a window size of 0.05 sec-
onds, 50 epochs and a batch size of 5. These parameters
yielded an average accuracy of Aper-segment = 63.5 ± 3%
over four trials which is similar to that with 3-second seg-
ments. The corresponding confusion matrix (over additional
10 trials) is found in Table 2, right. For per-file accuracy the
best parameters were 75 frequency filters and a window size
of 0.01 seconds with a test accuracy of Aper-file = 71± 4.5%
averaged over 4 trials. The corresponding confusion matrix
computed over 10 additional trials is found in Table 3, right.

6 Current Challenges and Future Work
Humans may use certain speech features (e.g., the way the
speaker pronounces ‘r’) to identify accents in an audio file.
Those features are present only occasionally and thus short
audio files can be mislabeled by humans. Furthermore, hu-
man labelers can be inconsistent in their labels. Such prob-
lems with the dataset may reduce test accuracy. Future work
will scale up the number of human labelers as well as the
length of the files to produce a more accurate/consistent
dataset. We will also attempt to train a network for more than
two accents, including fantasy accents. We will also extend
the space of control parameter space to gain a better under-
standing on how they affect the accuracy of the network.

It will also be of interest to segment audio files in a
content-aware way (instead of fixed 1- or 3-second seg-
ments). Doing so may also allow the classifier to automati-
cally remove silent parts of an audio file and thus avoid dilu-
tion of dataset with meaningless data. Future work will com-
pare the spectrogram-based representation of an audio file
to mel-filter-bank coefficients (Palaz, Collobert, and Doss
2013; Song and Cai 2015; Zhang et al. 2017) as well as use
other neural networks such as VGG (Simonyan and Zisser-
man 2014).

Finally, measuring portability of a deep neural accent de-
tector across games as well as its sensitivity to background
music is a natural direction for future work.

7 Conclusions
Accent classification is an important task in video-game
development (e.g., for quality control and pre-screening
for voiceover auditions). In the spirit of reducing game-
production costs we proposed and evaluated an approach
for doing so automatically, via the use of deep learning.
To keep our approach low-cost and accessible to practition-
ers outside of Computing Science, we used a readily avail-
able off the shelf deep neural network and a standard deep
learning method. We evaluated our approach on a database
of voiceover files from a commercial video game Dragon
Age: Origins where the network achieved the test accuracy
of 71%. These results demonstrate a promise of using off
the shelf deep learning for game development and open a
number of exciting follow-up directions.
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Table 2: The confusion matrix for per-segment labeling. Left: 3-second segments. Right: 1-second segments.

Actual
Classified as British American

British 63.6% 35.3%
American 36.4% 64.7%

Actual
Classified as British American

British 64.3% 38.4%
American 35.7% 61.6%

Table 3: The confusion matrix for per-file labeling. Left: 3-second segments. Right: 1-second segments.

Actual
Classified as British American

British 67.4% 31.2%
American 32.6% 68.8%

Actual
Classified as British American

British 71.2% 29.1%
American 28.8% 70.9%

of Canada (SSHRC) via the Refiguring Innovation in Games
(ReFiG) project, the Alberta Conservation Association, the
Alberta Biodiversity Monitoring Institute, and Nvidia,.
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