
Towards Automatic Extraction of Tile Types from Level Images

Sam Snodgrass
Northeastern University

Boston, MA USA
s.snodgrass@northeastern.edu

Abstract

In recent years, the use of machine learning for procedu-
ral content generation (PCGML) has been growing. These 
PCGML approaches require a training corpus of levels, of-
ten annotated or represented in some abstracted way. Due to 
the manual effort required to annotate or translate a sufficient 
training corpus, most PCGML techniques have only been ex-
plored in a handful of domains. In this paper we take a step 
towards addressing this core issue of PCGML by presenting 
an unsupervised method for automatically extracting a rep-
resentation for a level domain, given only images of the lev-
els. This approach is a move towards making PCGML more 
broadly applicable by reducing the effort required to create 
a training corpus. We evaluate our approach by comparing 
the automatically extracted tile representation against exist-
ing PCGML training level corpus representations.

Introduction
Procedural content generation via machine learning 
(PCGML) (Summerville et al. 2018) is a growing field of 
research that automatically extracts models from existing 
game content, and uses those learned models to generate 
new content. These approaches rely on a corpus of training 
data from which to estimate their models. However, the 
creation of such training data (often through manual anno-
tation or domain-specific scripts) can require a large time 
commitment as well as expert domain knowledge in order 
to reason about the representation of the data for a given 
domain. This requirement of annotating training data is in 
direct opposition to one of the core benefits of PCGML: 
reducing the amount of domain knowledge that must be 
encoded by users. Subsequently, most PCGML approaches 
have only been tested in a handful of domain where training 
data is readily available (e.g., Super Mario Bros. (Guz-
dial and Riedl 2016; Snodgrass and Ontañ ́on 2016b; 
Summerville and Mateas 2016), The Legend of Zelda (Sum-
merville and Mateas 2015), and Lode Runner and Kid 
Icarus (Snodgrass and Ontañ ́on 2016b)).

In this paper we begin research into relieving PCGML 
techniques’ reliance on manual annotations and domain spe-
cific knowledge from users. We present a proof of concept 
unsupervised approach for extracting a representative set of

tile types from video game level images, which can then be
used to represent levels from the given game. Our unsuper-
vised approach attempts to find groups of functionally simi-
lar objects using only positional and structural level informa-
tion. Our goal is to further increase the usability of PCGML
techniques and broaden the applicability of such techniques
to new domains by reducing the amount of domain knowl-
edge required to explore a new domain.

The remainder of this paper is organized as follows: first,
we discuss the relevant related work; we then present our
approach for extracting tile sets; next, we present our ex-
perimental set-up, including the domain in which we test
our approach and how we evaluate our approach; then we
present and discuss our results; finally, we close by drawing
our conclusions, and suggesting avenues of future work.

Related Work
Most of the current PCGML techniques for level gener-
ation techniques require annotated or abstracted training
levels, often derived from level images (Summerville and
Mateas 2016; Snodgrass and Ontañón 2016b; Summerville
and Mateas 2015). A notable exception is Guzdial and
Reidl’s (Guzdial and Riedl 2016) approach which leverages
a spritesheet and gameplay videos in order to automatically
identify structures and construct its own internal graphical
representation of the levels. This is an interesting approach
that is able to leverage its representation to create remark-
able results. Additionally, the use of gameplay videos can
be reduced to using a static level image where each frame is
either considered separately as a level, or concatenated to-
gether to form a full level. Therefore, methods that rely on
gameplay videos can also benefit from an unsupervised rep-
resentation learning approach.

We are not the first to recognize the tension of needing an-
notated training data in PCGML. Summerville et al. (Sum-
merville et al. 2016) created and maintain the Video Game
Level Corpus, a repository of video game levels represented
in a variety of formats, including graphical and tile-based
for the purpose of video game research. Regardless of these
efforts, there are a vast number of video games, and it is
infeasible to convert many of their levels using the current
manual or domain specific methods. Others have attempted
to sidestep the need for annotated training data in new do-
mains by combining models for various domains (Guzdial
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Figure 1: This figure shows the flow of our approach. We start with a set of level images; extract a set of unique sprites
from those images; re-represent the levels using a unique identifier associated with each unique sprite; train a model on those
represented levels; perform clustering on the sprites using the distance between the trained distributions as the metric, yielding
a set of clusters corresponding to tile types; and finally we represent the input levels using the extracted tile types.

and Riedl 2018) or by transferring a learned model from one
domain which has training data to another domain with more
limited training data (Snodgrass and Ontanon 2016a). How-
ever, they still require training data for some (ideally func-
tionally similar) domain, and thus do not address the root of
the problem.

