
What’s the Worst Thing You’ve Ever Done at a Conference?
Operationalizing Dread’s Questionnaire Mechanic

Ian Horswill and Ethan Robison
EECS Department, Northwestern University, 2133 Sheridan Road, Evanston IL

ian@northwestern.edu, yikes.gov@u.northwestern.edu

Abstract
Dread (Barmore et al. 2005) is an award-winning tabletop
horror RPG that emphasizes storytelling. One of its innova-
tive mechanics is the use of a questionnaire for character de-
sign that helps players develop a personality and history for
their characters. Questionnaires vary for different scenarios
and characters, but always include “intrusive” questions such
as “why are you married if you aren’t in love?” or “what’s
the worst thing you’ve ever done to a loved one?” In this
paper, we discuss work in progress on AutoDread, an imple-
mentation of Dread-style questionnaires for video games.
The system presents human-authored questions and candi-
date answers to players to choose between, collecting the im-
plications of those answers in a character model. As impli-
cations are accumulated, the system uses a SAT solver to fil-
ter questions and answers that are inconsistent with character
facts established by previous questions.

 Introduction
Dread (Barmore et al. 2005) is a table-top horror RPG in the
recent tradition of “storygames” or “freeform” games, such
as Fiasco (Morningstar 2009) and Monsterhearts (Alder
2012), that deemphasize rules and stats in favor of freeform
improvisation (Stark 2014). It won the 2006 Ennie award
for Innovation, as well as being nominated in both the Best
Rules and Best Game categories.
 Dread introduces two novel mechanics. One is the use of
a Jenga tower in lieu of dice to determine outcomes of char-
acter actions. This provides a particularly visceral imple-
mentation of LeBlanc’s aphorism that drama = uncertainty
+ inevitability (LeBlanc 2005).

Dread’s other novel mechanic is the use of questionnaires
for character design. Scenarios are pre-authored by a host
(gamemaster) to have a designated set of character roles,
such as ship’s captain or camp counselor. Each character
role has a pre-authored questionnaire that is answered, in
character, by that character’s player before the start of the

game. The questionnaire helps the player design their char-
acter, establishing useful bits of backstory that can be used
as narrative hooks by both player and host to produce drama
and tension during gameplay.
 Questionnaires cover a range of topics: the character’s
motivations, capabilities and limitations, relation to the
overall plot, and relationships with other characters. Ques-
tionnaires always include so-called “intrusive” questions:
questions that get at issues characters would be reluctant to
disclose in real life, such as “who else knows you’re a
fraud?”
 In this paper, we discuss work in progress on AutoDread,
an electronic version of Dread-style questionnaires, suitable
for use in video games. The system works from a stock of
human-authored questions and potential answers, each
tagged with their logical implications. For example, a ques-
tion such as “How long has it been since you saw your
brother?” would be tagged with “has brother”. The answer
“Not since mom’s funeral” would be tagged “mother dead”,
while the answer “We watch the game every Monday night”
might be tagged “brother alive” and “loves brother”, or at
least “not hates brother”.
 This brings up one of the fundamental limitations of Au-
toDread: it can’t accept freeform answers from players, re-
quiring them instead to select from a specific list of human-
authored answers to the question. This allows the question-
naire to be machine-readable, at the cost of increased work
for the author and decreased player freedom.
 As the system asks the player questions, it accumulates
these implications, as well as other facts that follow from the
implications, to gradually create a model of the character
and their backstory. The system uses a SAT solver
(Horswill 2018) to automatically reject questions or answers
that contradict facts already established in previous ques-
tions and player-selected answers. At the end, it uses the

SAT solver to generate a specific, random, character model
consistent with the player’s answers.

Potential applications
AutoDread is an exploratory first-step toward making a gen-
erative interactive fiction system mimicking at least some of
the player experience of Dread. To be useful for an elec-
tronic game, the game would have to have sufficient gener-
ativity to make use of the formal character model. While it
might conceivably increase player engagement for them to
know their character had had a pet rabbit as a child, it won’t
affect the gameplay unless the game’s AI can somehow take
advantage of that knowledge.
 Alternatively, the system could be used as an adjunct to
existing tabletop games, either to help beginning players de-
sign their characters, or more likely to help GMs quickly
flesh out random NPCs that they need. The GM could use
generic questionnaires for merchants, innkeepers, etc., when
a given character types was needed. Or, since the system is
driven by a SAT solver, the system could generate answers
to the questions itself and simply present the finished char-
acter model to the GM.
 More generally, the notion of using a questionnaire as a
kind of user-interface to allow a player or GM to drive a
PCG system might find applications in other areas.

