
Predicting Memorability via Early Fusion Deep Neural Network
Aaron Weiss∗, Benjamin Sang∗, Sejong Yoon

The College of New Jersey, USA
{weissa7,sangb1,yoons}@tcnj.edu

ABSTRACT
In this working note, we present our approach and investigation on
the MedialEval 2018 Predicting Media Memorability Task. We used
a portion of the features provided, while also employed additional
features. Two different training approaches were attempted to train
a deep neural network architecture, fusing multiple features we
used. Official results, as well as our investigation on the task data
are provided.

1 INTRODUCTION
MediaEval 2018 Predicting Media Memorability [4] is a new mul-
timedia analysis task following up from previous years of media
interestingness prediction challenges [6]. It consists of two subtasks.
In the first task, the system should predict whether the viewer will
remember a video in the short-term (minutes). The second subtask
was for the system to predict whether the viewer will remember
a video in the long-term (24-72 hours). Within the total of 10,000
videos that were annotated, 8,000 of them were provided as dev-
set, and the remaining 2,000 videos were reserved for the test-set.
Details of the annotation protocol and the prior work survey can
be found in the task overview paper [4].

2 APPROACH
In this section, we first describe the features we employed and then
present our method.

2.1 Features
We used many of the provided features, including Aesthetic visual
features[7], the final classification layer of the C3D[15] model, Color
Histogram in HSV space, Histogram of Motion Patterns[1], and
the outputs of the f c7 layer of the InceptionV3[14] deep neural
network. We also employed two additional features:

ImageMemorability Prediction. Extracted three frames from
every video, at the time stamps 0.5, 3.0, and 5.5 seconds. For 7 sec-
ond videos, this results in good coverage of the entire video in the
case of rapidly changing scenes. Then, we used MemNet [10] im-
age memorability prediction model to extract image memorability
scores of the three frames. Finally, the three prediction scores were
averaged as a memorability score prediction for the entire video.

Caption. Following a prior work [5], we considered utilizing
caption data provided in the dataset. Given the textual metadata per
video, we generated a feature vector using Google’s Word2Vec [12]
model. This yields a 300-dimensional vector for each word within
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Figure 1: Our deep neural network structure. Each fully con-
nected layer used ReLU [13] for the activation function. All
dropout layers used 0.5 for the drop rate. Concatenationwill
make the fused features into a 301 (without caption) or 351
(with caption) dimensional vector. To speed up the training,
we attempted to pre-train the lower layers of the network
(shaded in yellow). Please refer the text for the details.

the provided video caption. Then, the vectors in each video were
averaged to create one vector per video as a feature.

2.2 Feature Fusion via Concatenation
Given the described features, the key task is to find the best com-
bination/subset of the features that correlates well to the video
memorability score. In this work, we tried deep neural network
stackingmultiple fully connected layers withmodern regularization
techniques. Fig. 1 depicts our network structure.

Our network design focused on two aspects: (a) include suffi-
cient number of layers for input features with high dimensions
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Table 1: Result of all submissions and additional experiments.

Subtask Method Initial Epochs 2-fold Cross Validation Testset Official Result
Learning Rate Spearman’s ρ Pearson’s ρ MSE Spearman’s ρ Pearson’s ρ MSE

Short A (run1) 0.05 100 0.421 0.448 0.010 0.284 0.190 0.007
A (run2) 0.001 300 0.400 0.410 0.010 0.287 0.130 0.010
B (run3) 0.001 100 0.285 0.247 0.010 0.310 0.316 0.006
B (run4) 0.001 200 0.378 0.392 0.010 0.340 0.363 0.006
B (run5) 0.001 300 0.375 0.391 0.010 0.338 0.345 0.006

C 0.001 200 0.450 0.472 0.010 - - -
Long A (run1) 0.05 100 0.131 0.125 0.020 0.074 0.039 0.025

A (run2) 0.001 300 0.109 0.105 0.030 0.078 0.026 0.025
B (run3) 0.001 100 0.078 0.081 0.030 0.086 0.090 0.022
B (run4) 0.001 200 0.081 0.085 0.030 0.090 0.095 0.024
B (run5) 0.001 300 0.085 0.094 0.020 0.093 0.097 0.023

C 0.001 300 0.159 0.176 0.020 - - -

Table 2: Results using each feature we employed (5-fold
cross validation on the dev-set). MemNet features are al-
ready memorability scores, so we calculated Spearman’s ρ
directly using the extracted MemNet scores and the ground
truth video memorability scores over the whole dev-set.

Feature Spearman’s ρ
Short Long

Aesthetic Mean 0.2754 0.1287
Aesthetic Median 0.2782 0.1191
C3D 0.2960 0.1269
HMP 0.2212 0.0744
Color Histogram (HSV) 0.3146 0.1078
InceptionV3 0.0960 0.0354
Caption 0.4638 0.2020
MemNet 0.4029 0.2022

so that subtle but important variations are not ignored and (b)
all features are equally treated, and important but small dimen-
sional features are not overwhelmed by the other large features.
Each linear weight followed by a ReLU [13] activation function
and a dropout regularization [8]. We used 0.5 for all dropout rates.
The network hyperparameters were determined by preliminary
experiments and Table 2 summarizes the results using each feature
individually. Several methods have been proposed for feature fu-
sion in deep neural networks, particularly for convolutional neural
nets [2, 3]. After some preliminary trials, we decided to use the
simple concatenation as no significant difference was found.

2.3 Pre-training Layers
One of the well-known issues of the deep neural network training
is the vanishing gradient problem [9]. While we used ReLU to
alleviate the problem, we found that our network in Fig. 1 easily get
stuck during the training. To speed up the training, borrowing the
idea from transfer learning, we pre-trained the lower layers before
the concatenation. We denote the network without pre-training as
model A and the one with pre-training as model B. As evident from

our final result in Table 1, this improved the performance of the
model in the test-set. We ran 100 epochs for the pre-training.

3 DISCUSSION AND OUTLOOK
Overall results on our submissions are summarized in Table 1. We
used ADAM for the optimization [11] and for most of the cases, we
used the default learning rates of 0.001. Due to schedule constraints,
we did not include Caption features in the submitted methods A and
B. We report cross validation result including the Caption feature
with the best-performing configuration (with pre-trained layers) as
method C. It is clear from the result, that the pre-training approach
B showed more balanced generalization performance, regardless of
dev-set/test-set split. Moreover, B shows consistent performance
improvement over increasing training epoch, indicating that the
model is being trained in the right direction.

On the downside, several challenges were identified. First, the
performance of the feature-fused network did not improve much
over individual features. Only when high level information, e.g. cap-
tion, is involved, we reached the baseline performance. As reported
in [5], it is clear that high level pre-processing is essential to achieve
a reasonable performance. One may consider late fusion instead of
early fusion, for some of the features we considered, e.g. MemNet.
Second, long-term video memorability is more difficult to predict
than the short-term one. From our experiments, it was unclear
which feature, would improve the long-term video memorability
prediction as all of them yielded poor performance. Even the high
level semantic features struggled in this case. This is not surprising
given the true long-term memorability scores are 1 (memorable for
all annotators) in many cases. More robust prediction model, that
can distinguish subtle differences might be needed for this subtask.
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