Some have explored the role of different structures and
tile types in different game domains through interaction. In
the General Video Game AI competition (Pérez-Liébana et
al. 2016) the various agents needed to analyze and determine
what the different elements in the given levels were without
prior knowledge. The agents in this case were able to inter-
act with the provided level and build up a world model this
way. The most closely related work is that of Summerville et
al (Summerville et al. 2017) which tries to determine what
the elements in a Super Mario Bros. level do by analyzing
gameplay traces and in-game events, and clustering player
and object interactions modeled as probabilistic events. No-
tice, each of these approaches relies on the use of agent inter-
actions in order to extract the function of the tiles, while we
are first interested in seeing how far we can go only analyz-
ing the structural elements of the level in order to determine
the functional groupings.

Approach
In this section we propose our approach for automatically
determining a representative set of tile types for a domain
given a set of level images. At a high level our approach
works in three phases: first, we automatically label the im-
ages using the set of unique sprites found in the level images;
next, we train a Markov random field (Cross and Jain 1983)
model on the levels treating each of those unique sprites as
a temporary tile type; finally, we cluster the sprites using
the distances between their learned probability distributions.

Figure 1 shows the flow of our approach. We discuss each of
the above stages in more detail below.

Labeling
In this stage we first parse the input level images in order to
extract a set of unique x×y pixel sprites. We then treat each
of those unique sprites as a temporary tile type, and use them
to re-represent the input levels in an intermediate tile-based
representation, resulting in a set of tile-based levels that can
be passed to the next stage of the pipeline.

Training
In this stage we train a statistical model on the newly created
tile levels. Many machine learning approaches can be used
here in order to extract a generalized representation of the
input levels, but in our experiments we leverage a Markov
random field approach (Cross and Jain 1983).

We train a Markov random field using a neighborhood of
the four surrounding sprites in the level, as shown in Fig-
ure 2. Using the Markov random field, we estimate P (c|t)
from the set of levels represented in the tile format described
above, where c is a configuration of surrounding tile types at
a given position in the level, and t is the tile type at the cen-
ter of that configuration. A similar modeling approach using
Markov random fields has previously been used by Snod-
grass and Ontañón 2016b to model and generate game lev-
els. The key difference here is that Snodgrass and Ontañón
estimated P (t|c) in order to capture the proper placement
of tile types within a level and replicate it during genera-
tion, whereas we estimate P (c|t) so that we can more eas-
ily compare which configurations and patterns occur around
specific tile types, thus allowing us to reason more directly
about how different tile types occur with different patterns
in the input levels.



S4,3 

S4,2 

S1,3 S2,3 S3,3 

S1,2 S2,2 S3,2 

P(Sx,y | Sx-1,y , Sx+1,y , Sx,y-1 , Sx,y+1) 

S4,1 S1,1 S2,1 S3,1 

…"

…"

…"

…" …" …" …"

Figure 2: This figure shows the network structure used when
training our Markov random field approach. The red cell in-
dicates the current tile and the blue cells indicated the sur-
rounding configuration or neighborhood.

Clustering
In this stage we cluster the sprites based on the learned
probability distributions corresponding to each sprite. To
achieve the clustering, we leverage a hierarchical clustering
approach implemented in R (Maechler et al. 2013). We use
a hierarchical clustering approach so that we can easily in-
spect the clusters at varying levels of granularity.

For our distance metric, we compute the total variation
distance (Verdú 2014) between the probability distributions
learned for the given sprites. The total variation distance can
be thought of as the maximum distance between two proba-
bility distributions for any one event. Specifically, we com-
pute:

max (|P (c|ti)− P (c|tj)|) ∀c ∈ C,

where the P are the probability distributions trained by the
MRF, and ti and tj are the tiles for which the distributions
are being compared, and C is the set of all possible sur-
rounding tile configurations.

This hierarchical clustering approach results in a dendro-
gram where each leaf corresponds to a unique sprite. Thus,
once the clustering is complete we can experiment with cut-
ting the tree at different heights to investigate the clusters
resulting from that cut. It is beneficial to be able to explore
different granularities of clusters for our analysis, but other
common methods for estimating the ideal number of clusters
can be employed in place of manual inspection (e.g., the av-
erage silhouette method (Kaufman and Rousseeuw 2009)).
Additionally, other common clustering techniques can be
employed here, such as k-medoids or DBSCAN.

Experimental Evaluation
In this section we discuss our experimental design including
the domain explored, the evaluations metrics used, and the
results of our experiments.

