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ABSTRACT

A framework is proposed to predict the emotional impact of
movies by using the audio, action, object and scene features.
First, four state-of-the-art features are extracted from four
pre-trained convolutional neural networks to depict video con-
tents, and an early fusion strategy is used to combine vectors
of these features. Then, the linear support vector regression
or linear support vector machine is employed to separately
learn affective models or fear models, and the strategy of
cross-validation is utilized to select training parameters. Fi-
nally, the Gaussian blur function is used to smooth scores of
video segments. The experiments show that the combination
of these features obtains promising results.

1 INTRODUCTION

The 2018 emotional impact of movies task consists of two
subtasks, including the valence-arousal prediction and the
fear prediction. A brief introduction about this challenge has
been given in [1]. This paper mainly introduces the proposed
framework and discusses the experimental results.

The selection of features is crucial to emotional analysis.
Intuitively, the audio, action, object and scene features can
influence emotions. Therefore, vectors of four state-of-the-
art features are calculated in this framework. Then, the
affective models or fear models are learned by using linear
support vector regression (SVR) or linear support vector
machine (SVM) [2]. Finally, the function of Gaussian blur is
utilized to smooth scores of temporal segments.

2 FRAMEWORK

Figure 1 shows the key components of the proposed frame-
work, and the highlights of our framework are introduced
below.
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Figure 1: An overview of the proposed framework.

2.1 Features

To depict a video, four features are separately extracted from
four pre-trained Convolutional Neural Networks (CNNs),
including audio, action, object and scene features.

2.1.1 Audio Feature. The audio signals are important in-
formation that describes emotions. VGGish [4] is a famous
audio feature extractor, so it is used to calculate the vectors
of audio feature. First, the audio files are extracted from
videos. Then, the pre-trained model1 provided by [4] is uti-
lized to calculate the feature vectors of audio files. Therefore,
the audio signals are converted into semantically meaningful
high-level 128-dimensional feature vectors by VGGish. In
conclusion, for the audio feature, a video is described as a
sequence of 128-dimensional vectors.

2.1.2 Action Feature. The actions in the video can in-
fluence viewer’s emotions. The two-stream Convolutional
Networks (ConvNet) [6] is a well-known framework for video-
based action recognition, and includes the spatial ConvNet
and the temporal ConvNet. The temporal segment network [8]
builds the model of long-range temporal structure to improve
this framework, and Inception-v3 [7] is the basic network
architecture of the two ConvNets. The pre-trained models
provided by [8] are utilized to calculate the vectors from
the ‘top cls global pool’ layer. As a result, a frame is de-
scribed by two 1024-dimensional vectors. By connecting the
two vectors of a frame, a video is depicted as a sequence of
2048-dimensional vectors.

2.1.3 Object Feature. The objects in the video may affect
emotions of the viewer. The Squeeze-and-Excitation Net-
work (SENet) [5] is the state-of-the-art model for object

1https://github.com/tensorflow/models/tree/master/research/
audioset

https://github.com/tensorflow/models/tree/master/research/audioset
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classification. We utilize the pre-trained SENet model2 to cal-
culate the vectors from the ‘pool5/7× 7 s1’ layer. Therefore,
the dimension of object features is 2048.

2.1.4 Scene Feature. The scenes of the video affect the
emotions of the audience. The Places365 dataset is a large
dataset for scene classification [9]. We utilize the pre-trained
ResNet-50 [3] model3 to calculate the vectors from the ‘avg-
pool’ layer. So a frame is depicted by a 2048-dimensional
vector.

2.2 Emotional Prediction

To combine vectors of these features, we utilize the early
fusion strategy because of its simplicity and efficiency. As
shown in Fig. 1, we directly connect vectors of these features
for each sample.

For different subtasks, the linear SVR and the linear SVM
are used to learn the emotional models, separately. The
number of positive samples is less than that of the negative
samples in the fear subtask. To solve this problem, we weight
positive and negative samples in an inverse manner. The
regularization parameter 𝐶 is set by the strategy of cross-
validation. The LIBLINEAR toolbox4 is used to implement
the L2-regularized L2-loss SVM and SVR.

After obtaining the scores of video segments, we use the
function of Gaussian blur to smooth these scores. Let the
score vector of a video be 𝑉 . Then, the Gaussian blur function
is defined as

Gaussianblur(𝑉 ) = 𝑉 ⊗𝐾,

where ⊗ is the convolution operator, 𝐾 is the specified Gauss-
ian kernel. In experiments, we set the size of Gaussian kernel
to 11 for the valence-arousal subtask and 5 for the fear sub-
task.

3 RESULT AND DISCUSSION

In order to evaluate the aforementioned features described in
Section 2.1, the features provided by the task organizers are
selected as the baseline features. As required in the task, we
submit five runs for each of the two subtasks. Table 1 shows
the features used in these runs.

Table 1: Features used in five runs.

Runs Features

Run 1 features provided by the task organizers
Run 2 audio and scene features
Run 3 audio, scene and object features
Run 4 audio, scene and action features
Run 5 audio, scene, action and object features

For the sake of fair comparison, the five runs utilize the
same framework except the features used. Regarding the

2https://github.com/hujie-frank/SENet
3https://github.com/CSAILVision/places365
4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/multicore-liblinear

learning algorithm, SVR is employed in the valence-arousal
subtask, and SVM is used in the fear subtask. The Mean
Square Error (MSE) and Pearson Correlation Coefficien-
t (PCC) are reported for the valence-arousal subtask, and
the Intersection over Union (IoU) of time intervals is consid-
ered as the evaluation metric for the fear subtask [1]. The
results are given in Table 2 and Table 3

Table 2: Results of the valence-arousal subtask.

Runs
Valence Arousal

MSE PCC MSE PCC

Run 1 0.09142 0.27518 0.14634 0.11571
Run 2 0.09038 0.30084 0.13598 0.15546
Run 3 0.09163 0.26326 0.14056 0.14310
Run 4 0.09105 0.25668 0.13624 0.17486
Run 5 0.09243 0.24679 0.13950 0.15226

Table 3: Results of the fear subtask.

Runs IoU of time intervals

Run 1 0.14360
Run 2 0.12900
Run 3 0.13067
Run 4 0.15750
Run 5 0.14969

As shown in Table 2, Run 2 obtains the best result in the
valence-arousal subtask. This suggests that the combination
of audio feature and scene feature is sufficient to predict
valence-arousal values. In the fear subtask, Run 4 achieves
the top performance as shown in Table 3. This demonstrates
that the combination of audio, scene and action features is
enough to describe fear, and that the method using more
features does not necessarily lead to better experimental
results. By comparing the results of Run 2 and Run 3 in
Table 2 and Table 3, the usage of the object feature improves
the performance in the fear subtask, but it decreases the
performance in the valence-arousal subtasks. This may be
due to the reason that some objects can cause people’s fears,
such as blood, guns, etc. In Table 3, Run 4 obtains better
performances than Run 3. This partly demonstrates that
actions are more likely to cause fear than objects.

4 CONCLUSION

In this work, we propose a framework to predict the emotional
impact of movies. Vectors of four features are calculated by
using four pre-trained convolutional neural networks. The
affective models or fear models are separately learned by
using SVR or SVM, and the function of Gaussian blur is
utilized to smooth the temporal scores. Experimental results
show that the combination of audio feature and scene feature
is enough in the valence-arousal subtask, and that additional
action feature improve the performance in the fear subtask.

https://github.com/hujie-frank/SENet
https://github.com/CSAILVision/places365
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