Questionnaire design
Questions, answers, and their implications are specified in a
human-authored text file. Questions are prefixed with Q:
and answers with A:. Implications for a question or answer,
if any, are given in a comma-separated list beneath their re-
spective question or answer. Questions and answers are
free-form text. Implications are given as atomic proposi-
tions (single tokens) or applications of predicates to terms,
expressed in ersatz English. For example:

Q: What could you have done to save your
brother's life?
 dead brother, family_guilt
A: Taken the car keys away
 alcoholic brother
A: Taken him away from dad
 abusive father
A: Made him move in with me to get him
out of the neighborhood
 brother_gang_member

Single-token facts such as family_guilt are atomic
propositions and multiword constructions such as dead
brother are predicate applications (i.e. dead(brother)).

Possible English surface realizations of predicates are spec-
ified as part of the predicate.
 The act of asking the question implies that the character’s
brother is indeed dead, and that the character feels some re-
sponsibility for it. It therefore forecloses any questions that
presuppose the brother is still alive or that the character is
an only child. The first answer, if chosen, further adds that
the character’s brother was an alcoholic, while the second
adds that their father was abusive. The third answer adds
that the brother was a gang member.
 The questionnaire can also specify a limited set of con-
straints and other axioms:

• Mutually exclusive: fact1, … , factn

At most one of fact1, … , factn can be true.
• Contradiction: fact1, … , factn

fact1, … , factn cannot all be simultaneously true.
• Unique: fact1, … , factn

Exactly one of fact1, … , factn must be true.
• conclusion <- premise1, …, premisen

Classical implication.
• conclusion <= premise1, …, premisen

A Horn rule with stable-model semantics (Gelfond
& Lifschitz 1988; Gebser et al. 2012). This differs
from classical implication in that it adds the con-
straint that the conclusion may only be true if one of
its Horn rules justifies it.

These are used to specify, for example, that a character must
have an “affliction” – some character flaw or other disabil-
ity, while preventing the character from being riddled with
multiple afflictions:

// Afflictions
Unique: insomnia, violent, asthma,
grief_stricken, ignored, tone_deaf,
bored, superstitious, bad_temper

Knowledge representation language
The questionnaire is a more author-friendly front-end to the
internal KR language used by the character modeling sys-
tem. Character models are represented in an order-sorted
logic with atomic terms: terms (arguments to predicates,
represented internally by strings) are atomic rather arbitrary
term expressions; they’re divided into sorts (data types); and
those sorts are ordered (types can have subtypes) with Entity
being the top sort. Predicates specify sorts for their argu-
ments: dead(𝑥𝑥) is limited to 𝑥𝑥’s of the Person sort.
 One of the goals of the system is to allow non-technical
authors to write questions and answers for the system. As a
result, we’ve been reluctant to add rules with explicit varia-
bles and quantifiers, such as would be found in Prolog

(Clocksin & Mellish 2003) or ASP (Smith & Mateas 2011)
to the system. Instead, we’ve added two simple higher-or-
der constructs that handle the limited use-cases that have
come up so far.
 The first of these is existential quantification over a sort.
If the author writes “dead father”, i.e. dead(father), that has
the usual semantics since father is a term. But if they write
“dead parent”, since parent is a sort, it means ∃𝑥𝑥 ∈
parent. dead(𝑥𝑥). A question or answer can therefore add to
the character model that they have a dead parent, without
having to specify which parent. The current language, how-
ever, does not have a syntax for specifying that all parents
are dead (apart from saying “not living parent” or explicit
quantified variables such as ∃𝑥𝑥. dead(𝑥𝑥) ∧ abusive(𝑥𝑥), i.e.
they have a dead, abusive parent.
 The other form of implicit quantification is the ability to
specify that one predicate generalizes another predicate.
There are three forms of generalization:

• 𝑝𝑝 generalizes 𝑞𝑞
∀𝑥𝑥 ∈ 𝑠𝑠. 𝑞𝑞(𝑥𝑥) → 𝑝𝑝(𝑥𝑥), where 𝑠𝑠 is the sort over
which 𝑞𝑞 is defined.