Domain
We test our approach with the first level of Super Mario
Bros., a platforming game that has commonly been used
as a testbed in PCG (Marino, Reis, and Lelis 2015;
Shaker et al. 2011; Mawhorter and Mateas 2010) and
PCGML (Dahlskog, Togelius, and Nelson 2014; Guzdial
and Riedl 2016; Snodgrass and Ontañón 2016b; Sum-
merville and Mateas 2016). We use only the first level in
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Figure 3: This figure shows a section of a Super Mario Bros.
level represented using the complex manual tile set.

our experiments in order to explore the feasibility of our ap-
proach by using a limited number of unique sprites. Many
current PCGML approaches that have been tested in this do-
main have leveraged a tile-based representation of the lev-
els, and there have been several different tile representations
used with varying degrees of fidelity. In our experiments,
we compare our automatically extracted tile sets against two
manually-defined tile sets:

• Simple Manual: This is the tile set used by the VGLC
to represent levels in this domain. It consists of 11 tile
types, and abstracts different enemy types to a single tile
type, and represents above ground levels without treetops,
bridges, or moving platforms. For the level we use in our
experiments 7 of these tile types used.

• Complex Manual: This is the tile set used by Snodgrass
and Ontañón in their more recent work (Snodgrass and
Ontañón 2016b). This tile set consists of 45 tile types. It
distinguishes between the different enemy types, it dis-
tinguishes blocks based on their contents, and is able to
represent all above ground levels, castle levels, and un-
derground levels. Figure 3 shows a section of a level rep-
resented in this format. For the level we use in our exper-
iments 15 of these tile types are needed.

The mappings of the set of unique extracted sprites to these
sets of tile types can be seen in Tables 1 (left) and 2 (left),
respectively.

Evaluation Methods
Using the approach outlined previously, we extract a set of
unique sprites from the input level image, and then cluster
them in order to automatically determine different sets of
tile types. We evaluate the results of our clustering by in-
vestigating the cluster statistics and through manual inspec-
tion of the clusters themselves. For the cluster statistics, we
compute the average silhouette of the clusters created by
cutting the dendrogram created by the hierarchical cluster-
ing method at several levels. This measures how well, on
average, each sprite fits within its own cluster versus other
clusters. We also note the largest and smallest cluster sizes
for each clustering. This metric shows us the spread of the
clusters and can help inform users about what a desirable
number of clusters may be. For the manual inspection, we
explore the differences between the found clusters and the
manually defined tile types. For our evaluation we cut the



Simple Manual Simple Clustering
Tile Type Sprites Cluster Sprites

Empty Cluster 1

Enemy Cluster 2

?-Block Cluster 3
Brick Cluster 4
Solid Cluster 5

Left Pipe Cluster 6

Right Pipe Cluster 7

Table 1: This table shows the Simple Manual set tile types and their corresponding sprites from the training level (left), and the
Simple Clustering set of automatically extracted tile types determined via clustering (right). The arrangement of the clustering
results does not indicate a relation to the manual tile type.

Complex Manual Complex Clustering
Tile Type Sprites Cluster Sprites

Empty Cluster 1

Flagpole Cluster 2

Goomba Cluster 3

?-Block Cluster 4
Brick Cluster 5
Powerup Cluster 6
Solid Cluster 7
Extra Life Cluster 8
Top-Left Pipe Cluster 9
Top-Right Pipe Cluster 10
Coin Brick Cluster 11
Star Block Cluster 12
Left Pipe Cluster 13
Right Pipe Cluster 14
Koopa Cluster 15

Table 2: This table shows the Complex Manual set tile types and their corresponding sprites from the training level (left), and the
Complex Clustering set of automatically extracted tile types determined via clustering (right). The arrangement of the clustering
results does not indicate a relation to the manual tile type.

dendrogram to produce 7 clusters and 15 clusters, so that we
can compare these clustering results to the manually defined
7 and 15 tile types that have been used previously to repre-
sent the chosen level.

