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ABSTRACT

Transfer learning is an approach where a model trained for a given

task is used as a starting point on a second task. Many advanced

deep learning architectures have been pre-trained on ImageNet

and are currently available, whichmakes this technique very popu-

lar. We evaluate 10 pre-trained architectures on the task of �nding

gastrointestinal diseases and anatomical landmarks in images col-

lected in hospitals. Our analysis considered both processing time

and accuracy. We also study if global image features bring advan-

tages to the pre-trained models for the problem of gastrointestinal

medical image classi�cation. Our best models achieved accuracy

and F1-score values of 0.988 and 0.908, respectively. Our fastest

model classi�es an input instance in 0.037 seconds, and yields ac-

curacy and F1-score of 0.983 and 0.866, respectively.

1 INTRODUCTION

The Medico Task proposes the challenge of predicting diseases

based on multimedia data collected in hospitals [7, 8]. The images

are frames collected from videos captured by the insertion of a cam-

era in the gastrointestinal tract. The main purpose is to identify

anomalies that can be detected visually, even before they become

symptomatic. More details can be found in the task overview [9].

To solve the task we created several models based on features

extracted from deep convolutional architectures and global image

features. The deep architectures were trained on ImageNet. The

strategy was to create three kinds of models: (i) those having only

features extracted from deep architectures as input, (ii) those that

considered only global image features, and (iii) those created with

all features available.

The approach of extracting features from pre-trained models

is usually referred to as transfer learning. It has become popu-

lar because many models are available. We selected 10 architec-

tures trained on ImageNet as extractors, and compared their per-

formance on classifying images for the Medico Task.

The architectures di�er in several characteristics, which impacts

the time to compute the features. Since e�ciency is an important

matter on this task, we computed the data processing speed for

each test images and made e�orts to reach a balance between so-

lution quality and running time.

2 RELATED WORK

Transfer learning has been used in several problems in a number of

domains. In 2017, Agrawal et al. [1] used transfer learning for the

Medico Task when the challenge had 8 classes and achieved good
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results. They restricted the analysis to two architectures: Inception-

V3, and VGGNet. They also conducted an analysis of how a model

performs if it uses features extracted from both architectures as

input. The results are better for just a small factor, which lead us

believe that it does not worth the extra processing time. We ex-

tended the work of Agrawal et al. [1] by using 10 architectures and

by considering both solution quality and e�ciency in our analysis.

3 APPROACH

The development and test dataset contain 5,293 and 8,740 images,

respectively. For each image, visual features were extracted and

provided as feature vectors by the task organizers, namely: JCD,

Tamura, ColorLayout, EdgeHistogram, AutoColorCorrelogram and

PHOG [6]. These feature vectors are sequences of �oating point

values for each image, and the number of values sum to 1185. These

values were joined to form a table used as input to our model,

where rows represent images. We removed 19 columns because

either they had the same value for all images or because they were

duplicated.

We used 10 architectures trained on ImageNet: DenseNet121 [5],

DenseNet169 [5], DenseNet201 [5], InceptionResNetV2 [11], Incep-

tionV3 [12], MobileNet [3], ResNet [4], VGG16 [10], VGG19 [10],

Xception [2]. Each architecture requires a particular pre-processing

step and returns vectors of �oating point numbers. Vector sizes

are: DenseNet121 (1024), DenseNet169 (1664), DenseNet201 (1920),

InceptionResNetV2 (1536), InceptionV3 (2048), MobileNet (1024),

ResNet (2048), VGG16 (512), VGG19 (512), Xception (2018).

The input layer has the same number of nodes as the feature

vector sizes. That said, in a model that uses only global features

the input layer has 1166 nodes. In a model that uses global features

and a given architecture as feature extractor, the input layer has the

feature vector of that architecture plus 1166.

The best model for most of the input features uses one hidden

layer that has 512 nodes and each node uses Relu as activation

function. We added a Dropout of 50% in the training stage and l2
regularization to prevent over�t. Models with more layers tend to

over�t very easily with just a few epochs. It would be possible to

create simpler models for small feature vectors like VGG architec-

tures, but we decided to report the same network for all input vec-

tors for comparison purposes. The output layer has 16 nodes (one

for each class) and uses softmax activation to classify the image in

one of the classes.