• 𝑝𝑝 strongly generalizes 𝑞𝑞
∀𝑥𝑥 ∈ 𝑠𝑠. 𝑞𝑞(𝑥𝑥) → 𝑝𝑝(𝑥𝑥), but also, 𝑝𝑝(𝑥𝑥) implies at
least one of the predicates that is strongly general-
ized by it must be true of 𝑥𝑥.

• 𝑝𝑝 negatively generalizes 𝑞𝑞
Asserts that ∀𝑥𝑥 ∈ 𝑠𝑠. 𝑞𝑞(𝑥𝑥) → ¬𝑝𝑝(𝑥𝑥).

For example, loves and hates are each generalized by
exists. So, if you love or hate someone, they must exist.
But living and dead are strongly generalized by ex-
ists, so if someone exists, they must also be living or dead.
Living and dead also negatively generalize one another,
so you can’t be both living and dead.
 To simplify the English parsing and generation, predi-
cates are currently limited to at most two arguments.
 We do not presently have an author-friendly syntax for
specifying new predicates or sorts inside the questionnaire
file. They’re currently defined in C# code.

Implementation
AutoDread is implemented in C# under the Unity3D (Unity
Technologies 2004) game engine. It uses the CatSAT logic
programming system for back-end inference. The KR lan-
guage is translated at run-time into CatSAT assertions and
character models are computed by solving for models of the
assertions.

Axiom compilation
Before the questionnaire can be administered, the infor-
mation in the questionnaire must be compiled into proposi-
tions and axioms in the SAT problem. Each potential fact
in the questionnaire, be it an atomic fact such as “insomnia”,
or a predicate instance, such as “likes alcohol” is mapped to
a proposition in the SAT problem. The system also gener-
ates implication rules for any generalizations or existential
quantifications over the predicate instances.
 Let 𝑝𝑝 be a unary predicate defined over sort 𝑆𝑆, and let 𝐷𝐷 ⊆
𝑆𝑆 be the set of arguments to 𝑝𝑝 that appear as facts in the
questionnaire. Then, to implement generalization, for each
𝑎𝑎 ∈ 𝐷𝐷, the system adds the rule:

 𝑞𝑞(𝑎𝑎) <- 𝑝𝑝(𝑎𝑎)

For each negative generalization 𝑛𝑛 and each 𝑎𝑎 ∈ 𝐷𝐷 it adds
the rule:

 ¬𝑛𝑛(𝑎𝑎) <- 𝑝𝑝(𝑎𝑎)

And for each strong generalization 𝑄𝑄 and each 𝑎𝑎 ∈ 𝐷𝐷, it
adds the rule:

 𝑄𝑄(𝑎𝑎) <= 𝑝𝑝(𝑎𝑎)

To implement existential quantification over sorts, for each
subsort 𝑆𝑆’ ⊆ 𝑆𝑆, and for each 𝑎𝑎 ∈ 𝑆𝑆’ ∩ 𝐷𝐷, the system adds the
rule:

 𝑝𝑝(𝑆𝑆’) <= 𝑝𝑝(𝑎𝑎)

CatSAT operates internally on clauses in conjunctive nor-
mal form, i.e. disjunctions of literals (propositions or their
negations). The system translates standard <- implica-
tions into single CNF clauses, i.e. 𝑞𝑞(𝑎𝑎) <- 𝑝𝑝(𝑎𝑎) is trans-
lated into the single clause 𝑞𝑞(𝑎𝑎) ∨ ¬𝑝𝑝(𝑎𝑎). However, <=
rules are more complicated, since they have the semantics
that the consequent can only be true if the antecedent of one
of its <= rules is true. A set of rules, such as:

 𝑞𝑞(𝑎𝑎) <= 𝑝𝑝(𝑎𝑎)
 𝑞𝑞(𝑎𝑎) <= 𝑟𝑟(𝑎𝑎)

is translated first into the biconditional 𝑞𝑞(𝑎𝑎) ↔ 𝑝𝑝(𝑎𝑎) ∨
𝑟𝑟(𝑎𝑎), which is then translated into its CNF form:

 𝑞𝑞(𝑎𝑎) ∨ ¬𝑝𝑝(𝑎𝑎)
 𝑞𝑞(𝑎𝑎) ∨ ¬𝑟𝑟(𝑎𝑎)
 ¬𝑞𝑞(𝑎𝑎) ∨ 𝑝𝑝(𝑎𝑎) ∨ 𝑟𝑟(𝑎𝑎)

Constraint directives such as unique: and mutually
exclusive: are directly supported by CatSAT, and so

require no preprocessing other than to map facts in the ques-
tionnaire to the internal SAT propositions used to represent
them.