Results

Tables 1 and 2 show the manually defined tile sets and the
sets of sprites represented by each tile type (left) and the
clusters found by our approach (right). In many cases our
approach clusters tiles that are functionally similar. For ex-



k Avg. Silhouette Max. Size Min. Size
2 0.3778221 46 7
7 0.1788397 21 1
11 0.1791865 21 1
15 0.1825074 20 1
20 0.09250035 16 1
26 0.08664249 10 1

Table 3: Cluster statistics for the clusters found by cutting
the dendrogram for various numbers of clusters. 7 and 15
are used in the rest of our evaluation because the manually
defined tile sets have represent the chosen training level with
7 (simple) and 15 (complex) tile types.

ample, in both settings, a cluster is found containing many
of the brick and question mark tiles. Additionally, the pipe-
top tiles are accurately grouped together in the simple setting
(albeit with a background tile), and are accurately split in the
complex setting. This is encouraging as it shows that these
distinctions can be made automatically with only structural
information (to some extent), but there are clear issues. Clus-
ter 1 (in the simple setting) contains a mix of background
sprites and enemies, and in general background sprites are
interspersed with many of the clusters. This may be because
while the background sprites all perform similar functions,
the individual sprites (e.g., cloud sections, bush sections,
etc.) often only appear in specific configurations, and thus
have a very sparse (and very distinct) probability distribu-
tion, which makes them more likely to get grouped in with
other sprites. For example, in the simple setting the bush and
hill background sprites get clustered with the bottom pipe
sections. Notably, all of these sprites typically appear just
above the ground sprites. This behavior is reflected in the
complex setting as well. This suggests a shortcoming of the
distance metric used for clustering and potentially an insuffi-
ciency in using only the positional information of the sprites.
In the future, more informative distance metrics could be
considered which may encompass frequencies of the tiles
appearances or perhaps the shapes on contiguous tiles simi-
lar to Guzdial and Riedl’s clustering approach (Guzdial and
Riedl 2016).

Tables 3 shows the average silhouette of the clusters, as
well as the maximum and minimum cluster sizes. Recall
that the average silhouette of a clustering approximates the
spread of the clusters, and a smaller silhouette means that
the elements within a cluster are more closely related. As
expected, with more clusters the average silhouette typically
decreases. An interesting exception here is that the silhou-
ette when k = 15 (for the complex setting) is larger than
when k = 7 (for the simple setting). This indicates that
when k = 7 we get tighter, more similar clusters. This is
somewhat reflected in our manual inspection of the cluster-
ing results discussed above.

Limitations and Future Work
As this was an initial step, there are two major limitations
that we hope to address in the future. First, while our clus-
tering approach was able to group some functionally simi-

lar sprites together (e.g., bricks, pipes) it struggled with the
grouping of others (most notably the background sprites:
sky, cloud, hill, and bush). This is partially a shortcoming
of the distance metric and clustering employed, as several
of the background sprites appear in similar configurations
as other sprites (e.g., the hills and the pipes). We aim to
first explore more robust modeling and distance metric op-
tions. However, as Guzdial et al. discuss (Guzdial, Sturte-
vant, and Li 2016), we likely need both static and dynamic
analysis (i.e., analysis of the structural and gameplay ele-
ments, respectively) to get a complete understanding of the
domain. Therefore, once we more fully explore our static
analysis options (i.e., distance metrics, clustering options,
modeling approaches), we will incorporate dynamic anal-
ysis. Dynamic analysis will help our model reason more
clearly about the functionality of the sprites, and cluster
them more cohesively. Incorporating dynamic analysis can
easily undermine the goal of our work (i.e., reducing re-
liance on domain knowledge and domain specific scripts)
by requiring a specific agent for each domain. To avoid this
potential tension, we will explore the use of reinforcement
learning agents, specifically those used in the General Video
Game AI competition, that may be able to learn how to play
the game without requiring much domain knowledge.

The second limitation of our work is that we have thus
far only applied it to one domain, and only a fraction of that
domain. To address this, we will first apply our approach to
a larger subset of Super Mario Bros. levels, including those
with different visual sprite sets, such as castle and under-
ground levels. We are also interested in exploring our ap-
proach in domains unexplored by PCGML techniques thus
far, such as Metroid, which do not have a defined set of tiles
used by researchers that can be treated as the “ground truth”
as we did in the Super Mario Bros. domain. This will help
us explore the robustness of our refinements and force us to
devise and explore more general methods of evaluation.

Conclusions
In this paper we presented a proof of concept approach for
automatically extracting a set of representative tile types
from a set of input level images without requiring domain
or design knowledge from the user. This approach is meant
as a step towards alleviating the reliance of PCGML users
on domain specific scripts and manual annotation when cre-
ating training data. Using our approach, we automatically
extracted 2 sets of tile types and found some similarities be-
tween the extracted tile sets and manually defined tile sets of
the same size. The found clusters also contained quite a bit
of noise and did not perfectly delineate the sprites by func-
tionality. In the future we will explore methods for defining
cleaner clusters and further exploring how this automatic ap-
proach performs more broadly, both in other domains and
paired with a variety of PCGML techniques.
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Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games.
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