4 RESULTS AND ANALYSIS

During the training stage we split the development set with 5,293

images into train (3,038 images), validation (1,722 images), and test

(531 images) datasets.We used train and validation sets to train and
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tune the classi�er. Test dataset was used only once to generate the

results in Table 1 after we were satis�ed with the validation scores.

The model that uses only global image features yields an accu-

racy of 0.813, and F1-score of 0.782, which we consider a baseline

result. Table 1 summarizes the results using transfer learning in the

test dataset with 531 images. We based our decision about which

model was best to submit on the F1-score and accuracy metrics.

Table 1: F1-score and accuracy of the transfer learning mod-

els in our test dataset (531 images). Table also reports the av-

erage time (in seconds) to classify an image after the model

is loaded in memory. We highlighted the best results.

Architecture No Global Features Global Features

Time ACC F1 ACC F1

DenseNet121 0.163 0.904 0.856 0.915 0.868

DenseNet169 0.209 0.915 0.899 0.919 0.903

DenseNet201 0.242 0.923 0.905 0.925 0.871

InceptResnetV2 0.349 0.908 0.894 0.904 0.858

InceptionV3 0.213 0.883 0.876 0.889 0.845

Mobilenet 0.037 0.889 0.841 0.896 0.850

Resnet 0.115 0.909 0.916 0.894 0.883

VGG16 0.372 0.879 0.837 0.870 0.828

VGG19 0.406 0.881 0.867 0.866 0.858

Xception 0.257 0.877 0.835 0.898 0.855

Our �rst decision was to disregard the models that had trans-

fer learning plus global features because the improvement after

adding global features was considered irrelevant. As an example,

the architectureDenseNet201 had a small increase of accuracy from

0.923 to 0.925. These were the best models using accuracy metric.

If we consider the F1-score, models with global image features be-

came even worse in several cases. Taking into account that these

models with global features have 1166more inputs than their coun-

terparts, we decided to keep the simpler models.

DenseNet201 and Resnet were selected as the two best models

considering accuracy and F1-score, respectively. MobileNet was se-

lected because it is amazingly fast, and e�ciency is an important

matter on this task. Indeed, we consider this model the best trade-

o� since its 0.889 of accuracy is not far away from the 0.923 ac-

curacy of DenseNet201 (best accuracy model) and runs 6.5 times

faster. DenseNet121 was the last model selected because is some-

where in between the best accuracy model (DenseNet201) and the

fastest model (Mobilenet).

Selectedmodelswere submited and evaluated against the dataset

with 8,740 images. In this dataset, our results were much better

than we anticipated. Results are shown in Table 2, where we also

report the o�cial competition ranking indicator Rk . ResNet and

DenseNet models achieved accuracy higher than 0.987. Mobilenet

yields accuracy of 0.983, which is very close to the top accuracy of

0.988 achieved by DenseNet201 and Resnet.

F1-score shows that Resnet and DenseNet201 are the best mod-

els and that MobileNet is somewhat worse than the others. How-

ever, we believe MobileNet has best trade-o� if we consider that it

returns solution in much less than a second. DenseNet121 does not

appear a good choice because it is slower than Resnet and present

somewhat worse results. Therefore, Resnet should be preferred in

any situation. DenseNet201 was the top accuracy and F1-score, but

it is so close to Resnet that it is di�cult to argue that it is enough

compensation for the fact of being twice as slower.

Table 2: F1-score, accuracy and Rk of the selected models in

task test dataset (8,740 images).

Architecture ACC F1 Rk

DenseNet121 0.987 0.903 0.893

DenseNet201 0.988 0.908 0.898

Mobilenet 0.983 0.866 0.853

Resnet 0.988 0.906 0.896

5 DISCUSSION AND OUTLOOK

We believe these models can be improved and the confusionmatrix

shown in Figure 1 provides some insights. We analysed how they

performed in each of 16 class and found out that the class “out-of-

patient” is particularly problematic, since it has only 4 instances in

the development set and 5 instances in the test set. Furthermore,

none of our models was able to classify these 5 instances right,

which does not impact accuracy but degrades F1-score. In the fu-

ture, some data augmentation should be performed to improve this

class.

Figure 1: Confusion matrix of DenseNet201 on the test

dataset with 8,740 images.

Another class we need to study is “esophagitis”, because 170

instances were classi�ed as “normal-z-line”, which accounts for

30.57% of instances in this class. The classes “Stool-plenty” and

“colon-clear” havemost of the instances, and ourmodels did a good

job on classifying them right, which boosted the scores.
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