Questionnaire administration
The core loop steps through questions, presenting them and
collecting answers. Questions and answers inconsistent
with the current model are eliminated without being pre-
sented to the user.
 The valid answers 𝑉𝑉(𝑞𝑞,𝐹𝐹) to a question 𝑞𝑞, given a set of
assumed facts 𝐹𝐹 is the subset of 𝑞𝑞’s answers 𝐴𝐴(𝑞𝑞), for which
the assumptions 𝐹𝐹, 𝑞𝑞’s implications 𝐼𝐼(𝑎𝑎), and that answer’s
implications are all consistent, i.e., they have a model:

𝑉𝑉(𝑞𝑞,𝐹𝐹) = {𝑎𝑎 ∈ 𝐴𝐴(𝑞𝑞): ∃𝑀𝑀.𝑀𝑀 ⊨ 𝐹𝐹 ∪ 𝐼𝐼(𝑞𝑞) ∪ 𝐼𝐼(𝑎𝑎)}

Here the model 𝑀𝑀 is found by invoking the SAT solver on
𝐹𝐹 ∪ 𝐼𝐼(𝑞𝑞) ∪ 𝐼𝐼(𝑎𝑎).
 The basic loop is then to accumulate a set of facts 𝐹𝐹 by
asking questions that don’t contradict 𝐹𝐹, adding any impli-
cations of those questions and answers to 𝐹𝐹:

foreach 𝑞𝑞 ∈ questionnaire {
 // Find the non-contradictory answers
 𝐴𝐴 = 𝑉𝑉(𝑞𝑞,𝐹𝐹)
 // Make sure there are enough of them
 if ⌊𝐴𝐴⌋ > 1 {
 present 𝑞𝑞 and 𝐴𝐴 to the user
 collect user’s answer 𝑎𝑎 ∈ 𝐴𝐴
 // Update the known facts about the character
 𝐹𝐹 = 𝐹𝐹 ∪ 𝐼𝐼(𝑞𝑞) ∪ 𝐼𝐼(𝑎𝑎)
 }
}
Find a character model 𝑀𝑀 such that 𝑀𝑀 ⊨ 𝐹𝐹
Display 𝑀𝑀 for user

The algorithm is fully implemented and running in Unity.

Annotated example run
To get a sense of the operation of the system, we give an
example run using a minimal questionnaire, which can be
found in the appendix. “Implications” gives the set of spe-
cific implications of the questions and answers (the set
𝐹𝐹 from above). “Also inferred” gives other propositions that
the SAT solver would determine to be true, but that don’t
appear in the set 𝐹𝐹:

Q: What’ll you have to drink?
A: Whiskey, on the rocks.
Implications: likes alcohol, simple tastes

Also inferred: not posh tastes, since that contradicts sim-
ple tastes.

Q: When you have trouble sleeping, what do you focus
on?
A: The last time my brother and I saw each other.
Implications: likes alcohol, simple tastes, insomnia,
brother exists, sentimental
Also inferred: since the character is inflicted with insom-
nia and they aren’t allowed multiple afflictions, the other
inflictions have been ruled out. Since they have been es-
tablished as sentimental, other mindsets such as being ar-
rogant have also been ruled out (this is not a realistic per-
sonality model, but it’s one of the axioms).

Q: What could you have done to save your brother?
A: Take him away from Dad.
Implications: likes alcohol, simple tastes, insomnia,
brother exists, sentimental, dead brother, dead brother,
family_guilt, abusive father
Also inferred: hates father, not brother living, guilt (from
family_guilt)

Q: What book do you read every year on the anniversary
of your father’s death?
A: King Lear
Implications: likes alcohol, simple tastes, insomnia,
brother exists, sentimental, dead brother, dead brother,
family_guilt, abusive father, narcissistic father
Also inferred: dead father. Note that an option involving
the father’s favorite book is suppressed here because the
character hates the father.

Q: Why are you the black sheep of the family?
A: I’m a fucking loser
Implications: likes alcohol, simple tastes, insomnia,
brother exists, sentimental, dead brother, dead brother,
family_guilt, abusive father, narcissistic father,
black_sheep, hates self

Q: How often do you see your family?
A: Never
Implications: likes alcohol, simple tastes, insomnia,
brother exists, sentimental, dead brother, dead brother,
family_guilt, abusive father, narcissistic father,
black_sheep, hates self, living family
Also inferred: since there are living family, but the
brother and father are dead, it knows there must be an-
other living family member

Finally, the SAT solver finds a model of the implications.
This fills in the gaps left unspecified by the player’s answers
to make a random character model consistent with the infer-
ences: the character has a mother, whom the character

neither loves nor hates; they have a pet; they’re gregarious,
frail, and religious.

Related work
We are not aware of any previous work on character PCG
using questionnaires. However, there is a sizable body of
work on SAT-based PCG in general using Answer-Set Pro-
gramming (Smith et al. 2012; Smith 2011; Nelson & Smith
2016). There have also been several attempts to generate or
otherwise model character personality and history. The
Sims 3 (Maxis 2009) used a rule-based system and a set of
81 different personality traits to model character behavior
(Evans 2009). Current versions of Dwarf Fortress (Adams
& Adams 2006) use a similar system. Versu (Evans & Short
2013) uses a general, declarative logic for character model-
ing.
 There has also been a significant amount of work on mak-
ing author-friendly languages for interactive fiction. Ingold
(2015), co-designer of Ink (Inkle 2013), has argued persua-
sively for the importance of IF scripting languages that al-
low writers to write their lines without having to learn pro-
gramming. Nelson’s Inform 7 (Nelson 2006a) is the most
widely used parser-based IF authoring system in the world.
Nelson argues that within the IF domain, English can be
used effectively as a declarative language (Nelson 2006b).
He also built a system, Prompter (Nelson 2013) to act as a
more author-friendly front-end to Versu.

Conclusion
AutoDread is a work in progress. At this point, we have a
working parser, inference system, and driver loop. The next
step is to build out a more substantive questionnaire, which
we’d like to do in conjunction with writers. Our hope is to
build a system that technophilic non-programmers can au-
thor for. Such users are often found in game development,
IF authoring, and table-top roleplaying.
 This will certainly involve extending the system. As
mentioned above, adding new predicates (and hence new
verbs) currently requires editing the underlying C# code, in
part because it requires giving the parser hints as to how to
translate between the internal form of the assertions and the
pseudo-English of the questionnaire. It would also be desir-
able to find natural English expressions for the higher-order
assertions about predicates, such as generalization. How-
ever, it’s unfair, or at least unrealistic, to ask naïve users to
learn the difference between the material implication of
classical logic and Horn clauses with stable-model seman-
tics, both of which are supported in the system.
 It may also be necessary to extend the expressiveness of
the system’s KR language. However, what types of

extensions are necessary are best determined by putting the
system in front of users.

Appendix: questionnaire used in the example
guilt <- family_guilt

// Personalities
Unique: gregarious, playful

// Mindsets - every character has one
Unique: nostalgic, arrogant, peaceful,
optimistic, sentimental, prepared, ob-
noxious, vulnerable, bossy, health_ori-
ented

// Afflictions
Unique: insomnia, violent, asthma,
grief_stricken, ignored, tone_deaf,
bored, superstitious, bad_temper

// Body types
Unique: athletic, frail

Mutually exclusive: simple tastes, posh
tastes

// QUESTIONS
Q: What'll you have to drink?
A: Whiskey, on the rocks.
 likes alcohol, simple tastes
A: A bottle of spring water, please
 posh tastes
A: A diet coke. I'm trying to watch my
weight.
 health_oriented, likes sweets
A: An ice-cold bottle of orange juice.
I'm parched
 likes sweets

Q: When you have trouble sleeping, what
do you focus on?
 insomnia
A: The last time my brother and I saw
each other
 brother, sentimental
A: The time I won a big game back in
high school
 athletic, nostalgic
A: What I'll say to my lover when I
make it back
 optimistic, lover
A: The serenity of mountain climbing

 likes outdoors, peaceful, athletic

Q: What do you have in your pockets?
A: My inhaler. I'm not in the best of
health.
 asthma, frail
A: My trusty-dusty pocket knife. You
never know when something (or someone)
will need cutting.
 prepared, violent
A: A battered paperback novel. Rule
number two: always have something to
read.
 prepared, likes literature
A: My lucky coin.
 Superstitious

Q: What do you miss the most about the
before times?
 nostalgic
A: All the people. It's lonely in the
wastelands.
 sentimental, gregarious
A: There used to be a lot more to do
around here. Everything is so boring
these days.
 playful, bored
A: My family. They were all killed in
the incident.
 mother dead, father dead, likes
mother, likes father, nostalgic,
grief_stricken
A: I had a dog. Now, I have nothing.
 pet dead, grief_stricken

Q: What do you think that you're better
at than you really are?
 arrogant
A: I like to think I'm pretty funny. No
one else seems to agree.
 obnoxious
A: I'm a really good singer! Probably.
 tone_deaf
A: I can weather any storm. As long as
it's not a metaphor for a difficult
emotional experience.
 vulnerable
A: I'm a talented leader; just, most of
the time, people ignore my guidance.
 bossy, ignored

Q: What could you have done to save
your brother's life?
 dead brother, family_guilt
A: Taken the car keys away
 alcoholic brother
A: Taken him away from dad
 abusive father
A: Made him move in with me to get him
out of the neighborhood
 brother_gang_member

Q: What book do you read every year on
the anniversary of your father's death?
 dead father
A: The bible
 religious
A: "Ender's Game". He loved it.
 loves father
A: King Lear.
 narcissistic father

Q: Why are you the black sheep of the
family?
 black_sheep
A: I married outside of our faith
 religious_family
A: I just have this temper
 bad_temper
A: I like the bottle too much
 alcoholic self
A: I'm a fucking loser
 hates self

Q: How often do you see your family?
 living family
A: Once a year
A: Once a week
 loves family
A: Never
 estranged_from_family

References
Adams, T. & Adams, Z., 2006. Slaves to Armok: God of Blood
Chapter II: Dwarf Fortress.
Alder, A., 2012. Monsterhearts, Buried Without Ceremony.
Available at: https://buriedwithoutceremony.com/.
Barmore, N. et al., 2005. Dread, The Impossible Dream. Available
at: http://www.tiltingatwindmills.net/.
Clocksin, W.F. & Mellish, C.S., 2003. Programming in Prolog:
Using the ISO Standard 5th ed., New York, NY: Springer.
Evans, R., 2009. AI Challenges in Sims 3. In Artificial Intelligence
and Interactive Digital Entertainment. Stanford, CA: AAAI Press.
Evans, R. & Short, E., 2013. Versu.

Gebser, M. et al., 2012. Answer Set Solving in Practice,
Gelfond, M. & Lifschitz, V., 1988. The stable model semantics for
logic programming. 5th International Conf. of Symp. on Logic
Programming, pp.1070–1080.
Horswill, I., 2018. CatSAT: A Practical, Embedded, SAT
Language for Runtime PCG. In AIIDE-18. AAAI Press.
Ingold, J., 2015. Adventure in Text: Innovating in Interactive
Fiction. In Game Developer’s Conference. San Francisco, CA:
UBM Techweb.
LeBlanc, M., 2005. Tools for Creating Dynamic Game Dynamics.
In K. S. Tekinbas & E. Zimmerman, eds. The Game Design
Reader: A Rules of Play Anthology. Cambridge, MA: MIT Press,
pp. 438–459.
Maxis, 2009. The Sims 3.
Morningstar, J., 2009. Fiasco, Durham, NC: Bully Pulpit Games.
Nelson, G., 2006a. Inform 7.
Nelson, G., 2006b. Natural Language, Semantic Analysis, and
Interactive Fiction.
Nelson, G., 2013. Writing for Versu, San Francisco, CA: Linden
Lab.
Nelson, M. & Smith, A., 2016. ASP With Applications to Mazes
and Levels. In N. Shaker, J. Togelius, & M. J. Nelson, eds.
Procedural Content Generation in Games. Berlin, Heidelberg:
Springer, pp. 143–158.
Smith, A., 2011. A Map Generation Speedrun with Answer Set
Programming. Expressive Intelligence Studio Blog. Available at:
http://eis-blog.ucsc.edu/2011/10/map-generation-speedrun/.
Smith, A.M., Andersen, E. & Mateas, M., 2012. A Case Study of
Expressively Constrainable Level Design Automation Tools for a
Puzzle Game. In International Conference on the Foundations of
Digital Games. Raleigh: ACM Press.
Smith, A.M. & Mateas, M., 2011. Answer Set Programming for
Procedural Content Generation : A Design Space Approach. IEEE
Transactions on Computational Intelligence and AI in Games,
3(3), pp.187–200.
Stark, L., 2014. Pocket Guide to American Freeform, CreateSpace
Independent Publishing Platform.
Inkle, 2013. Ink.
Unity Technologies, 2004. Unity 3D.

	Abstract

